Rechnen. mit. Komplexen Zahlen

Größe: px
Ab Seite anzeigen:

Download "Rechnen. mit. Komplexen Zahlen"

Transkript

1 Rechnen mit Komplexen Zahlen Fachschule für Technik Mühlhausen R.Schollmeyer

2 Inhaltsvereichnis Einführung... Die imaginäre Einheit... Die komplexe Zahl... Darstellung der komplexen Zahl... Geometrische Veranschaulichung... Mathematische Darstellungsformen... Rechnen mit komplexen Zahlen...3 Addition und Subtraktion...3 Multiplikation und Division...4 Multiplikation in Exponentialform...4 Multiplikation in Normalform...4 Division in Exponentialform...5 Division in Normalform...5 Real-Machen des Nenners...5 Potenieren und Radiieren...6 Potenieren...6 Radiieren...6 Fachschule für Technik Mühlhausen R.Schollmeyer

3 Einführung Errechnen Sie einfach mal aus der Gleichung x + = 0 den Wert für x um dieser Gleichung u genügen. Wie Sie richtig festgestellt haben, besteht die Lösung aus der Wurel aus einer negativen Zahl (hier: -). Wie im Altertum sehen Sie derartige Aufgaben als unlösbar an. Unlösbar sind sie im Bereich der Reellen Zahlen tatsächlich, jedoch nicht im Bereich der "Komplexen Zahlen". Schon im 6. Jahrhundert befassten sich italienische Mathematiker mit diesen "neuen" Zahlen und nannten sie "eingebildet", "unmöglich", "imaginär". Dabei verwendeten sie für das Rechnen mit diesen Zahlen dieselben Rechenregeln wie für das Rechnen mit Reellen Zahlen an. Die Bedeutung jener Zahlen blieb ihnen jedoch unklar. CARDANO nennt die Komplexen Zahlen "falsche, wahrhaft sophistische" Zahlen und eine erste formale Begründung des Rechnens mit Reellen und Komplexen Zahlen findet sich in der "Algebra" des italienischen Mathematikers RAFAELLO BOMBELLI (57). Die erste geometrische Begründung des Rechnens bw. Darstellung der Komplexen Zahlen durch Punkte oder Vektoren wurde erst Anfang des 9. Jahrhunderts (CASPAR WESSEL, 799; J.-R. ARGAND, 806) gefunden. Diese Art der Auslegung fand jedoch erst nach einer weiteren, durch C. F. GAUSS gegebenen Begründung, allgemeine Anerkennung. Die imaginäre Einheit Aus obiger Gleichung, die in der Welt der Reellen Zahlen keine Lösung hat, ermitteln man: ) x + = 0 x = oder.b. ) x 4 = 0 + ± 4 ( ) x, = = ± x, Wie Sie bemerken, taucht in den Lösungen immer die auf, welche man als "imaginäre Einheit" beeichnet. Als Symbol für die imaginäre Einheit im Bereich der Mathematik wird gewöhnlich das " i " verwendet. Im Bereich der Elektrotechnik / Elektronik jedoch ist das " i " das Symbol für den eitlich veränderlichen Strom. Aus diesem Grund wird hier für die "imaginäre Einheit" das Symbol" j " verwendet. (und ebenfalls in dieser Dokumentation) Unter der imaginäre Einheit j = versteht man eine Zahl, deren Quadrat - ist! ( j = ) Eine imaginäre Zahl lässt sich also allgemein als: jb darstellen, wobei der Faktor b reell ist. Die obigen Gleichungen haben nun folgende Lösungen: ) x + = 0 x = j ) x 4 = 0 + ± 4 ( ) x, = x, = ± j j 4n 4n+ 4n+ 4n+ 3 =, j = j, j = -, j = j ( n = 0, ±, ±,... ) Die komplexe Zahl Eine komplexe Zahl ist nichts anderes als die additive Verknüpfung (sprich Summe) einer reellen Zahl a mit einer imaginären Zahl jb! a + jb "a" nennt man den Realteil von c, "b" nennt man den Imaginärteil von c Die reellen Zahlen können somit als gan speielle komplexe Zahlen aufgefasst werden, bei denen lediglich der Imaginärteil gleich 0 (Null) ist. Es gibt noch eine komplexe Zahl mit dem gleichen Realteil a und dem gleichen Imaginärteil b. Jedoch besitt die imaginäre Einheit ein negatives Voreichen. Diese komplexe Zahl ist die konjugiert komplexe Zahl u c und hat u.a. rechnerische Bedeutung. Sie ist nicht als die negative Zahl u c u verstehen! Zur Kenneichnung wird häufig (und hier) ein Stern oder weniger ein Überstrich (Verwechslung mit dem Durchschnitt) verwendet. (siehe Darstellung - und Rechnen mit komplexen Zahlen) c* = a jb c* ist die konjugiert komplexe Zahl u a + jb Fachschule für Technik Mühlhausen R.Schollmeyer

4 Darstellung der komplexen Zahl Geometrische Veranschaulichung Die komplexe Zahl a + jb besteht aus dem Realteil a und dem Imaginärteil jb. Der Realteil a ist ein Element der reellen Zahlen, welche als Absisse mit der Kurbeeichnung Re eines kartesischen Koordinatensystems dargestellt wird. Der Imaginärteil jb ist ein Element der imaginären Zahlen und wird der Ordinate mit der Kurbeeichnung Im eines kartesischen Koordinatensystems ugeordnet. Die durch beide Achsen aufgespannte Ebene nennt man die Gaußsche Zahlenebene. In ihr werden die komplexe Zahl c als Punkt (a, b) mit einer positiven imaginären Einheit und u.a. die konjugiert komplexe Zahl c* als Punkt (a, b) mit einer negativen imaginären Einheit dargestellt. Wie Sie sehen ist die konjugiert komplexe Zahl c* die an der Absisse gespiegelte komplexe Zahl c. Komplexe Zahlen stellt man ebenfalls als Zeiger im Zeigerdiagramm (siehe rechts) dar. Sie werden dann mittels Betrag r (Länge des Zeigers) und dem daugehörigen Winkel ϕ beschrieben. (siehe Polarkoordinaten) Die konjugiert komplexe Zahl besitt den gleichen Betrag r, jedoch einen negativen Winkel - ϕ. Vereinbarung: Um einem Formeleichen ansehen u können, dass es sich um eine komplexe Zahl handelt, wird dieses Zeichen mit einem Unterstrich versehen! In der Literatur verwendet man.b. auch die Frakturschreibweise (altdeutsche Schrift) wie auch bei Vektoren. a + jb a + jb Mathematische Darstellungsformen Normalform a + jb Trigonometrische Form Betrag des Zeigers bw. der komplexen Zahl (siehe Sat des Pythagoras) und dessen Winkel c = r = a + b, ( cosϕ jsinϕ ) b tan = a ϕ, a = r cosϕ, b = r sinϕ r + r 0 Exponentialform jϕ r e andere Darstellungsform r ϕ c Taschenrechner Umwandlung kartesischer Koordinaten in Polarkoordinaten und umgekehrt Fachschule für Technik Mühlhausen R.Schollmeyer

5 Rechnen mit komplexen Zahlen Für die Grundrechenarten bei komplexen Zahlen gelten formal die gleichen Regeln wie bei den reellen Zahlen. Es gibt einige Besonderheiten, die beim Rechnen mit komplexen Zahlen u beachten sind. Gleichheit a + jb = x + jy falls a = x und b = y Zwei komplexe Zahlen sind dann und nur dann gleich, wenn ihre Real- und Imaginäranteile übereinstimmen. Ungleichheit Für komplexe Zahlen kann man die Begriffe "kleiner" und "größer" nicht mehr definieren! Addition und Subtraktion Die Addition und Subtraktion komplexer Zahlen erfolgt am einfachsten in deren Normalformen. Dabei werden die Realteile für sich und die Imaginäranteile für sich addiert bw. subtrahiert! ± = (x + jy ) ± (x + jy ) (x ± x ) + (jy ± jy ) a + jb wobei a = x ± x und jb = jy ± jy Beispiel : = 4 + j3 Addition Subtraktion = + j mathematisch j5-3 + j grafisch: Fachschule für Technik Mühlhausen 3 R.Schollmeyer

6 Rechnen mit komplexen Zahlen Multiplikation und Division Bei der Multiplikation und Division komplexer Zahlen ist die Verwendung der Exponentialform sinnvoll. Dabei werden die Beträge multipliiert bw. dividiert und die Winkel, da diese als Exponenten vorliegen, nach den geltenden Rechenregeln addiert bw. bei der Division subtrahiert. Liegen die komplexen Zahlen in Normalform vor, sind sie in die jeweiligen Exponentialformen u bringen (siehe Darstellungsformen). Ist schlussendlich wiederum die Normalform gefragt, ist eine Berechnung mittels Ausmultipliieren die wohl schnellere Variante als die Durchführung der Umwandlung nach und aus der Exponentialform. Multiplikation in Exponentialform = jϕ jϕ e e wobei x = x e j( ϕ +ϕ ) j( ϕ ) c e c wobei und ϕ ϕ + ϕ Multiplikation in Normalform = x + jy = x + jy NR: = (x + jy ) (x + jy ) x x + x jy + jy x + jy jy x x + j y y + x jy + jy x [(x x ) - (y y )] + j[(x y ) + (y x )] mit j = - und Ausklammern von j a + jb Beispiel : = 4 + j3 = = + j = j36, e mit = = 5 und ϕ = arctan = 36, 87 4 j63,43, 36 e mit = + =, 36 und ϕ = arctan = 63, 43 mathematisch: in Exponentialform: in Normalform:, 8 e - + j j00,3 grafisch: Länge Zeiger Länge Zeiger Länge Zeiger Fachschule für Technik Mühlhausen 4 R.Schollmeyer

7 Rechnen mit komplexen Zahlen Division in Exponentialform = e e jϕ jϕ = j( ϕ ϕ ) wobei x = x e j( ϕ ) c e c wobei c = Division in Normalform und ϕ ϕ - ϕ = x + jy = x + jy * = x - jy konjugiert komplexe Zahl u = (x (x + jy) + jy ) Real-Machen des Nenners (x + jy) (x jy) (x + jy) (x jy) = (x + jy) (x jy) (x + y) (xx ) + (yy ) (xy ) + (xy) j (x + y ) (x + y ) Beseitigen der komplexen Zahl aus dem Nenner Erweitern des Bruches mit konjugiert komplexer Zahl Ziel: - j = Ausmultipliieren des Zählers [(x x ) + (y y )] j [(x y ) - (y x )] (mit j = - und Ausklammern von j ) a + jb Beispiel : = 4 + j3 = = + j = * = - j = j36, e mit = = 5 und ϕ = arctan = 36, 87 4 j63,43, 36 e mit = + =, 36 und ϕ = arctan = 63, 43 -j63,43 -, 36 e mit = + =, 36 und ϕ = arctan = 63, 43 mathematisch: in Exponentialform:,36 e in Normalform: - j grafisch: -j6,57 Länge Zeiger Länge Zeiger Länge Zeiger Fachschule für Technik Mühlhausen 5 R.Schollmeyer

8 Rechnen mit komplexen Zahlen Potenieren und Radiieren Das Potenieren und Radiieren soll hier nur kur, ohne Beispiele, erwähnt werden. Der Vollständigkeit halber wird auf Literatur verwiesen, die im Hochschulbereich Verwendung finden. Im Grunde ergibt sich das Potenieren und Radiieren mit reellen Exponenten aus der uvor dargestellten Multiplikation bw. Division. Potenieren Man poteniert eine komplexe Zahl, indem man den absoluten Betrag poteniert und den Richtungswinkel mit dem Exponenten multipliiert. jϕ e n n = (x + jy) n = ( ) = n e n ist reell jnϕ Radiieren Beim Radiieren einer komplexen Zahl wird der Betrag radiiert und den Richtungswinkel durch den Wurelexponenten dividiert. jϕ n = n (x + jy) = n jϕ e = n e n n = e n jϕ n ist reell Fachschule für Technik Mühlhausen 6 R.Schollmeyer

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

17 Grundrechenarten für komplexe Zahlen

17 Grundrechenarten für komplexe Zahlen 7 Grundrechenarten für komplexe Zahlen Jörn Loviscach Versionsstand: 2. September 203, 5:58 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Facharbeit. Clemens-Brentano-Gymnasium in Dülmen. Schuljahr 2000/2001

Facharbeit. Clemens-Brentano-Gymnasium in Dülmen. Schuljahr 2000/2001 Facharbeit Clemens-Brentano-Gymnasium in Dülmen Schuljahr 000/00 Komplexe Zahlen Definition, das Rechnen mit komplexen Zahlen und ihre Darstellung Leistungskurs Mathematik bei Herrn Strohtkämper Verfasserin:

Mehr

7.1 Imaginäre Zahlen. Für die imaginäre Einheit gilt: i 2 = 1 bzw. j 2 = 1 i = 1 j = 1 Alle Vielfachen von i bzw. j nennt man imaginäre Zahlen.

7.1 Imaginäre Zahlen. Für die imaginäre Einheit gilt: i 2 = 1 bzw. j 2 = 1 i = 1 j = 1 Alle Vielfachen von i bzw. j nennt man imaginäre Zahlen. 7 Komplexe Zahlen In vielen Sammlungen mathematischer Zitate findet man den Ausspruch des deutschen Mathematikers Leopold Kronecker: Die natürlichen Zahlen hat der liebe Gott geschaffen, alles andere ist

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2 Komplexe Zahlen Komplexe Zahlen treten in der Schule zum ersten Mal bei der Lösung von quadratischen Gleichungen auf. Wir nehmen die Gleichung x 2 + 6x + 25 als Beispiel. Diesen Gleichungstyp können wir

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

i n diese Gegend wäre ich ohne GC nie...

i n diese Gegend wäre ich ohne GC nie... GC5833Y i n diese Gegend wäre ich ohne GC nie... Beim Geocaching kommt man gelegentlich an Stellen oder in Gegenden, wo man sonst nie hingekommen wäre. So etwas Ähnliches soll auch hier passieren. Der

Mehr

Zusammenfassung Zahlbereiche

Zusammenfassung Zahlbereiche Zusammenfassung Zahlbereiche Ekkehard Batzies 7. Mai 2008 1 Die rationalen Zahlen 1.1 Zahlbereiche in der Schule Als Zahlbereiche kennt man aus der Schule die natürlichen Zahlen, N = {0, 1, 2, 3,...},

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Komplexe Zahlen. Inhaltsverzeichnis. 1. Vorwort Historischer Rückblick 1

Komplexe Zahlen. Inhaltsverzeichnis. 1. Vorwort Historischer Rückblick 1 Komplexe Zahlen Kapitel Inhaltsverzeichnis Seite 1. Vorwort 1 2. Historischer Rückblick 1 3. Die Definition der komplexen Zahlen 2-3 3.1 Das Symbol i 2 3.2 Komplexe Zahlen 3 4. Darstellungsformen in der

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Erster Zirkelbrief: Komplexe Zahlen

Erster Zirkelbrief: Komplexe Zahlen Matheschülerzirkel Universität Augsburg Schuljahr 04/05 Erster Zirkelbrief: Komplexe Zahlen Inhaltsverzeichnis Zahlenbereiche. Natürliche Zahlen................................. Ganze Zahlen...................................3

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

1. Elementare Algebra

1. Elementare Algebra 1. Elementare Algebra Mit Ausnahme des Abschnitts 1.3 wiederholen wir in diesem Kapitel einige wichtige Regeln und Formeln aus der Schulmathematik, die erfahrungsgemäß bei den meisten Studenten nicht in

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen

Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen MT1 Einführung in die Höhere Mathematik 1 THM Friedberg IEM/MND Medieninformatik Thomas Eckert MT1 Einführung in die Höhere Mathematik WS 2014/2015 Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

4 Zahlenbereiche. 1 Natürliche, ganze und rationale Zahlen

4 Zahlenbereiche. 1 Natürliche, ganze und rationale Zahlen 4 Zahlenbereiche Jörn Loviscach Versionsstand: 21. September 2013, 15:53 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Kapitel 9 Die komplexen Zahlen Der Körper der komplexen Zahlen Die Gauß sche Zahlenebene Algebraische Gleichungen Anwendungen Der Körper der komplexen Zahlen Die Definition der komplexen Zahlen Definition

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 11 Grundlagen der Aussagenlogik und der Mengenlehre 13 1 Grundbegriffe der Aussagenlogik und ihre Verwendung in der Datenverarbeitung 13 1.1 Aussagen

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Komplexe Zahlen Rechnen mit komplexen Zahlen Anwendungen der komplexen Rechnung. Komplexe Zahlen. Fakultät Grundlagen. Juli 2015

Komplexe Zahlen Rechnen mit komplexen Zahlen Anwendungen der komplexen Rechnung. Komplexe Zahlen. Fakultät Grundlagen. Juli 2015 Komplexe Zahlen Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Komplexe Zahlen Übersicht Komplexe Zahlen 1 Komplexe Zahlen Erweiterung des Zahlbegriffs Definition Darstellung komplexer Zahlen 2 Grundrechenarten

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Kölner Mathematikturnier 2011 Das Turnierlogo

Kölner Mathematikturnier 2011 Das Turnierlogo Kölner Mathematikturnier 2011 Das Turnierlogo Was sind denn das für komische Punkte im Turnierlogo?, fragt Ihr Euch sicherlich. Unser Turnierlogo stellt einee Visualisierung der Primzahlen in den Gaußschen

Mehr

MATHEMATISCHE AUFGABENSAMMLUNG

MATHEMATISCHE AUFGABENSAMMLUNG MATHEMATISCHE AUFGABENSAMMLUNG Arithmetik Algebra und Analysis Zweite verbesserte Auflage 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN VII INHALT ERSTER ABSCHNITT Rechnen mit natürlichen Zahlen

Mehr

Einleitung, historischer Hintergrund

Einleitung, historischer Hintergrund i i i Einleitung, historischer Hintergrund Der kürzester Weg zwischen zwei Wahrheiten im Reellen verläuft über das Komplexe. (Hadamard 1865-1963) 1-E1 unmöglich, eingebildet, imaginär 1-E2 Carl Friedrich

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

5. Komplexe Zahlen. 5.1 Was ist eine Zahl?

5. Komplexe Zahlen. 5.1 Was ist eine Zahl? 5. Komplexe Zahlen Komplexe Zahlen sind Zahlen der Form a + bi, wo a und b reelle Zahlen sind und i = 1 ist. Wurzeln aus negativen Zahlen gibt es nicht, wird man da antworten, und in der Tat gibt es keine

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME KOMPLEXE ZHLEN UND LINERE GLEICHUNGSSYSTEME Vektoren Definition: Parallelverschiebung, Pfeil(e) mit Länge und Richtung. Darstellung Eigenschaften Komponenten Graphisch Länge, Betrag Zwischenwinkel Vektorarten

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren.

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren. Komplexe Hier ist noch eine Matheaufgabe, die ich nicht lösen kann. Was ist 9+4? Oh, die ist schwer. Dafür brauchst du Analysis und imaginäre Zahlen. Imaginäre Zahlen?! Du weißt schon. Elfzehn, zwölfunddreißig,

Mehr

Grundwissen Mathematik 6/1 1

Grundwissen Mathematik 6/1 1 Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch

Mehr

Inhaltsverzeichnis. ' Zählung. Zehnersystem. Gleichheit. Ganze Zahlen. Bezeichnungen.

Inhaltsverzeichnis. ' Zählung. Zehnersystem. Gleichheit. Ganze Zahlen. Bezeichnungen. Inhaltsverzeichnis Arithmetik Knomera ', Seite i 7 Kapitel I. Dezimale Zählung i ' Zählung. Zehnersystem. Gleichheit. Ganze Zahlen. Bezeichnungen. Aufgaben zu Kapitel I 5 Kapitel II. Addition und Subtraktion

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Mathematik Nachhilfe Blog. Bruchrechnung. Lesen Sie das hier gerade? Mathe so einfach wie möglich erklärt. 1. Allgemeines zur Bruchrechnung

Mathematik Nachhilfe Blog. Bruchrechnung. Lesen Sie das hier gerade? Mathe so einfach wie möglich erklärt. 1. Allgemeines zur Bruchrechnung Mathematik Nachhilfe Blog Mathe so einfach wie möglich erklärt Bruchrechnung Lesen Sie das hier gerade? 1. Allgemeines zur Bruchrechnung Nach den dem intensiven Erlernen der Grundrechenarten, der Addition,

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

8.1.1 Real : Arithmetik Zahlenräume

8.1.1 Real : Arithmetik Zahlenräume 8.1.1 Real : Arithmetik Zahlenräume P8: Mathematik 8 A1: komb.büchlein W89: Wahlfach 8/9.Prim Zeitraum Wochen Inhalte Kernstoff Zusatzstoff Erledigt am: Natürliche Zahlen (N) P8: 1, 2,,,, 6, 8, 11 TR,

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES

4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES 4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES 4.1. Quadratische Gleichungen (a) Definition Beispiel: Das Produkt zweier aufeinanderfolgender gerader Zahlen beträgt 808. Wie lauten die beiden

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Inhaltsverzeichnis / Modul 1

Inhaltsverzeichnis / Modul 1 Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,

Mehr

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Vorbereitungsmappe Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Liebe Schülerinnen und Schüler, vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS stellt sich vor allem im Fach

Mehr

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 Prof. Dr. Thomas Runst Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Mathematisches Institut 1 Ziel der Vorlesung: Der Modul

Mehr

Mathematik-2, Sommersemester 2014-15

Mathematik-2, Sommersemester 2014-15 Mathematik-2, Sommersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Andreas Hofmann, Solvier Schüßler, Ansgar Schwarz, Lubov Vassilevskaya Die Vorlesungsunterlagen

Mehr

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag Rolf Stahlberger Alexander Golfmann Lineare Algebra Grundlagen der Vektorrechnung fsg Verlag Impressum Herausgeber: FSG Verlag Alexander Golfmann Augustenstr. 58 80333 München info@fsg-verlag.de www.fsg-verlag.de

Mehr

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25 Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge

Mehr