Funnel-Regelung für elektrische Schaltkreise

Größe: px
Ab Seite anzeigen:

Download "Funnel-Regelung für elektrische Schaltkreise"

Transkript

1 Fuel-Regelug für elektrische Schaltkreise Fachbereich Mathematik, Uiversität Hamburg Elgersburg, 5. März 2014 Fuel-Regelug für elektrische Schaltkreise

2 Fuel-Regelug für elektrische Schaltkreise Beispiel: RLC-Ketteglied R L R L v V i V C G C G i I v I u = ( ii v V ) d dtex(t) = Ax(t) + Bu(t) y(t) = Cx(t) ( ) vi y = i V E = E 0, A + A 0, B = C Fuel-Regelug für elektrische Schaltkreise

3 Fuel-Regelug für elektrische Schaltkreise MNA-Modell d dtex(t) = Ax(t) + Bu(t), y(t) = Cx(t) sa C CA C + A R GA R A L A V A I 0 se A = A L sl 0, B = C = 0 0 A V I V A C, A R, A L, A V, A I elemet-bezogee Izidezmatrize C, G, L Beziehuge der Kapazitäte, Widerstäde ud Iduktivitäte passiv: C = C > 0, L = L > 0, G + G > 0 Fuel-Regelug für elektrische Schaltkreise

4 Fuel-Regelug für elektrische Schaltkreise l ist K loop : l ist Kreis im Graphe der ur Kate aus K ethält etspr. I-loop, ICL-loops, etc. L ist K cutset : durch Lösche vo L K esteht uzshgd. Graph ud L ist miimal etspr. V -cutset, VCL-cutset, etc. Fuel-Regelug für elektrische Schaltkreise

5 Fuel-Regelug für elektrische Schaltkreise u Eẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) [E, A, B, C] y Fuel- Regler e + yref e(t) 1 ϕ(t) t Fuel-Regelug für elektrische Schaltkreise

6 Fuel-Regelug für elektrische Schaltkreise Nulldyamik: ZD := { (x, u, y) Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) = 0 } ZD autoom : w 1, w 2 ZD I R off. Iterval : w 1 I = w 2 I = w 1 = w 2 ZD stabil : w ZD : lim t w(t) = 0 λ C ist ivariate Nullstelle : [ ] [ ] λe A B se A B rk C < rk C 0 R(s) C 0 Fuel-Regelug für elektrische Schaltkreise

7 Fuel-Regelug für elektrische Schaltkreise Nulldyamik: ZD := { (x, u, y) Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) = 0 } ZD autoom : w 1, w 2 ZD I R off. Iterval : w 1 I = w 2 I = w 1 = w 2 ZD stabil : w ZD : lim t w(t) = 0 λ C ist ivariate Nullstelle : [ ] [ ] λe A B se A B rk C < rk C 0 R(s) C 0 Fuel-Regelug für elektrische Schaltkreise

8 Fuel-Regelug für elektrische Schaltkreise Nulldyamik: ZD := { (x, u, y) Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) = 0 } ZD autoom : w 1, w 2 ZD I R off. Iterval : w 1 I = w 2 I = w 1 = w 2 ZD stabil : w ZD : lim t w(t) = 0 λ C ist ivariate Nullstelle : [ ] [ ] λe A B se A B rk C < rk C 0 R(s) C 0 Fuel-Regelug für elektrische Schaltkreise

9 Fuel-Regelug für elektrische Schaltkreise Nulldyamik: ZD := { (x, u, y) Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) = 0 } ZD autoom : w 1, w 2 ZD I R off. Iterval : w 1 I = w 2 I = w 1 = w 2 ZD stabil : w ZD : lim t w(t) = 0 λ C ist ivariate Nullstelle : [ ] [ ] λe A B se A B rk C < rk C 0 R(s) C 0 Fuel-Regelug für elektrische Schaltkreise

10 Fuel-Regelug für elektrische Schaltkreise Theorem (stabile Nulldyamik) [E, A, B, C] sei MNA-Modell eies Schaltkreises ZD stabil { ZD autoom alle ivariate NST C ZD autoom weder I-loops och V -cutsets alle iv. NST C = weder IL-loops mit Ausahme vo I-loops, och VCL-cutsets mit Ausahme vo VL-cutsets weder VC-cutsets mit Ausahme vo V -cutsets, och ICL-loops mit Ausahme vo IC-loops Fuel-Regelug für elektrische Schaltkreise

11 Fuel-Regelug für elektrische Schaltkreise ZD autoom weder I-loops och V -cutsets alle iv. NST C = weder IL-loops mit Ausahme vo I-loops, och VCL-cutsets mit Ausahme vo VL-cutsets weder VC-cutsets mit Ausahme vo V -cutsets, och ICL-loops mit Ausahme vo IC-loops R L R L v V i V C G C G i I v I Übertragugsleitug hat stabile Nulldyamik! Fuel-Regelug für elektrische Schaltkreise

12 Fuel-Regelug für elektrische Schaltkreise Theorem (Fuel-Regelug - stabile Nulldyamik) [E, A, B, C] sei MNA-Modell eies Schaltkreises mit ZD stabil y ref B (R 0 ; R m ) Da erreicht der Fuel-Regler u(t) = k(t) e(t), wobei e(t) = y(t) y ref (t) k(t) = 1 1 ϕ(t) 2 e(t) 2, agewedet auf [E, A, B, C], dass x L, k L ε > 0 t > 0 : e(t) ϕ(t) 1 ε Fuel-Regelug für elektrische Schaltkreise

13 Fuel-Regelug für elektrische Schaltkreise u Eẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) [E, A, B, C] y Fuel- Regler e + yref e(t) 1 ϕ(t) t Fuel-Regelug für elektrische Schaltkreise

14 Fuel-Regelug für elektrische Schaltkreise Theorem (Fuel-Regelug - stabile iv. NST) [E, A, B, C] sei MNA-Modell eies Schaltkreises mit alle ivariate Nullstelle C ) y ref B (R 0 ; im A I ker Z CRLI A V, wobei Da erreicht der Fuel-Regler im Z CRLI = ker [ A C A R A L A I ] u(t) = k(t) e(t), wobei e(t) = y(t) y ref (t) k(t) = 1 1 ϕ(t) 2 e(t) 2, agewedet auf [E, A, B, C], dass x L, k L ε > 0 t > 0 : e(t) ϕ(t) 1 ε Fuel-Regelug für elektrische Schaltkreise

15 Fuel-Regelug für elektrische Schaltkreise Iterpretatio vo y ref (t) im A I ker Z CRLIA V t 0 y ref erfüllt die Kirchhoffsche Gesetze puktweise! i V 1 (t) i V 2 (t) i V 1 (t) = i V 2 (t) v I1 (t) v I2 (t) v I1 (t) = v I2 (t) Fuel-Regelug für elektrische Schaltkreise

16 Fuel-Regelug für elektrische Schaltkreise = 50, C = R = G = L = 1, y ref = (si, cos) ϕ : R 0 R 0, t 0.5 te t + 2 arcta t t y1 y t k 3 u1 5 e1 + e2 2 u2 4 ϕ! t t Fuel-Regelug für elektrische Schaltkreise

Funnel Control für mechatronische Systeme mit Relativgrad 2

Funnel Control für mechatronische Systeme mit Relativgrad 2 Funnel Control für mechatronische Systeme mit Relativgrad 2 Christoph Hackl Technische Universität München Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Elgersburg Workshop, 1.3.21

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Lösungsvorschlag zur Klausur zur Analysis III

Lösungsvorschlag zur Klausur zur Analysis III Prof. Dr. H. Garcke, D. Deper WS 9/ NWF I - Mathematik 8..9 Uiversität Regesburg Lösugsvorschlag zur Klausur zur Aalysis III 6 Pukte pro Aufgabe) Aufgabe i) Bestimme Sie für die Fuktioefolge f :, 4) R,

Mehr

Zum Relativgrad zeitvarianter Systeme

Zum Relativgrad zeitvarianter Systeme Elgersburg, 16. Februar 2006 Relative degree for linear time-invariant systems Definition n(s) d(s) = c(si n A) 1 b = cb s 1 + cab s 2 +... + ca r 2 b s r 1 + ca r 1 b s r +... : has relative degree r

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

(b) In der zweiten Vorlesung vom wurde die Matrix-Exponentialfunktion exp(x) =

(b) In der zweiten Vorlesung vom wurde die Matrix-Exponentialfunktion exp(x) = Priv-Doz G Reißig, Dipl-Math A Weber Universität der Bundeswehr München Institut für Steuer- und Regelungstechnik RT-5 Email: AWeber@unibwde Mehrgrößenregelungssysteme, HT 22 Übung 2 - ösung Aufgabe a

Mehr

Entwurf durch Polvorgabe

Entwurf durch Polvorgabe Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Lösungen zum Übungsblatt 2

Lösungen zum Übungsblatt 2 Fakultät für Luft- ud Raumfahrttechik Istitut für Mathematik ud Recherawedug Partielle Differetialgleichuge II (ME), Prof. Dr. J. Gwier Übug: N. Ovcharova, K. Dvorsky 6. Jauar bis 9. Februar 011 Lösuge

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Mathematik 1 für Informatik

Mathematik 1 für Informatik Guter Ochs. Juli 203 Mathematik für Iformatik Probeklausur Lösugshiweise. a Bestimme Sie per NewtoIterpolatio ei Polyom px mit möglichst kleiem Grad, so dass p = p0 = p = sowie p2 = 7. i x i y i d i,i

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 206 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Mathematische Randbemerkungen 1. Binomialkoeffizienten

Mathematische Randbemerkungen 1. Binomialkoeffizienten Mathematische Radbemeruge Biomialoeffiiete Der biomische Lehrsat ist eies der etrale Resultate der Aalysis I meier Vorlesug über Differetial- ud Itegralrechug habe ich ih daher gleich u Begi ausführlich

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

DIE HÖHE VON REKURSIVEN BÄUMEN

DIE HÖHE VON REKURSIVEN BÄUMEN DIE HÖHE VON REKURSIVEN BÄUMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie Technische Universität Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Kolloquium aus Diskreter

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Lösugsmuster ud Bewertug Miute Abschlussprüfug a de Realschule i Bayer Mathematik I Aufgabe A - Haupttermi FUNKTIONEN A. y k = y = y + + ; k \{} 55 + 5= k k \{} K k =,999874 IL = {,999874} Fuktiosgleichug:

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Klausur Analysis I (WS 2010/11) mit Lösungen

Klausur Analysis I (WS 2010/11) mit Lösungen Humboldt-Uiversität zu Berli Istitut für Matematik Prof. Dr. B. Kummer Klausur Aalysis I (WS 00/) mit Lösuge Vorbemerkuge: Wäle Sie aus de vorgegebee Ausgabe 8 aus! Trage Sie am Ede i der folgede Tabelle

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Thema: Integralrechnung (Grundlagen und Flächenberechnungen)

Thema: Integralrechnung (Grundlagen und Flächenberechnungen) Q GK Mathematik-Vh Vorereitug zur. Kursareit am..7 Thema: Itegralrechug Grudlage ud Flächeerechuge Checkliste Was ich alles köe soll Ich kee de Begri des krummliige Trapezes ud weiß, dass sei Flächeihalt

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Analysis 2, Woche 3. Differentialgleichungen I. 3.1 Eine Einleitung

Analysis 2, Woche 3. Differentialgleichungen I. 3.1 Eine Einleitung Analysis, Woche 3 Differentialgleichungen I 3 Eine Einleitung Eine Differentialgleichung beschreibt eine Beziehung zwischen Ableitungen einer Funktion oder Vektorfunktion und dieser Funktion selbst Die

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Variationstheoreme und ihre Anwendungen

Variationstheoreme und ihre Anwendungen Variatiostheoreme ud ihre Aweduge Berhard Wallmeyer 14.12.2011 Westfälische Wilhelms-Uiversität Müster BSc Physik Semiar zur Theorie der Atome, Kere ud kodesierte Materie Ihaltsverzeichis 1 Eiführug 3

Mehr

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz Dr P C Kustma Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtuge Elektroigeieurwese Physik ud Geodäsie iklusive Komplexe Aalysis

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI Fachbereich Mathematik Prof Dr K Ritter Dr M Slassi M Fuchssteiner SS 9 9 Mai 9 5 Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo und UI Gruppenübung Aufgabe G (a Betrachten Sie die Vektoren

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Relative Kontrollierbarkeit und Invarianz-Entropie

Relative Kontrollierbarkeit und Invarianz-Entropie Relative Kontrollierbarkeit und Invarianz-Entropie Ralph Lettau in Zusammenarbeit mit Fritz Colonius und Christoph Kawan Institut für Mathematik Universität Augsburg 9. Elgersburg Workshop 5. März 2014

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

eiten ABENTEUER Sachaufgaben mit dem Bücherwurm (1) 109 Seiten 345 Seiten 186 Seiten 42 Seiten. am 3. Tag die letzten am 2.

eiten ABENTEUER Sachaufgaben mit dem Bücherwurm (1) 109 Seiten 345 Seiten 186 Seiten 42 Seiten. am 3. Tag die letzten am 2. OBOT 89! Welche hat der aufgeschlage? Wieviel eld muss der achaufgabe () Wie viele muss der och lese? 9 gelese. das Buch? 8 gelese, am. Tag ud. 8 lese. 09 8 gelese, am. Tag ud. 8 der BTU 8 OBOT! Welche

Mehr

Abschlussprüfung 2008 an den Realschulen in Bayern

Abschlussprüfung 2008 an den Realschulen in Bayern Abschlussprüfug 8 a de Realschule i Bayer Mathematik I Haupttermi Aufgabe A Lösugsmuster ud Bewertug FUNKTIONEN A. ID f { > } Gleichug der Asymptote h: GI y Graph zu f C C D M B Graph zu f D M B A O A

Mehr

1.1 Mengensysteme. Ω Grundmenge, 2 Ω Potenzmenge, A 2 Ω Mengensystem. Definition 1.1: a) A stabil ( stabil, \-stabil), wenn für A, B A auch A B A

1.1 Mengensysteme. Ω Grundmenge, 2 Ω Potenzmenge, A 2 Ω Mengensystem. Definition 1.1: a) A stabil ( stabil, \-stabil), wenn für A, B A auch A B A 1.1 Megesysteme Grudmege, 2 Potezmege, A 2 Megesystem Defiitio 1.1: a) A stabil ( stabil, \-stabil), we für A, B A auch A B A (A B A, A\B A). b) A heißt Halbrig, we i) A ii) A ist stabil iii) A, B A es

Mehr

Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels

Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels Julian Külshammer Christian-Albrechts-Universität zu Kiel 11.05.2012 Notation A (endlich-dimensionale, assoziative, unitäre)

Mehr

Abschlussprüfung 150 Minuten an den Realschulen in Bayern

Abschlussprüfung 150 Minuten an den Realschulen in Bayern Prüfugsdauer: Abschlussprüfug 50 Miute a de Realschule i Bayer 2009 Mathematik I Haupttermi Aufgabe A Name: Vorame: Klasse: Platzziffer: Pukte: A.0 Ei Messbecher fasst, bis zum Rad gefüllt, geau eie Liter

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf.

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf. Physik awede ud verstehe: Lösuge 5. Brechug ud Totalreflexio 004 Orell Füssli Verlag AG 5. Brechug ud Totalreflexio Beim Übergag i ei Medium gilt obige Aussage icht mehr. Würde das Licht die kürzeste Strecke

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

Klasse: Fos/Bos13 Datum: Name: 2. Schulaufgabe aus der Mathematik

Klasse: Fos/Bos13 Datum: Name: 2. Schulaufgabe aus der Mathematik Analysis: 1 Nach einer Operation erhält ein Patient eine Infusion. Die Dosierung eines Medikamentes über einen Zeitraum von 24 Stunden kann mit der Exponentialfunktion f (t) = N o +at e kt modelliert werden.

Mehr

Perkolation (WS 2014) Übungsblatt 2

Perkolation (WS 2014) Übungsblatt 2 Istitut für Stochasti Prof. Dr. G. Last Dipl.-Math. S. Ziesche Perolatio WS 04 Übugsblatt Aufgabe Zeige Sie für T, dass θ 0 p ud χ 0 p stetig auf [0, ] sid, we ma als Wertebereich R + { } zulässt. Lösug:

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Asymptotische Notationen

Asymptotische Notationen Foliesatz 2 Michael Brikmeier Techische Uiversität Ilmeau Istitut für Theoretische Iformatik Sommersemester 29 TU Ilmeau Seite 1 / 42 Asymptotische Notatioe TU Ilmeau Seite 2 / 42 Zielsetzug Igoriere vo

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

II. Markov-Ketten in stetiger Zeit

II. Markov-Ketten in stetiger Zeit II. Markov-Kette i stetiger Zeit 7. Ei wichtiger Spezialfall: der Poisso-Prozess Gegebe sei ei Wahrscheilichkeitsraum (Ω, F, P ). Wir betrachte jetzt eie stochastische Prozess N = (N t ) t mit Zustadsraum

Mehr

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11 Aufgabesammlug aus Mathemati UMIT, WS 200/ I Aufgabe I detailliert gerechet Aalysis / K Zeige Sie, dass für N ud N, gilt: ( ) + = ( ) ( ) + Zusatzfrage: Uter welche Bediguge a ma zwei Biomialoeffiziete

Mehr

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz Vorlesug 4 6 + 9 April Bei w,, w m, v R ; (w,, w m =: A R (,m ud ieres Produkt = euklidisches Produkt schrieb sich das Approximatiosproblem so: Fide w = Wiederholug: m ζ k w k mit w v w v w spa{w,, w m

Mehr

2 Mengen bzgl. Knoten r (Wurzel): A = {Knoten v mit ungerader Weglänge (r,v)} B = {Knoten v mit gerader Weglänge (r,v)}

2 Mengen bzgl. Knoten r (Wurzel): A = {Knoten v mit ungerader Weglänge (r,v)} B = {Knoten v mit gerader Weglänge (r,v)} K. 1.2: t P D. Pt tz Lt ü At E, LS11 3. VO 30. Ot 2006 Ü Ot: Pü / Ü Pt t ü tt G Pt t ü G x t 2 Püt ü Fü: Ü VO 2 Ü 2: 6LP A: Zä Gt Sz Ft t NEU: ( ätt : äß tv tt Ü, t ) ü Pü: St VO Ü, 20 t Püt Ltw: Ü VO

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Systeme Teil II: Systemtheorie für Informatiker Dr. Mohamed Oubbati Institut für Neuroinformatik Universität Ulm SS 2007 Wiederholung vom letzten Mal! Die Übertragungsfunktion Die Übertragungsfunktion

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Dynamisches Programmieren Stand

Dynamisches Programmieren Stand Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

2. Zeitdiskrete Signale

2. Zeitdiskrete Signale Uiversity of Applied Sciece 2. Zeitdiskrete Sigale Defiitioe Elemetarsigale Impuls-Folge δ(): (Dirac-Folge, Delta-Folge, Eiheitsimpuls) δ ( ) : : MATLAB-Erzeugug: 5; ; (-:)'; d[zeros(++,)]; d(+); Prof.

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

9.5 Graphen der trigonometrischen Funktionen

9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug a de Realschule i Bayer Mathematik I Aufgabe A - Haupttermi FUNKTIONEN A. + + y,5 GI K A. y,5 y 95,5 Am Ede des dritte Versuchstages ist die Azahl der Wasserflöhe

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

LAPLACE Transformation

LAPLACE Transformation LAPLACE Transformation Bei der LAPLACE-Transformation wird einer (geeigneten) Funktion f(t) eine Funktion F (s) zugeordnet. Diese Art von Transformation hat u.a. Anwendungen bei gewissen Fragestellungen

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr