29. Grundlegendes zu Magnetfeldern

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "29. Grundlegendes zu Magnetfeldern"

Transkript

1 Elektizitätslehe Gundlegendes zu Magnetfelden 9. Gundlegendes zu Magnetfelden 9.1. Die LORENTZ-Kaft Ladungen weden nicht nu von elektischen Felden beeinflusst (COULOMB- Kaft, Gl. (5-4)), sonden auch von magnetischen Felden. Expeimente zeigen: Kaft wikt nu auf bewegte Ladungen F ~ v Kaft wikt imme senkecht zu v, also keine Ändeung des Betages von v bzw. de kinetischen Enegie E kin, sonden nu Richtungsändeung Bei homogenen Magnetfelden sieht man, dass die Kaft von de Richtung von v elativ zum Magnetfeld B abhängt positive und negative Ladungen q/-q weden entgegengesetzt abgelenkt Letztlich zeigt sich, dass fü die LORENTZ-Kaft gilt: F = q v B B... magnetische Feldstäke (1) Es gilt die Rechte-Hand-Regel: Mit Gl. (1) ist eine Päzisieung de expeimentellen Egebnisse möglich: F = q v B sin(v,b) F wid minimal (F = ) fü v B. F wid maximal fü v B. Damit ist B analog zu E übe die Kaftwikung auf elektische Ladungen definiet. Maßeinheit: [B] [F] N = = [q] [v] C m s 1 = Nm J = 1 C m s m = J Am SI mit: P = I U (6-14) 43

2 Elektizitätslehe Gundlegendes zu Magnetfelden [P] J = A V SI s J V =, damit egibt sich fü B As Maßeinheit: Vs [ B] = T m... Tesla SI Eine vealtete Nicht-SI-Einheit ist das Gauß (1 Tesla = 1 4 Gauß). 9.. Käfte auf Stöme im Magnetfeld Stom in einem Leite I = q n v A n... Zahl de Ladungstäge po Volumen q... Ladung po Ladungstäge v... mittlee Diftgeschwindigkeit () vgl. hiezu auch Gl. (6-1), alledings ist in Gl. () noch die koekte Richtungsbeziehung enthalten mit: N n = wobei N die Zahl de Ladungstäge im Dahtstück ist, A l folgt aus Gl. () I I B N = q v A A l = 1 N q v B N F l = T 1 l B (3) F T bescheibt die LORENTZ-Kaft auf einen Ladungstäge. Die gesamte Gl. (3) hingegen dückt die Kaft auf alle Ladungstäge po Längeneinheit im Dahtstück aus. Die esultieende Kaft auf alle Ladungstäge im Dahtstück egibt sich zu F = l I B bzw. F = I l B (4a) (4b) dabei gilt: l I = I l I l e e... Einheitsvekto in Daht-/Stomichtung l... Dahtlänge mit Vektochaakte I 44

3 Elektizitätslehe Gundlegendes zu Magnetfelden Kommenta: Die Kaft ist unabhängig davon, wie de Stom zu Stande kommt (viele/wenige Ladungstäge, viel/wenig Ladung po Ladungstäge, goße/kleine Diftgeschwindigkeit) Entscheidend ist nu de Stom, also Ladung po Zeit. Einschub zu Richtungskonvention fü positive Ladungstäge (q > ) gilt: I E ~ v ~ I ~ j A v... Diftgeschwindigkeit de Ladungstäge In Metallen sind die fei beweglichen Ladungstäge die Elektonen (q = -e), sie bewegen sich natülich entgegengesetzt. Die Fomeln gelten natülich auch dot, wi müssen nu q = -e einsetzen. Wi betachten eine stomduchflossene Leiteschleife im Magnetfeld: Nu die Leitestücke AB und CD fühen zu eine Dehung. Die Käfte auf BC und D/A kompensieen einande Nun untesuchen wi den Schnitt duch diese Leiteschleife: Zu Dehung tagen nu die Kaftkomponenten senkecht zu Leiteschleife bei ( F n ). Die Kaftkomponenten tangential dazu ( F t ) kompensieen sich. Letztendlich zeigt sich, dass fü das Dehmoment M gilt: M = I A sin ϑ B (5) 45

4 Elektizitätslehe Gundlegendes zu Magnetfelden Kommenta: Das Dehmoment ist popotional zu A, d.h. entscheidend ist die Fläche ( Leitestück AB bingt die Kaft, Leitestück BC bingt den Hebelam ) Außedem ist das Dehmoment winkelabhängig (~ sin θ). Es vesucht, die Schleife senkecht zum Magnetfeld zu stellen ( maximale Wechselwikung zwischen I und B ). So funktionieen Messgeäte und Motoen Tick: Einfühung eines Vektos A mit A = A, Richtung senkecht zu Leiteschleifenfläche und Beücksichtigung de Rechten-Hand-Regel bezüglich des Stomes I: aus Gl. (5) folgt damit M = I A B Mitunte weden I und A zum magnetischen Moment µ de Stomschleife zusammengefasst µ = I A (6) (7) M = µ B (6 ) Kommenta: Das magnetische Moment µ bestimmt, wie wi noch vetiefen weden, die Stäke de magnetischen Wikung de stomduchflossenen Leiteschleife. Es steigt mit de Fläche A und/ode dem Stom I. Die stomduchflossene Leiteschleife ist das magnetische Analogon zum elektischen Dipol, das magnetische Moment entspicht dem (elektischen Dipolmoment). Das Vehalten, d.h. die Wechselwikung mit einem äußeen Feld, ist völlig analog. 46

5 9.3. Magnetfeld eines geaden Leites Elektizitätslehe Gundlegendes zu Magnetfelden Wi betachten das Magnetfeld eines stomduchflossenen Leites Eine genaue Untesuchung (z.b. duch Messung de Kaft auf eine bewegte Pobeladung q in Dahtnähe) liefet B µ = π I (8) mit de Richtung von B lt. de Rechten-Hand-Regel. Dabei ist µ die magnetische Feldkonstante ode Induktionskonstante. µ π = Vs 1,6 1 Am Vs Am µ ist uspünglich einmal gemessen woden, inzwischen abe duch die Definition des Ampee in seinem Zahlenwet festgelegt. Multipliziet man die Influenz- und Induktionskonstante, folgt ε µ = 8, As Vm 1, Vs Am 11, s m Diese Wet entspicht c - (c...lichtgeschwindigkeit im Vakuum) 1 c = ε µ (9) Dies ist kein Zufall, sonden wid auch duch komplexee Betachtungen bestätigt Einige allgemeine Eigenschaften des Magnetfeldes Wi vegleichen dazu mit dem E -Feld: 1.) Fü das elektische Feld E wa 1 E d = U 1 unabhängig vom Weg, d.h. E d = Dies ist die aus <6.1.> bekannte KIRCHHOFFsche Maschenegel. (5-14) 47

6 Elektizitätslehe Gundlegendes zu Magnetfelden Wenn wi obigen Ausduck analog fü das magnetische Feld B mittels Integation längs R = const. um den Daht bilden, ehalten wi B d R= const. µ = π = µ I I R πr Es lässt sich leicht zeigen, dass allgemein gilt: B d = µ geschlossene Kuve I ges, innehalb d. Kuve (1).) Fü das elektische Feld E wa außedem div E = ρ ε (5- ) Will man diesen Sachvehalt in integale Scheibweise ausdücken benötigt man die Beziehung da geschl. Fläche E = div E dv Volumen in de Fläche Dies ist de allgemein gültige mathematische Satz von GAUß- OSTROGRADSKI, aus dem mit Gl. (5 - ) folgt E da geschl. Fläche ρ ε 1 = dv = Qges,in de Fläche Vol. in ε (5-1) d. Fläche Fü das magnetische Feld B gilt wegen de selben Mathematik da geschl. Fläche B = div B dv (11) Volumen in de Fläche Da es abe keine magnetischen Ladungen gibt, die Quellen ode Senken von Feldlinien sind, sonden magnetischen Feldlinien imme in sich geschlossen sind, gilt: div B = (1) 48

7 Elektizitätslehe Gundlegendes zu Magnetfelden dahe ist B = div B dv = da geschl. Fläche Volumen in de Fläche Analog zum elektischen Fluss heißt Φ m magnetische Fluss. Φ m = B da Fläche Fü nicht geschlossene Flächen ist de magnetische Fluss Φ m im Allgemeinen nicht Null (11) (13) 9.5. Die magnetische Feldgöße H Analog zum Pächen E D bildet man mit 1 H = µ B (14) eine zweite Feldstäkegöße 1 fü das Magnetfeld. Maßeinheit: [ H] = A m SI Dies hat wiedeum analog zu Folge, dass sich veschiedene Gleichungen fomal veeinfachen, z.b. Gl. (1) H d = I geschlossene Kuve ges, innehalb d. Kuve (1 ) De eigentliche Unteschied zwischen B H wid alledings est späte deutlich weden, wenn wi Mateie im Magnetfeld vetieft behandeln. Dann egibt sich in weitee Analogie B = µ µ H µ... Pemeabilität des Mateials (15) 9.6. Usachen von Magnetfelden Es gibt zwei scheinba unteschiedliche Usachen fü deen Existenz: a) magnetische Mateialien ( Magnete ) b) elektische Stöme 1 Eine Zusammenstellung de in veschiedenen bekannten Lehbüchen vewendeten Begiffe zu die Bescheibung de elektischen und magnetischen Felde findet sich im Anhang auf S. VI. Dies folgt sofot aus <9.1.> und Gl. (8). Beachte wiede die Analogie zum E -Feld mit [E] = V m -1 49

8 Elektizitätslehe Gundlegendes zu Magnetfelden Hinte a) steckt die Tatsache, dass die Bausteine de Atome (Elektonen e -, Potonen p +, Neutonen n) kleine magnetische Momente besitzen, die wi uns als winzige Keisstöme vostellen können. magnetische Momente de e -, p +, n Übelageung magnetisches Moment des Atoms µ = µ A A = (Kompensation) Wenn die atomaen µ A beeits von sich aus (ohne äußees Magnetfeld) paallel ausgeichtet sind, liegt ein feomagnetisches Mateial vo (= Magnet ). Richtungskonvention fü B, H : Vom Nod- zum Südpol In diesem Fall sind die atomaen Keisstöme wie in folgende Skizze oientiet: Die Usachen a) und b) sind also ga nicht so veschieden Magnetische Mateialien weden in <31.> vetieft behandelt, in diesem Kapitel beschäftigen wi uns mit den Magnetfelden von Stomanodnungen. Wi betachten im Expeiment: Daht, Leiteschleife, lockee und dichte Spule, Ringspule, HELMHOLTZ-Spulen(paa), Übelageung von Spulenfelden (Vektoaddition). Beispiel: HELMHOLTZ-Spulen Als HELMHOLTZ-Spulen bezeichnet man die Anodnung zweie keisfömige Stomschleifen (mit Radius R) genau im Abstand R. 5

9 Elektizitätslehe Gundlegendes zu Magnetfelden Das esultieende Magnetfeld ist bei paallelem Stom elativ gut homogen, bei entgegengesetztem Stomfluss hingegen elativ gut linea. Kommenta zu langen Spule: Mit zunehmende Spulenlänge ist das Feld meh und meh auf den Innenaum konzentiet. Beim Genzfall de unendlich langen Spule existiet das Feld nu innen und ist dot homogen (Analogie zum Plattenkondensato). Die Ringspule kann als Näheung fü die lange Spule betachtet weden. Wi untesuchen nun das Feld im Innen eine langen Spule. Zunächst scheiben wi nun Gl. (1) mit Hilfe von Gl. (14) fü H statt fü B µ H d = B d = µ Iges, innehalb d. Kuve geschl. Kuve geschl. Kuve es folgt also H d = I geschl. Kuve ges, innehalb d. Kuve (1 ) Wi wenden nun Gl. (1 ) auf die Kuve K in de Skizze an 51

10 Elektizitätslehe Gundlegendes zu Magnetfelden H l H l H Anzahl de Windungen innehalb de Kuve K = = I n I ges n = I l l Windungen po Länge n = I l (16) Kommenta: I ges wüde einem geollten Blech entspechen. Dies geht ebenso, abe technisch wid eben die flächenhafte Stomveteilung übe das Aufwickeln von isolieten Dähten vewiklicht De Satz von BIOT-SAVART Beim elektischen Feld wa q E() = 4πε das Feld eine Ladung q am Punkt P( ) (wenn q am Uspung sitzt). Gibt es noch weitee Ladungen q, q,... müssen wi die Felde de einzelnen Ladungen addieen (vgl. Beispiel des elektischen Dipols in <5.4.>). Es gilt also das Supepositionspinzip (Usache dafü ist die Lineaität de Gl. (5-4)) (5-4) Das Supepositionspinzip gilt auch fü magnetische Felde. elektisches Feld: Übelageung viele kleine Punktladungen dq magnetisches Feld: Übelageung viele kleine Stomelemente di 5

11 Elektizitätslehe Gundlegendes zu Magnetfelden Das Stomelement di ~ I dl bewikt am Punkt P( ) ein Feld dh mit dh ~ I 1 Dieses Feld zeigt die gleiche Abstandsabhängigkeit wie Gl. (5-4). Man muss abe noch die Richtung beücksichtigen, denn im Gegensatz zum elektischen Feld ist H dl und Es zeigt sich, dass gilt H (nicht ~ ) dh = I dl 4π 3 (17) Dies ist das Gesetz von BIOT-SAVART. Mit dessen Hilfe kann man im Pinzip die Magnetfeldveteilung jede beliebigen Stomanodnung (Spule, etc.) beechnen Bewegte Bezugssysteme Gedankenexpeiment: Eine Ladung q bewege sich mit v im Labosystem. Im Labo hescht ein homogenes Magnetfeld B Beobachte A befindet sich im Labo, Beobachte B fliegt neben de Ladung he, d.h. e befindet sich in einem elativ zum Labo mit v bewegten Bezugssystem. Beobachte A: Die Ladung efäht eine LORENTZ-Kaft F L = q v B 53

12 Elektizitätslehe Gundlegendes zu Magnetfelden Beobachte B: Auch e mißt B, fü ihn ist abe F ' L =, da die Ladung in seinem System uht. E mekt natülich auch, dass auf q eine Kaft wikt, kann diese abe nu als COULOMB-Kaft intepetieen F' = q E' = F = q v B (18) (Beobachte B) Kaft muss (Beobachte A) ein und dieselbe sein Im bewegten Bezugssystem hescht also ein elektisches Feld E ', das vom Magnetfeld im Labosystem heüht (vgl. b) in Gl. (a)) E' = v B (19) Wenn im Labosystem auße dem B -Feld auch noch ein E -Feld existiet, so spüt dieses de bewegte Beobachte auch (vgl. a) in Gl. (a)). uhendes System mit v bewegtes System elektisches Feld E E' = E + v B (a) a) b) magnetisches Feld B 1 B' = B (v E) c (b) c) d) Nun zum magnetischen Feld im bewegten Bezugssystem: Wenn es im Labosystem ein Magnetfeld B gibt, spüt das de Beobachte B auch (vgl. c) in Gl. (b)). (Dass e keine LORENTZ-Kaft findet, liegt ja an v el = In dem Maße, in dem sich die Ladung duch seine COULOMB-Kaft zu bewegen beginnt, wikt auch fü ihn eine LORENTZ-Kaft auf die Ladung) Es ist jedoch nicht übeaschend, dass nicht nu ein E '-Feld-Anteil aus B ewächst, nämlich, wie schon ewähnt, E' = v B sonden auch ein B '-Feld-Anteil aus dem E -Feld des uhenden Systems. 54

13 Elektizitätslehe Gundlegendes zu Magnetfelden Es zeigt sich, dass diese Anteil (Glied d) in Gl. (b)) folgende Gestalt hat 1 B' = (v E) = µ ε (v E) c Also: Im bewegten System heschen E und B des uhenden Systems (Teile a), c)) und dazu noch ein E '-Anteil aus B sowie ein B '-Anteil aus E (Teile b), d) de Gleichungen (a) und (b). Dies gilt fü v << c, ist also keine elativistische Elektodynamik 55

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt. Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

3.5 Potential an der Zellmembran eines Neurons

3.5 Potential an der Zellmembran eines Neurons VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 3.5 Potential an de Zellmemban eines Neuons Goldmann Gleichung fü mehee Ionen allgemein E R T F ln n k 1 n k 1 z z k k P k P k m [ X ] + z P[

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Einführung in die Physik I. Elektromagnetismus 3

Einführung in die Physik I. Elektromagnetismus 3 infühung in die Physik lektomagnetismus 3 O. on de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die magnetische

Mehr

Bezugssysteme neu beleuchtet

Bezugssysteme neu beleuchtet Bezugssysteme neu beleuchtet D. Holge Hauptmann Euopa-Gymnasium Wöth Bezugsysteme neu beleuchtet, Folie 1 Kleine Vobemekung Beim Bezugssystemwechsel: ändet sich die mathematische Bescheibung das physikalische

Mehr

GRUNDKURS EXPERIMENTALPHYSIK

GRUNDKURS EXPERIMENTALPHYSIK Volesungsskipt GRUNDKURS EXPERIMENTALPHYSIK Pof. D. Fank Richte Skipt angefetigt von cand. phys. Stefan Welzel Technische Univesität Chemnitz Fakultät fü Natuwissenschaften Institut fü Physik Vowot VORWORT

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik)

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik) 19. Volesung EP III Elektizität und Magnetismus 19. Magnetische Felde (Magnetostatik) Vesuche: Feldlinienbilde (B-Feld um Einzeldaht, 2 Dähte, Spule) Kaftwikung von Stömen Dehspulinstument Fadenstahloh

Mehr

Magnetostatik III Hall-Effekt und Kräfte auf Leiter

Magnetostatik III Hall-Effekt und Kräfte auf Leiter Physik A VL33 (11.01.2013) Magnetostatik Hall-Effekt und Käfte auf Leite De Hall-Effekt Käfte auf stomduchflossene Leite im Magnetfeld Käfte paallele Leite Das magnetische Moment Die Magnetisieung 1 Einneung:

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

Zwei konkurrierende Analogien in der Elektrodynamik

Zwei konkurrierende Analogien in der Elektrodynamik Zwei konkuieende Analogien in de Elektodynamik Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Analogien: Elektodynamik 1 Physikalische Gößen de Elektodynamik elektische Ladung Q

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik 17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung

Mehr

Um was geht es in dieser Vorlesung wirklich?

Um was geht es in dieser Vorlesung wirklich? Inhalt de Volesung 1. Elektostatik 2. Elektische Stom 3. Leitungsmechanismen 4. Magnetismus 5. Elektomagnetismus 6. Induktion 7. Maxwellsche Gleichungen 8. Wechselstom 9. Elektomagnetische Wellen 1 Um

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Magnetostatik. Ströme und Lorentzkraft

Magnetostatik. Ströme und Lorentzkraft Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentzkaft ii. Käfte zwishen Leiten iii. Kaft auf eine bewegte Ladungen i.

Mehr

Magnetismus im Alltag

Magnetismus im Alltag 4 Magnetismus Magnetismus im Alltag Mateialien lassen sich magnetisieen Ein Magnet ezeugt keine Ladung auf einem Elektoskop Magnetismus im Alltag Elektostatik Elektischen Ladungen lassen sich tennen (Elekton

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

II Wärmelehre 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) pt-diagramm

II Wärmelehre 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) pt-diagramm 16. Volesung EP II Wämelehe 16. Phasenübegänge (Vedampfen, Schmelzen, Sublimieen) pv-diagamm pt-diagamm III. Elektizität und Magnetismus 17. Elektostatik Elektische Ladung q Elektisches Feld E Potential

Mehr

Materie im Magnetfeld

Materie im Magnetfeld Mateie i Magnetfeld Die Atoe in Mateie haben agnetische Eigenschaften, die akoskopisch Magnetfelde beeinflussen, wenn an Mateie in sie einbingt. Man untescheidet veschiede Typen von agnetischen Eigenschaften:

Mehr

Aktoren. Wirbelstrom- und Hysteresebremse

Aktoren. Wirbelstrom- und Hysteresebremse Aktoen Wibelstom- und Hysteesebemse Inhalt 1. Physikalisches Gundpinzip Magnetische Induktion De magnetische Fluß Faadaysches Gesetz und Lenzsche Regel Wibelstöme 2. Wibelstom- und Hysteesebemsen Aufbau

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

Magnetostatik II Bewegte Ladungen und Magnetfelder

Magnetostatik II Bewegte Ladungen und Magnetfelder Physik A VL32 (1.1.213) Magnetostatik ewegte Ladungen und Magnetfelde Das Magnetfeld eines geaden stomduchflossenen Leites j Das Ampee sche Gesetz ode Duchflutungsgesetz g Ezeugung homogene Magnetfelde

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten.

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten. 1.6. Ladungen in Metallen; Influenz In diesem Abschnitt wollen wi zunächst betachten, wie sich Ladungen in geladenen metallischen 1 Objekten anodnen und welche allgemeinen Aussagen sich übe das elektische

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM 46 Elektizität 3.2 ELEKTRISCHER STROM Bishe haben wi uns mit statischen Felden beschäftigt. Wi haben dot uhende Ladungen, die ein elektisches Feld ezeugen. Jetzt wollen wi uns dem Fall zuwenden, dass ein

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Grundaussagen der Elektrostatik

Grundaussagen der Elektrostatik Gundaussagen de Elektostatik (1) Es gibt zwei Aten von elektischen Ladungen (bezeichnet als positiv und negativ, da sie einande neutalisieen können) () Gleichnamige Ladungen stoßen einande ab, ungleichnamige

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil Musteaufgaben fü den GET + Multiple-Choice Teil Hinweis: Diese Musteaufgaben dienen dazu, sich mit den Multiple-Choice-Fagen de GET+ Klausu vetaut zu machen. Es soll damit die At und Weise de Fagestellung

Mehr

10 Elektrostatik. Quelle:

10 Elektrostatik. Quelle: 1 Elektostatik Waum diese Fau und ihem Kinde die Haae zu Bege stehen und waum sie bei Gewitte auch Buchen und nicht nu Eichen meiden sollten, efahen Sie in diesem Kapitel. Quelle: www.technoama.ch 1.1

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

7.5 Auflösungsvermögen optischer Geräte

7.5 Auflösungsvermögen optischer Geräte 7.5 Auflösungsvemögen optische Geäte Voübelegungen eugungsmuste eine Lochblende (Kap. 7.3) 1-tes Minimum unte dem Winkel α = 1,0 λ/d (7.3.1) Optische Geäte weden duch keisfömige lenden begenzt Jede punktfömige

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

anziehend (wenn qq 1 2 abstoßend (wenn qq 1 2 2 Sorten Ladung: + / - nur eine: Masse, m>0 Kraft entlang Verbindungslinie wie El.-Statik Kraft 1 2 r

anziehend (wenn qq 1 2 abstoßend (wenn qq 1 2 2 Sorten Ladung: + / - nur eine: Masse, m>0 Kraft entlang Verbindungslinie wie El.-Statik Kraft 1 2 r 3. Elektomagnetische Felde 3.. Elektostatische Käfte 3... Coulombgesetz eob.: el. geladene Köpe üben Kaft aufeinande aus Anziehung Abstoßung - - - - Was ist elektische Ladung???? Usache de Kaft? Histoisch:

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

Skala. Lichtstrahl. Wasserbad

Skala. Lichtstrahl. Wasserbad . Coulomb sches Gesetz Wi haben gelent, dass sich zwei gleichatige Ladungen abstoßen und zwei ungleichatige Ladungen einande anziehen. Von welchen Gößen diese abstoßende bzw. anziehende Kaft jedoch abhängt

Mehr

Messungen am Kondensator Q C = (1) U

Messungen am Kondensator Q C = (1) U E3 Physikalisches Paktiku Messungen a Kondensato Die Abhängigkeit de Kapazität eines Plattenkondensatos von de Göße bzw. de Abstand de Platten ist nachzuweisen. De Einfluss von Dielektika ist zu untesuchen..

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

BFH / Elektrotechnik / Physik 3 A: Felder 1. Berner Fachhochschule Technik und Informatik Electro - und Kommunikationstechnik PHYSIK 3.

BFH / Elektrotechnik / Physik 3 A: Felder 1. Berner Fachhochschule Technik und Informatik Electro - und Kommunikationstechnik PHYSIK 3. BFH / Elektotechnik / Physik 3 A: Felde 1 Bene Fachhochschule Technik und Infomatik Electo - und Kommunikationstechnik PHYSIK 3 TEIL A: Felde BFH / Elektotechnik / Physik 3 A: Felde Inhaltsvezeichnis I.

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Elektrizität und Elektromagnetismus 1

Elektrizität und Elektromagnetismus 1 Konzeptuelle Essentials aus Elektizität und Elektomagnetismus 1 Fanz Embache, KPH Wien Die hie skizzenhaft dagestellten gundlegenden Konzepte und Zusammenhänge zusammengefasst in Potionen von jeweils maximal

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 10 Abitupüfung 2011 Physik, Gundkus Aufgabenstellung: Aufgabe 1: Definition und Messung de Feldstäke B (auch Flussdichte genannt) magnetische Felde kontaktlose Messung goße Stöme 1.1 Die Abbildung

Mehr

Aufgabe P1 Bewegungen (15 BE)

Aufgabe P1 Bewegungen (15 BE) Abitu 2003 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen (15 BE) 1. In de Physik weden Bewegungen mit den Modellen Massenpunkt" und stae Köpe" beschieben. Welche Gundaussagen beinhalten

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

2 Entdeckung des Atomkerns - Rutherfordsches Streuexperiment

2 Entdeckung des Atomkerns - Rutherfordsches Streuexperiment Entdeckung des Atomkens - Ruthefodsches Steuexpeiment 31 2 Entdeckung des Atomkens - Ruthefodsches Steuexpeiment Zu Beginn des 20. Jahhundets galt das Thomsonsche Atommodell (1903): das Atom ist eine Kugel

Mehr

Drehbewegung Der Drehimpuls Definition des Drehimpulses

Drehbewegung Der Drehimpuls Definition des Drehimpulses Kapitel 10 Dehbewegung 10.1 De Dehimpuls Bei de Behandlung de Bewegung eines Teilchens haben wi den Impuls eines Teilchens definiet (Siehe Kap..). Diese Gösse wa seh hilfeich, wegen de Ehaltung des Gesamtimpulses

Mehr

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Lagebeziehungen zwischen Geraden und Ebenen

Lagebeziehungen zwischen Geraden und Ebenen Lagebeziehungen zwischen Geaden und Ebenen. Lagebeziehungen zwischen Geaden g a Gegeben seien zwei Geaden zu g µ b () Man untesucht zuest die Richtungsvektoen a, b auf lineae Abhängigkeit bzw. Unabhängigkeit

Mehr

31. Magnetische Materialien

31. Magnetische Materialien Elektizitätslehe Magnetische Mateialien 3. Magnetische Mateialien 3.. Magnetisieung Expeiment: Wi haben zwei sich übe ihe Magnetfelde beeinflussende Spulen und schalten den Stom in Spule ein. B - bzw.

Mehr

Magnetostatik. Magnetfeld eines Leiters

Magnetostatik. Magnetfeld eines Leiters Magnetostatik 1. Pemanentmagnete 2. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss mpeesches Gesetz iii. Feldbeechnungen mit mpeschen Gesetz i. Das Vektopotenzial.

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2) Lk Physik in 1/ 1. Klausu aus de Physik 4. 03. 003 latt 1 (von ) 1. Elektonenablenkung duch Zylindespule Eine Zylindespule mit Radius 6, 0 cm, Länge l 30 cm, Windungszahl N 1000 und Widestand R 5, 0 Ω

Mehr

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6 PDD. S.Metens M. Hummel Theoetische Physik II Elektodynamik Blatt 6 SS 29 6.5.29 I M 1. Halbunendliche Leiteschleife. Gegeben sei die abgebildete Leiteschleife aus zwei einseitig unendlichen (4Pkt.) Dähten

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum:

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum: b) Dehimpuls De Bewegungszustand eines otieenden Köpes wid duch seinen Dehimpuls L beschieben. Analog zum Dehmoment nimmt de Dehimpuls mit dem Impuls p und dem Bahnadius zu. Fü Massenpunkt auf Keisbahn:

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr