Das Steiner-Dreieck von vier Punkten. Eckart Schmidt

Größe: px
Ab Seite anzeigen:

Download "Das Steiner-Dreieck von vier Punkten. Eckart Schmidt"

Transkript

1 Das Steiner-Dreieck von vier Punkten Eckart Schmit Zu vier Punkten lassen sich rei Vierecke betrachten Das Dreieck er Diagonalenschnitte sei als Diagonalreieck angesprochen un as Dreieck er Steiner-Punkte er zugehörigen vollstänigen Vierseite als Steiner-Dreieck bezeichnet Beie Dreiecke sin perspektiv, un ihre Ecken liegen mit em Perspektivzentrum auf er Zirkularkurve er vier Punkte Speziell weren abschließen vier konzyklische Punkte betrachtet Gearbeitet wir in baryzentrischen Koorinaten Bezugsreieck kann as Diagonalreieck oer as Steiner-Dreieck sein Diagonalreieck un Steiner-Dreieck Will man vier Punkte, B, C, D in baryzentrischen Koorinaten erfassen, so liegt als Bezugsreieck as Diagonalreieck B C nahe, wobei, B, C ie Diagonalenschnitte er Vierecke BDC, BCD, BCD sin Die Seiten es jeweiligen Bezugsreiecks seien a, b, c Jees Teilreieck er vier Punkte ist ann nti-ceva-dreieck es vierten Punktes bzgl es Diagonalreiecks Gibt man also zb em Punkt D ie baryzentrischen Koorinaten u, v, w, so erhält man folgene übersichtliche Darstellung er vier Punkte ( u v w), B( u v w), C( u v w), D( u, v, w) Der Mittenkegelschnitt er vier Punkte mit er Gleichung u ² yz + v² zx + xy = 0 ist offensichtlich ein Umkegelschnitt es Diagonalreiecks Genauer Der Mittenkegelschnitt ist as Bil er Ferngeraen bei er Konjugation (isoconjugation [1]) ( x y z) ( yz v² zx xy) Dabei liegt zb as Zentrum er gleichseitigen Umhyperbel er vier Punkte auf em Umkreis es Diagonalreiecks

2 Betrachtet man as vollstänige Vierseit zum Viereck BCD, so ist er gemeinsame Punkt er Umkreise er Teilreiecke B, BCC, CD, DC er Steiner-Punkt es vollstänigen Vierseits Bezeichnet man ie Steiner-Punkte zu en Vierecken BDC, BCD, CBD mit s, B s, C s, so erhält man as Steiner- Dreieck als weitere Möglichkeit eines Bezugsreiecks für eine Geometrie er vier Punkte in baryzentrischen Koorinaten Drei Inversionen eines Dreiecks Zu einem Bezugsreieck BC weren ie Inversionen α, β, γ betrachtet, eren Zentren in einer Ecke es Bezugsreiecks liegen un ie ie beien aneren Ecken vertauschen Zum Beispiel hat ie Inversion α ( x y z) ( yz + zx + xy z( x + y + z) y( x + y + z)) α as Zentrum un vertauscht B un C Entsprechen seien β un γ efiniert Wählt man normierte baryzentrische Koorinaten ( x + y + z = 1), so vereinfacht sich ie Zuornungsvorschrift zu ( x y z) α ( p z y), wobei p ie Potenz es Punktes bzgl es Umkreises beschreibt p = yz zx xy Das Hintereinanerausführen er rei Inversionen ergibt ie Ientität, h as Verketten von zweien ergibt ie ritte

3 Die rei Inversionen α, β, γ bilen ie Inkreismitte I( a b c) auf ie nkreismitten I a ( a b c), I b ( a b c), I c ( a b c) ab Kreise um ie nkreismitten mit en Raien r 2abc = a a + b +, c r 2abc 2abc = b a b +, r c = c a + b c sin Fixkreise ieser Inversionen Diese Fixkreise mit en Gleichungen a ² vw + wu + uv bcu + cav + abw = 0, a ² vw + wu + uv + bcu cav + abw = 0, a ² vw + wu + uv + bcu + cav abw = 0 schneien sich senkrecht auf en Winkelhalbierenen un ie Schnittpunkte teilen ie Verbinungsstrecken er Inkreismitte zu en nkreismitten harmonisch Das Steiner-Dreieck als Bezugsreieck Zu einem Bezugsreieck? B? C? un einem Punkt D( u v w) mit normierten Koorinaten liefern obige Inversionen rei weitere Punkte = α ( D) = ( p w v), B = β ( D) = ( w p u) C = γ ( D) = ( v u p) Für iese vier Punkte ist as Bezugsreieck? B? C? as Steiner- Dreieck Zur Begrünung Betrachtet man as vollstänige Vierseit zu em Viereck BCD, so vertauscht ie Inversion β ie Gegenecken sowie ie Gegenseitenschnitte es Vierecks Die Umkreise er Teilreiecke DC un BCC schneien sich neben C im Steiner-Punkt B s ieses Vierseits Bei er Inversion weren aus iesen Umkreisen Geraen urch en Punkt Daher muss as Zentrum B? er Inversion β er Steiner-Punkt B s es vollstänigen Vierseits zu BCD sein Entsprechen sin? = s un C? =C s ie Steiner-Punkte er vollstänigen Vierseite zu BDC un DBC Das Steiner-Dreieck s B s C s liegt perspektiv zu jeem Teilreieck er vier Punkte Perspektivzentrum ist as isogonalkonjugierte Bil es vierten Punktes So liegt zb BC perspektiv zu s B s C s bzgl D *( vw wu uv)

4 Weiterhin sei angemerkt, ass ie Verbinungsgeraen er vier Punkte mit ihren isogonalen Bilern parallel verlaufen urch en Fernpunkt F ( vw + pu uw + pv uv + pw) Für ie Ecken es Diagonalreiecks ergibt sich 2 2 v² (2 ), uv pw uw pv 2 2 B ( 2 ), uv pw vw pu 2 v² 2 C ( 2) uw pv vw pu mit q ² = + + v² Hinter verbirgt sich as Proukt aus em Quarat es Umkreisurchmessers un er Summe er Seitenabstansquarate es Punktes D Bilet man ie Ecke mit α, B mit β un C mit γ ab, so erhält man immer en gleichen Punkt α( ) = β ( B ) = γ ( C ) ( 2 ( 2 v²) ( 2 = T ( ) vw pu wu pv uv pw Dieser vielseitige merkwürige Viereckspunkt wir von Stärk in [2] ausführlich behanelt un von ihm als Tangentialpunkt er vier Punkte angesprochen Konstruktiv erhält man en Tangentialpunkt eines Vierecks als zweiten Schnittpunkt er Kreise urch zwei Gegenecken un en Steiner-Punkt Die

5 Namensgebung ieses Punktes orientiert sich an er Zirkularkurve er vier Punkte (su) Ein weiterer merkwüriger Viereckspunkt Neben em Tangentialpunkt soll ein weiterer merkwüriger Viereckspunkt aufgezeigt weren, as Perspektivzentrum Z von Diagonalreieck un Steiner-Dreieck vw pu wu pv uv pw Z( ) 2 2 v² 2 Damit erweist sich ieses Perspektivzentrum als isogonal konjugierter Partner es Tangentialpunktes ngemerkt sei Der Z-Punkt ist as am Schwerpunkt gespiegelte Zentrum er gleichseitigen Umhyperbel er vier Punkte un liegt mit iesem auf em Mittenkegelschnitt Die Zirkularkurve zu vier Punkten Zu einem Bezugsreieck lassen sich Kurven ritter Ornung betrachten, invariant unter einer Konjugation (isoconjugation [1]), wobei ie Verbinungsgeraen konjugierter Kurvenpunkte kopunktal im sogenannten Pivot-Punkt sin (pivotal isocubics [1]) Nimmt man ie isogonale Konjugation un einen Fernpunkt

6 als Pivot-Punkt, so erhält man eine Zirkularkurve (pivotal circular isocubic [1]) Die Gleichung einer pivotal isocubic zur Konjugation ( x y z) ( k² yz l² zx m² zx) mit em Pivot-Punkt ( p q r) lautet [1] k ² yz( ry qz) + l² zx( pz rx) + m² xy( qx py) = 0 Wählt man als Bezugsreieck as Steiner-Dreieck s B s C s un zur isogonalen Konjugation ( x y z) ( yz zx zx) en Pivot-Punkt im obigen Fernpunkt F er parallelen Verbinungsgeraen er vier Punkte un ihrer isogonal konjugierten Partner, so erhält man ie Zirkularkurve er vier Punkte mit er Gleichung ( vw + pu)( z² y²) x + ( wu + pv)( x² z²) y + ( uv + pw)( y² x²) z = 0 Diese Zirkularkurve geht nicht nur urch ie vier Punkte, B, C, D un ie Ecken s, B s, C s es Steiner-Dreiecks, sonern auch urch ie Ecken, B, C es Diagonalreiecks, as Perspektivzentrum Z sowie en Tangentialpunkt T Das isogonale Bil es Fernpunktes F ist er Schnittpunkt er symptoten mit er Kurve auf em Umkreis es Steiner-Dreiecks un wir als Hauptpunkt H er Zirkularkurve bezeichnet H ( ) vw + pu uw + pv uv + pw Die vier Punkte, B, C, D sin korresponierene Punkte in em Sinne, ass ihre Tangenten sich auf er Zirkularkurve im Tangentialpunkt T schneien (so) Die korresponierenen Punkte es Tangentialpunktes T sin ie Ecken es Diagonalreiecks llgemein erhält man ie korresponierenen Punkte eines Kurvenpunktes urch ie Inversionen α, β, γ Damit ergibt sich zu vier korresponierenen Punkten immer as gleiche Steiner-Dreieck So ist ie Zirkularkurve invariant unter iesen Inversionen

7 Vier konzyklische Punkte Von besonerem Interesse sin ie Zusammenhänge für vier konzyklische Punkte, B, C, D, für ie sich ie Zusammenhänge am besten untersuchen lassen, wenn man als Bezugsreieck as Diagonalreieck B C wählt Benutzt weren ie Conway- bkürzungen 2S = + +, 2S = +, 2S = + un B S = S S + S S + S S = 2 B Die vier Punkte liegen ann auf einem Kreis mit er Gleichung S + SBv² + SC = 0 Mittelpunkt ist M ( SBSC SCS S SB), gleichzeitig Höhenschnitt es Diagonalreiecks Der Raius ergibt sich zu S SBSC S² Die Steiner-Punkte s( 0 SC SB), Bs ( SC 0 S ), Cs( SB S 0) sin ie Ecken es Höhenfußpunktreiecks es Diagonalreiecks B C C C Tangentialpunkt T un Perspektivzentrum Z fallen in ie Kreismitte M Eine Kreisspiegelung überführt ie Ecken es Steiner-Dreiecks in ie Ecken es Diagonalreiecks un umgekehrt Damit ist ie Zirkularkurve er vier Punkte invariant unter er Kreisspiegelung Für as Diagonalreieck ist besagter Kreis er sogenannte Polarkreis ( polar circle [3]), h er Kreis, für en ie Ecken ie Pole er Gegenseiten sin Nur stumpfwinklige Dreiecke besitzen einen Polarkreis Das Steiner-Dreieck ist für vier konzyklische Punkte as Höhenfußpunktreieck es Diagonalreiecks us er Sicht es Steiner-Dreiecks fällt er Mittelpunkt in eine nkreismitte un er Kreis ist einer er oben angesprochenen Fixkreise er Inversionen

8 Rückblicken weren ie vier usgangspunkte als korresponierenes Quarupel {, B, C, D} einer Zirkularkurve es Steiner-Dreiecks s BsCs angesehen Der zugehörige Tangentialpunkt T liefert mit seinen korresponierenen Punkten as Diagonalreieck BC Zwei korresponierene Quarupel einer Zirkularkurve liegen vierfach perspektiv, wobei ie Perspektivitätszentren wieer ein korresponierenes Quarupel bilen So erhält man zu {, B, C, D} un {, B, C, T} as korresponierene Quarupel { *, B *, C *, Z} Das korresponierene Quarupel { J a, Jb, Jc, J} hat als Tangentialpunkt en Fernpunkt er Zirkularkurve, essen korresponierene Punkte wieer as Bezugsreieck liefern Für vier konzyklische korresponierene Punkte sin ie Quarupel {, B, C, T}, { *, B *, C *, Z, { J, J, J, J ientisch } a b c } Literatur [1] J-P Ehrmann an B Gibert Special Isocubics in the Triangle Plane http//persowanaoofr/bernargibert/ [2] R Stärk un D Baumgartner Ein merkwüriger Punkt es Vierecks PM 1/44 Jg 2002 [3] E W Weisstein Polar Circle http//mathworlwolframcom/polarcirclehtml Eckart Schmit - Holstenstraße 42 - D Raisorf http//eckartschmite eckart_schmit@t-onlinee

Geometrie der Triplex-Punkte. Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt

Geometrie der Triplex-Punkte. Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt Geometrie der Triplex-Punkte Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt In einem Dreieck ABC lässt sich zu jedem Innenwinkel z.b.

Mehr

Zwischen In- und Umkreis. Eckart Schmidt

Zwischen In- und Umkreis. Eckart Schmidt Zwischen In- und Umkreis Eckart Schmidt Dreiecke mit gleichem In- und Umkreis sind eingangs Gegenstand dieser Ausarbeitung Perspektive Zwischendreiecke erhält man für die Büschelpunkte von In- und Umkreis

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster Dr. Neihart 14.11.03 Thema: Parabeln [ein Bineglie zwischen Geometrie un Algebra ] Referent: Christian Schuster Glieerung: Anwenungsgebiete un Vorkommen von Parabel Erscheinungen in er Natur Parabeln:

Mehr

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen 40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen TU Graz, 29. Mai 2009 1. Für welche Primzahlen p ist 2p + 1 die dritte Potenz einer natürlichen Zahl? Lösung. Es soll also gelten 2p + 1

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Karoline Grandy und Renate Schöfer

Karoline Grandy und Renate Schöfer Karoline Grandy und Renate Schöfer 1 Lemma 1 (Haruki) In einem Kreis seien zwei sich nicht schneidende Sehnen AB und CD gegeben. Außerdem wähle einen beliebiger Punkt P auf dem Kreisbogen zwischen A und

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen.

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen. 1 5. Enliche Körper Z iel: Klassifikation enlicher Körper un ihrer Beziehungen. 1 5. 1. Situation: K sei eine enliche Erweiterung es Körpers F p = Z/ p, p P, [ K: F p ] = n #( K = p n = : q K ist zyklisch

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

Geometrie: I. Vorkenntnisse Übungenn

Geometrie: I. Vorkenntnisse Übungenn Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck

Mehr

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis.

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis. 8 2. Golener Schnitt Die Geometrie birgt zwei grosse Schätze: er eine ist er Satz von Pythagoras, er anere ist er Golene Schnitt. Den ersten können wir mit einem Scheffel Gol vergleichen, en zweiten ürfen

Mehr

Konstruktion des isoperimetrischen Punktes

Konstruktion des isoperimetrischen Punktes Konstruktion des isoperimetrischen Punktes C. und M. Reinsch Dreieck in der komplexen Ebene Ecken: A, B, C. Seiten: a = B C, b = C A, c = A B. Kreise: A(u) um A mit Radius u, B(v) um B mit Radius v, C(w)

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze U BREHM: Konvegeoetrie 3-1 3 Trennungs- un Stützeigenschaften, sowie eleentare Hilfssätze Zunächst einige Hilfssätze, in enen Begriffe aus er Konveität it topologischen Eigenschaften zusaengebracht weren

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt:

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt: Ein konstantes Abstandsrodukt Eckart Schmidt Zu zwei fest vorgegebenen Punkten sind die Ortslinien für Punkte mit konstanten Abstandssummen, Abstandsdifferenzen oder Abstandsverhältnissen Kegelschnitte;

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 2016 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar ist oer

Mehr

Baryzentrische Koordinaten

Baryzentrische Koordinaten aryzentrische Koorinaten xel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.e Juli 200 Der baryzentrische Kalkül ist einzuornen in ie affine analytische Geometrie.

Mehr

Tipps Geometrie II. Aktualisiert: 29. Januar 2016 vers EG EF = P A. q 1 q. P B =

Tipps Geometrie II. Aktualisiert: 29. Januar 2016 vers EG EF = P A. q 1 q. P B = Schweizer Mathematik-Olympiade smo osm Tipps Geometrie II Aktualisiert: 9. Januar 016 vers..0.0 Ähnliche Dreiecke 1. Zweimal Strahlensatz beim Scheitelpunkt A ergibt DB = 15.. Wende zweimal den zweiten

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

2.2 Elektrisches Feld

2.2 Elektrisches Feld 2.2. ELEKTRISCHES FELD 9 2.2 Elektrisches Fel Coulomb Gesetz: F i Q i F i = Q i 1 Q j Rij 2 R i R j R ij 4π ɛ j+i 0 }{{} elektrisches Fel am Ort R i Das elektrische Fel, as ie Laung am Ort R i spürt -

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

PH Heidelberg, Fach Mathematik Modulprüfung 2, Einführung in die Geometrie, Wintersemester 09/10, Name Vorname Matrikelnummer

PH Heidelberg, Fach Mathematik Modulprüfung 2, Einführung in die Geometrie, Wintersemester 09/10, Name Vorname Matrikelnummer Moulprüfung, Einführung in ie Geometrie, Wintersemester 09/0,.0.000 ufgae (Multiple hoice) a) Klaus, Gera, Max un Steffi führen inirekte eweise in er asoluten Geometrie. aei verwenen sie ie nachfolgenen

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551041

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï

3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï 3 Dreiecke 3.1 Grundlegende Sätze (zum Teil bewiesen in den Übungen) 3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï 2 1 bereinstimmen in zwei Seiten und dem dazwischenliegenden Winkel. 3.1.2

Mehr

Projektionskurve Abiturprüfung LK Bayern 2003

Projektionskurve Abiturprüfung LK Bayern 2003 Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 013 an en Realschulen in ayern athematik II usterlösung Lösung iese Lösung wure erstellt von ornelia anzenbacher. ie ist keine offizielle Lösung es ayerischen taatsministeriums für Unterricht

Mehr

8. Projektionsarten und Perspektive

8. Projektionsarten und Perspektive 8. Projektionsarten un Perspektive Projektionen: transformieren 3D-Objekte in 2D-Biler (mathematisch: lineare Abb., aber nicht bijektiv ugehörige Matri singulär,.h. Determinante ) Projektion ist Grunaufgabe

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden Kapitel 5 Schwache Konvergenz von W-Verteilungen auf er Zahlengeraen 5.1 Schwache Konvergenz bzw. Verteilungskonvergenz Bezeichne W(, B 1 ie Menge aller W-Verteilungen auf (, B 1. Definition 5.1 (Schwache

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

2.2A. Das allgemeine Dreieck

2.2A. Das allgemeine Dreieck .A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Michael Gieing ph-heielberg.e/wp/gieing Einführung in ie Geometrie Skript zur gleichnamigen Vorlesung im Wintersemester 006/007 Kapitel 1: Axiomatik Vo r l e s u n g 8 : S t r e c k e n m e s s u n

Mehr

Logik / Kombinatorik - Hinweise zur Lösungsfindung

Logik / Kombinatorik - Hinweise zur Lösungsfindung Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ.

In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ. Entdeckungen an Geraden- und Doppelkreuzungen Schneiden sich zwei Geraden, so entstehen vier Winkel mit Scheitel im Schnittpunkt. Jeweils zwei gleichgroße Winkel liegen sich dabei gegenüber man nennt diese

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

Begründen in der Geometrie

Begründen in der Geometrie Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

1.3. Beträge, Gleichungen und Ungleichungen

1.3. Beträge, Gleichungen und Ungleichungen 1.3. Beträge, Gleichungen und Ungleichungen Das Maximum zweier Zahlen a, b wird mit max(a,b) bezeichnet, ihr Minimum mit min(a,b). Der Absolutbetrag einer reellen Zahl a ist a = max ( a, a ) oder auch

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

LSGM Leipziger Schülergesellschaft f ur Mathematik. Dreiecksgeometrie 2. Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel

LSGM Leipziger Schülergesellschaft f ur Mathematik. Dreiecksgeometrie 2. Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel LSGM Leipziger Schülergesellschaft f ur Mathematik Dreiecksgeometrie 2 Toscho Mathecamp 12. Juli 21. Juli 2008 Olympiadezirkel Inhaltsverzeichnis 1 Ankreise 2 1.1 Grundlegendes................................

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Geraden in R 2 Lösungsblatt Aufgabe 17.16

Geraden in R 2 Lösungsblatt Aufgabe 17.16 Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

Dualität in der Elementaren Geometrie

Dualität in der Elementaren Geometrie 1 Dualität in der Elementaren Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de url: www.wias-berlin.de/people/stephan FU Berlin,

Mehr

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert ownlo Jens onr, Hry Seifert Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte Mterilien für s gnze Schuljhr ownlouszug us em Originltitel: Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung

Mehr

II. BUCH VIERECKE. 6. Das VARINGNON INKREISMITTEN VECTEN

II. BUCH VIERECKE. 6. Das VARINGNON INKREISMITTEN VECTEN II. BUCH VIERECKE 6. Das VARINGNON INKREISMITTEN VECTEN Die Seitenmitten eines beliebigen Vierecks bilden ja immer ein sog. Varignon-Parallelogramm 1 der halben Fläche, denn die Mittelparallelen der beiden

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Kürzeste Wege Mathematik ist schön 4

Kürzeste Wege Mathematik ist schön 4 E R L Ä U T E R U N G E N Z U D E N K A L E N D E R N M A T H E M A T I K I S T S C H Ö N Kürzeste Wege Mathematik ist schön Der FERMAT-Punkt eines Dreiecks Der französische Mathematiker PIERRE DE FERMAT

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

Der Satz von Ceva & Satz von Menelaus

Der Satz von Ceva & Satz von Menelaus Der Satz von Ceva & Satz von Menelaus Fast Viktor 21. November 2007 Inhaltsverzeichnis Sätze und ihre Beweise Satz von Menelaus Satz von Ceva Winkelhalbierendenschnittpunkt Höhneschnittpunkt Winkelhalbierendenschnittpunkt

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte 1 Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 19. Tag der Mathematik 17. Mai 014, TU Berlin Pythagoräische

Mehr

Vierecke Kurzfragen. 2. Juli 2012

Vierecke Kurzfragen. 2. Juli 2012 Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?

Mehr

Aufgabe E 1 (8 Punkte)

Aufgabe E 1 (8 Punkte) Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

1.3. Beträge, Gleichungen und Ungleichungen

1.3. Beträge, Gleichungen und Ungleichungen .3. Beträge, Gleichungen und Ungleichungen Das Maimum zweier Zahlen a, b (also die größere von beiden) wird mit ma(a,b) bezeichnet, ihr Minimum (also die kleinere von beiden) mit min(a,b). Der Absolutbetrag

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr