7. Vorlesung Grundlagen der analogen Schaltungstechnik : Dynamik Frequenzgänge KWSR-P/N-Bodediagramm

Größe: px
Ab Seite anzeigen:

Download "7. Vorlesung Grundlagen der analogen Schaltungstechnik : Dynamik Frequenzgänge KWSR-P/N-Bodediagramm"

Transkript

1 7. Vorleug Grudlage der aaloge Schaltugtechik : Dyamik Frequezgäge KWSR-P/N-Bodediagramm Im Re

2 Ihre Frage Wa beutzte ich welche Dartellugform der Übertragugfuktio? / Wa id die Vorteile der Dartellugweie mit jw? D?? Wozu brauche ich die DGL der Schaltug, we ich am Ede doch ur mit der traformierte Übertagugfuktio multipliziere ud rücktraformiere? Welche Bedeutug hat da ''? Klar it, da e au der Laplacetraformatio tammt, aber warum ka ich e tatt D oder jw verwede ud wa it die Laplaceebee ()? Nochmal zum Mitchreibe: Wie ermittel ich die Pole/Nulltelle für da P/N-Diagramm? Wozu diet da P/N-Diagramm? Wa ka ich i dem Diagramm ablee/erkee? 6..6

3 Traformatio eier DGL zur Betimmug der Partikuläre Löug für co/i-areguge cy c y... c y ' c y g( t) g( t) a x( t) a x( t)... a x( t)' a x( t) cd c D c D c y t ( a D a D... a D a ) x( t) m HD ( ) H( j) ( ) ( ) ( m) ( m ) m m... ( ) m m m m m () amd am D... ad a ( )... m m yt x t c D c D c D c m Y am j a j a j a X c j c j c j c x( t) V co( V j t ) e y( t) H( j) V co ( t arg[ H( j) ]) arg bedeutet Argumet, da it der geamte Phaewikel vo H(j) 6..6

4 Übertragugfuktioe im Zeit- ud Frequezbereich I & II Ob Bem: H(j) it die Fouriertraformierte der DGL! oder oder HD ( ) H( j) H ( ) xt () Sytem yt () m yt () amd a D a D a x( t) c D c D... c D c m m m... m j m j... j... Y am a a a X c j c j c j c L{ y( t)} m a a... a a m m m L{ x( t)} c c... c c Der Neer ethält immer die Differetialgleichug bzw. ihr charakteritiche Polyom ud damit (al Löug) die Eigefrequeze (Grez/Eckfrequeze) partikuläre Löug für x(t) = V co(t+ ) Laplace- Trafo = Freq.b. II y( t) H( j) V co ( t arg[ H( j) ])

5 Problemtraformatio: Eratzchaltbilder D-Operator D d dt duc juc jt jic KWSR C i c, Aatz: uc Uce e,ic Ice e jt dt R( ) Re ( ) e U I U c Laplace jc duc C i dt CD u i uc ic CD c c c jcu I oder U I j C C C C C U y C c () duc C ic L dt x Lx x() CU C() Cu C() I C() oder U C() I C u C() C C u () c t i () c t DC C Ic () Cu() jt

6 H() Pol/Nulltellediagramm Faktoriierug ( )( )...( m ) H( ) k vo H(): ( )( )...( ) eie die Nulltelle H() ud die Pole vo H() Merke: Der Neer it da charakteritiche Polyom P() der etprechede Differetialgleichug! Im H()= Nulltelle (o): 5 Pole (x):,, 5, Eigefrequeze oder Eigewerte der DGL! Re

7 D Iterpretatio der -Ebee Oberfläche H ( ) Frequezgag H( j) 6. H() H ( ) Re{}.. Im{} (,) j (,) y( t) H( j) V co( t arg[ H( j)] ) j 7

8 Differetialgleichuge (lieare mit kot. Koeffz.) Awedug: Frequezkompeatio VDD Rückgekoppelter Vertärker: Vi ip MODP M8 W = u L = 8u 5 MODP M5 W = u L = 8u MODP MODP M M W = u W = u L = 8u L = 8u ip VDD MODP M7 W = u L = 8u out CL 5p Traietatwort: Rigig Frequezgag: Peakig Urache: komplexe Polpaar ahe der imagiäre Ache VDD VSS + - IBIAS u MODN M9 4 W = 8u L = u CC 5p V 5V + - VP + - VM -5V MODN M W = 5u L = 8u MODN M4 W = 5u L = 8u MODN M6 W = u L = 8u.V VSS.V mv V -.V 5u u 5u u 5u u V(OUT) V(Vi:+) Zeit.mV.Hz KHz GHz V(out) Frequez 8

9 Exkur/Preview Regeltechik Rückgekoppelte Strukture Woher kommt da Rigig bzw. Peakig? Regelugtechik: Phaeverchiebug de Vertärker H V () Gegekopplug wird zur Mitkopplug (Stabilitätreerve ikt) X ( ) + H V () Y ( ) _ H ( ) H R () HV( ) H ( ) H ( ) R V

10 H()= Nulltelle (o): Pole (x): 5,,, x Re( ), y Im( ), z H( ) mit j 5 Im - - Re - - Magitude db.e.e.e.e.e Frequecy.6 Phae deg E.E.E.E.E Frequecy 6..6

11 Zuammehag Frequezgag - Pole/Nulltelle 6..6

12 Lik: Java-Applet PZ-Frequezgag 6..6

13 Pole ud Nulltelle, Frequezgag H(j) & Bodediagramm

14 H() Pol/Nulltellediagramm Faktoriierug ( )( )...( m ) H( ) k vo H(): ( )( )...( ) eie die Nulltelle H() ud die Pole vo H() Merke: Der Neer it da charakteritiche Polyom P() der etprechede Differetialgleichug! Im H()= Nulltelle (o): 5 Pole (x):,, 5, Eigefrequeze oder Eigewerte der DGL! Re

15 Frequezgag H(j) & Bodediagramm Faktoriierug ( )( )...( m ) H ( ) vo H(): ( )( )...( ) eie die Nulltelle H() ud die Pole vo H() Merke: Der Neer it da charakteritiche Polyom P() der etprechede Differetialgleichug! Für eie fete Frequez f, d.h. j, ka ei Term ( ) ( j ) al Ortvektor i der komplexe - Ebee iterpretiert werde ( j ) j -Ebee ( j ) j

16 Betrag ud Phae E gilt: ( j ) ( j ) e arg ( j ) ( j ) j Phaor Betrag Phae graphiche Iterpretatio de Frequezverhalte: Betrag ( j ) j -Ebee groß j Im( ) größer Re Im 45 o Phae: arg ( j ) klei Grezfrequez!!

17 Superpoitio vo Ortvektore ( Fahrtrahl, Zeiger) Umchreibe der faktoriierte H() i Polarform: H ( ) ( ) ( )... ( ) e m ( ) ( )... ( ) e... m... Trick: Überlagerug (Superpoitio) de Beitrag jede Pol bzw. Nulltelle it möglich, we Logarithmu agewadt wird: log( ( ) ( )... ( ) ) m log( ( ) ) log( ( ) )... log( ( ) ) m Daelbe gilt für da Neerpolyom

18 Aymptotiche Verhalte (für Nulltelle) log k db log H( j) X k j k ( j ) k kot log( ( ) ) x H j x log( ) H( ) i db log log,a H( ) i für H( ) kot ~ für H ( ) ~ - ( ) k j ~ a X a db log ( ) (Expoet vo )* db= Steigug pro Dekade

19 Reelle Nulltelle bei idealiierte/reale Verhalte H( j) reale Kurve db log Atieg bei f Maßtab log( j ) log( ) log( j ) Offet f f bzw. (log Maßtab) Phaegag: Phae bei f Phae p p 4 = 45 p 4 = 45 p 6..6

20 Reeller Pol bei idealiierte/reale Verhalte log Offet j H( j) log Maßtab Phae log( ) log j p p 4 = 45 p 4 = 45 p reale Kurve f db Abfall bei f 45 Phae bei Phaegag:.. 9 f 6..6

21 Beipiel: RC Filterchaltug Vi R C V out V V out i prc f b b H ( ) RC Grezfrequez j Pol! RC H( j ) ( ) b H j DC g ai arg[ H( j )] 45 o b 6..6

7. Vorlesung Grundlagen der analogen Schaltungstechnik : Dynamik Frequenzgänge KWSR P/N Bodediagramm

7. Vorlesung Grundlagen der analogen Schaltungstechnik : Dynamik Frequenzgänge KWSR P/N Bodediagramm 7. Vorlesug Grudlage der aaloge Schaltugstechik : Dyaik Frequezgäge KWSR P/N Bodediagra I s.4. - - - Re s..8.6.4. - 4 6 8 4 4..7 Ihre Frage Wa beutzte ich welche Darstellugsfor der Übertragugsfuktio? /

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Die große Etappeziele i GST roter Fade Netzwerkaalyse mit gesteuerte Quelle icht mehr als 3 Gleichuge für jede

Mehr

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258 7. Vorlesug Grudlage der Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Skript: Ab Folie 58 Vorlesug: Grudlage der Schaltugstechik - KWSR & Operatiosverstärkerschaltuge.. Die große Etappeziele

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyaik (KWSR + x) 9..6 Die große Etappeziele i GST roter Fade Netzwerkaalyse it gesteuerte Quelle icht ehr als 3 Gleichuge für jede

Mehr

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 8. Vorleung Grundlagen der analogen Schaltungtechnik Filterynthee H()= 86 6 8 3 38 39 8 3 Nulltellen (o): Pole (x): 5 3, 5 3 3, 3, 3 x Re( ), y Im( ), z H( ) mit j Im - - Re - - Magnitude db 3.E3.E.E.E.E.4...8

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Die großen Etappenziele in GST roter Faden Netzwerkanalyse mit gesteuerten Quellen nicht mehr als 3 Gleichungen

Mehr

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 8. Vorleung Grundlagen der analogen Schaltungtechnik Filterynthee H()= 86 6 8 3 38 39 8 3 Nulltellen (o): Pole (x): 5, 3 3,, 3 x Re( ), y Im( ), z H( ) mit j 5 3 3 Im - - Re - - Magnitude db 3.E 3.E.E.E.E.4...8

Mehr

Totzeitbehaftete Prozesse in der Automation - Probleme und Lösungen

Totzeitbehaftete Prozesse in der Automation - Probleme und Lösungen Totzeitbehaftete Prozee i der Automatio - Probleme ud Löuge Hauptemiar Techiche Iformatioyteme Burkhard Heel Drede, 7..2008 Ihalt - Wiederholug Totzeit - Problemtellug Löuge:. Regelug mit PID-Regler 2.

Mehr

Systemtheorie. Vorlesung 22: Frequenzgang von Systemen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 22: Frequenzgang von Systemen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systetheorie Vorlesug 22: Fakultät für Elektro- ud Iforatiostechik, Mafred Strohra Grudlage Sigale köe über ihr Spektru beschriebe werde Etspreched ka lieare, zeitivariate Systee ei sogeater Frequezgag

Mehr

Kapitel 17 : Lineare Regression Darstellung von zweidimensionalen Daten : (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n )

Kapitel 17 : Lineare Regression Darstellung von zweidimensionalen Daten : (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) (Kapitel 7: Lieare Regreio) Kapitel 7 : Lieare Regreio 7. Dartellug vo zweidimeioale Date : (, ), (, ),..., (, ). 7.. Beipiel : (a) Körpergewicht eie erwachee mäliche Pfälzer. Körpergröße (b) Azahl der

Mehr

8. Übung Grundlagen der analogen Schaltungstechnik Filtersynthese

8. Übung Grundlagen der analogen Schaltungstechnik Filtersynthese 8. Übung Grundlagen der analogen Schaltungtechnik Filterynthee Analye eine Filter. Ordnung (Aufgabe 7) 0 V V R C 3 0. C R v OPI 4 V.0 E.0 E.0 E0.0 E.0 E Frequency M agnitude d B P hae d e g 0-0 -0-30 -00-5

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

8. Gewöhnliche Differentialgleichungen (ODE)

8. Gewöhnliche Differentialgleichungen (ODE) 8 Gewöhliche Differetialgleichuge (ODE) 81 Motivatio Eidimesioale (1d) Bewegug eies Teilches (Masse m, keie Reibug) im Potezial U() U() E klassisch: Ermittle die Bahkurve/Trajektorie (t) des Massepukts

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

Gebrochenrationale Funktionen

Gebrochenrationale Funktionen Gebrocheratioale Fuktioe Aufgabe Bestimme de Defiitiosbereich der Fuktio f() = ösug: Hier ist der maimale Defiitiosbereich icht R, de im der Neer wird für = Null ud ma würde durch Null teile. Aus diesem

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesug 8: Spektre periodischer Sigale Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma Spektre vo Sigale Eiführug Sigale köe auf uterschiedliche Arte beschriebe werde Zeitbereich

Mehr

Formelsammlung Signaldarstellung

Formelsammlung Signaldarstellung Sigaldarsellug.b Forelsalug Sigaldarsellug Grudlage Eiheisipuls : für sos Abasug : x Zeiorierug : x S S x S, Frequezorierug : S S Zeiorier : x x S x x, Eiheissprug : u Diracsche Fukio : l l, u Ipulsdarsellug

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systee Vorlesug 9: Fakultät für Elektro- ud Iforatiostechik, afred Strohra Eiführug Lösug vo Differezegleichug it der z- Trasforatio führt zu algebraische Gleichuge i der koplexe Variable

Mehr

Infinite Impulse Response-Filter Rekursivfilter DSP-8-IIR 1

Infinite Impulse Response-Filter Rekursivfilter DSP-8-IIR 1 Ifiite Impulse Respose-Filter Rekursivfilter DSP-8-IIR IIR-Filter. Ordug y [ ] ay [ ] bx o [ ] bx [ ] FIR-Teil x[] b v[] y[] x + + z - z - b a x Feed-forward Teil (FIR-Filter) x y[-] Feed-back Teil DSP-8-IIR

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Expoetielles Wachstum Expoetielles Wachstum BEISPIEL: Fiboacci-Folge Die Fiboacci-Zahle f Die Fiboacci-Zahle f f 1 = 1 f 2 = 1 Die Fiboacci-Zahle f f 1 = 1 f 2 = 1 f +1 = f + f 1 ( > 1) Die Fiboacci-Zahle

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

44. Lektion: Stehende Wellen

44. Lektion: Stehende Wellen 44. Lektio: Stehede Welle H. Zabel 38. Lektio: Schwiguge 1 15.Schwiguge Lerziel Stehede Welle etstehe aus der Überlagerug vo laufede Welle a feste oder lose Ede. Die Superpositio vo eilaufeder ud reflektierter

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER Elektrotechik ud Iformatiostechik Istitut für Nachrichtetechik, Vodafoe Chair Dr. Emil Matus - Digitale Sigalverarbeitugssysteme I/II - Übug 3 ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER.

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Asymptotische Notationen

Asymptotische Notationen Foliesatz 2 Michael Brikmeier Techische Uiversität Ilmeau Istitut für Theoretische Iformatik Sommersemester 29 TU Ilmeau Seite 1 / 42 Asymptotische Notatioe TU Ilmeau Seite 2 / 42 Zielsetzug Igoriere vo

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt 6 Komplexe Zahle Natürliche Zahle N {0,,,...} Gae Zahle G {...,-,-,0,,,...} Reelle Zahle Komplexe Zahle R (-,+ ) C N G R C 6. Defiitio ud Darstellugsforme der komplexe Zahle Def.: Die formale Summe aus

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

6. Fourier-Transformation

6. Fourier-Transformation 6. Fourier-rasformatio Wir betrachte zuächst eie periodische Fuktio: f t+ f t. (6- Die Idee ist, das sie sich durch eie Überlagerug periodischer, harmoischer Schwiguge darstelle lässt. Aalogie: ( + cos(

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 08..08 Analyse eines Filters. Ordnung (Aufgabe 7) 0 V V R C 3 0. C R v OPI 4 V.0 E.0 E.0 E0.0 E.0 E Frequency M agnitude d B P hase

Mehr

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr.

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr. Zahlefolge Teil 3: Reihe Arithmetiche Reihe Geometriche Reihe Theorie ud Muterbeipiele E wird auch da Arbeite mit dem Summezeiche geübt! Datei Nr. 40050 Stad 7. September 06 Friedrich W. Buckel INTERNETBIBLIOTHEK

Mehr

Abb. 1: Woher kommen die schwarzen Quadrate?

Abb. 1: Woher kommen die schwarzen Quadrate? Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt

Mehr

1.Weiterentwicklung der Zahlvorstellung

1.Weiterentwicklung der Zahlvorstellung Grudwie Mthemtik 9.Kle Gymium SOB.Weiteretwicklug der Zhlvortellug Defiitio der Qudrtwurzel: Für 0 it diejeige icht egtive Zhl dere Qudrt ergibt. heißt Qudrtwurzel, heißt Rdikd. Beipiele: 0,5 0,5 64 8

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Schriftliche Kleine Anfrage

Schriftliche Kleine Anfrage BÜRGERSCHAFT DER FREIEN UND HANSESTADT HAMBURG Druckache 21/4836 21. Wahlperiode 21.06.16 Schriftliche Kleie Afrage der Abgeordete Ige Haema (DIE LINKE) vom 13.06.16 ud Atwort de Seat Betr.: Wie viele

Mehr

Übung 8: Transformationen

Übung 8: Transformationen ZHAW, DSV, 008, Rumc, 1/7 Übug 8: Trasformatioe Aufgabe 1: (Wavelet) Basisfuktioe. Betrachte Sie die folgede 4 Basisfuktioe f m [], m = 1,...,4, sowie das Zeitsigal x[] = [9 7 3 5]. f 0 [] f 1 [] 0.5 0.5-0.5

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Musterlösung Schnellserie 4

Musterlösung Schnellserie 4 D-ITET Aalysis HS 3 Prof. Richard Pik Musterlösug Schellserie 4. a Wir sete a : + 3 ud bereche a a + + + + + 7 3 + + 7 3 +. Der Limes existiert isbesodere ud liefert damit, ach dem Quotietekriterium, de

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript Wahrscheilichkeitsrechug & Statistik - Ergäzug zum Skript Prof. Schweizer 9. Oktober 008 Mitschrift: Adreas Steiger Warug: Wir sid sicher dass diese Notize eie Mege Fehler ethalte. Betrete der Baustelle

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1 Kapitel 2 Terme Josef Leydold Auffrischugskurs Mathematik WS 207/8 2 Terme / 74 Terme Ei mathematischer Ausdruck wie B R q q (q ) oder (x + )(x ) x 2 heißt eie Gleichug. Die Ausdrücke auf beide Seite des

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

24 Komplexe Vektoren und Matrizen

24 Komplexe Vektoren und Matrizen Lieare Algebra II SS 011 - Prof Dr afred Leit apitel VII: Der örper der komplexe Zahle 4: omplexe Vektore ud atrie 4 omplexe Vektore ud atrie A Der komplexe Vektorraum B Der ormierte Raum C Der Skalarproduktraum

Mehr

Laguerre - Polynome. Vortrag zum Seminar zur Analysis, Evgeny Saleev

Laguerre - Polynome. Vortrag zum Seminar zur Analysis, Evgeny Saleev Laguerre - Polyome Vortrag zum Semiar zur Aalysis, 6.1.21 Evgey Saleev Die Laguerre-Polyome werde i der Quatemechai bei der Lösug der Schrödiger-Gleichug agewedet, isbesodere im Falle des Wasserstoffatoms.

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrheilihkeittheorie, Shätz- ud Tetverfahre ÜBUNG 0 - LÖSUNGEN. Kofidezitervall für de Mittelwert eier ormalverteilte Grudgeamtheit bei gegebeer Variaz a. Gegebe id

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Schriftliche Kleine Anfrage

Schriftliche Kleine Anfrage 21. Jui 2016 Schriftliche Kleie Afrage der Abgeordete Ige Haema (Fraktio DIE LINKE) 13.06.2016 ud Atwort de Seat - Druckache 21/4836 - Betr.: Wie viele arbeitloe oder arbeituchede Meche tocke ihr Arbeitloegeld

Mehr

Korrekturliste zum Studienbuch Statistik

Korrekturliste zum Studienbuch Statistik Korrekturlite zum Studiebuch Statitik I der aktuelle Auflage wurde durch ei Kovertierugproblem i de Kapitel 0 (S. 3 3 ud de etprechede Abchitte i de Löuge (S. 39 07 teilweie die Zeiche µ durch ud π durch

Mehr

Taylor-Reihen 1-E1. Ma 2 Lubov Vassilevskaya

Taylor-Reihen 1-E1. Ma 2 Lubov Vassilevskaya Taylor-Reihe -E -E Brook Taylor (685-73) Brook Taylor war britischer Mathematiker. Nach ihm sid die Taylorreihe ud die Taylorsche Formel beat mit der ma stetig dierezierbare Fuktioe als Potezreihe darstelle

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Mathematik 1 für Informatik

Mathematik 1 für Informatik Guter Ochs. Juli 203 Mathematik für Iformatik Probeklausur Lösugshiweise. a Bestimme Sie per NewtoIterpolatio ei Polyom px mit möglichst kleiem Grad, so dass p = p0 = p = sowie p2 = 7. i x i y i d i,i

Mehr

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr.

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr. Vektorgeometrie gaz eifach Teil 6 Abstäde Berechug vo Abstäde zu Gerade ud Ebee Eifache Darstellug der Grudlage: Die wichtigste Aufgabestelluge ud Methode- Datei Nr. 640 Stad 28. Dezember 205 Demo-Text

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

Einige spezielle Funktionen: exp, ln, sin, cos.

Einige spezielle Funktionen: exp, ln, sin, cos. 76 Kapitel 5 Eiige spezielle Fuktioe: exp, l, si, cos. 5.1 Expoetialfuktio ud Logarithmus Die überaus wichtige Expoetialfuktio soll u etwas geauer diskutiert werde. Die ursprügliche Defiitio.0 ist für

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Dynamische Programmierung Matrixkettenprodukt

Dynamische Programmierung Matrixkettenprodukt Dyamische Programmierug Matrixketteprodukt Das Optimalitätsprizip Typische Awedug für dyamisches Programmiere: Optimierugsprobleme Eie optimale Lösug für das Ausgagsproblem setzt sich aus optimale Lösuge

Mehr

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so:

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so: Asymptotische Notatio Ladaus asymptotische Notatio O, Ω, o, ω, Θ, wird vorausgesetzt siehe Folie auf webseite oder eischlägige Literatur (z.b. Corme, Leiserso, Rivest) Geometrische Reihe α 0 folgt aus

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Analyse zeitkontinuierlicher Systeme im Frequenzbereich

Analyse zeitkontinuierlicher Systeme im Frequenzbereich Übung 3 Analye zeitkontinuierlicher Syteme im Frequenzbereich Diee Übung bechäftigt ich mit der Analye von Sytemen im Frequenzbereich. Die beinhaltet da Rechnen mit Übertragungfunktionen, den Begriff der

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Beweis des Primzahlsatzes nach Newman

Beweis des Primzahlsatzes nach Newman Beweis des Primzahlsatzes ach Newma Eileitug Aleader Zeilma 3. Jauar 23 Betreut durch Prof. Dr. Folkmar Borema Defiitio : Primzahlfuktio Wir defiiere π) als die Azahl der Primzahle kleier oder gleich :

Mehr

Thema: Integralrechnung (Grundlagen und Flächenberechnungen)

Thema: Integralrechnung (Grundlagen und Flächenberechnungen) Q GK Mathematik-Vh Vorereitug zur. Kursareit am..7 Thema: Itegralrechug Grudlage ud Flächeerechuge Checkliste Was ich alles köe soll Ich kee de Begri des krummliige Trapezes ud weiß, dass sei Flächeihalt

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim D-ITET Aalysis I HS 2018 Prof. Alessadra Iozzi Musterlösug 6 1. a) Wir setze a := 1 (3+1) 4 ud bereche a a +1 = 1. ( 3( + 1) + 1 1 3 + 1 3 + 4 3 + 1 ( 3 + 4 ) 4 3 + 1 Der Limes existiert isbesodere ud

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Prof. Dr. atjaa Lage Lehrgebiet: egelugstechik Laborübug 07: hema: Exerimetelle Bemessug vo egler & Mehrschleifige eglersysteme, hier: askaderegelug. Übugsziele: Awedug des Eistellverfahre ach Ziegler/Nichols

Mehr

Problem der Lautstärke: riesiger Intensitätsbereich, den das menschliche Ohr auch tatsächlich in starkem Maße (1 : ) überstreicht.

Problem der Lautstärke: riesiger Intensitätsbereich, den das menschliche Ohr auch tatsächlich in starkem Maße (1 : ) überstreicht. 18. Akustik 18.1. Eileitug Akustik ist bis zu gewissem Grad am Mesche orietiert: Ifraschall 16 Hz hörbarer Schall 16 Hz 16 khz 1 Ultraschall v > 16 khz Problem der Lautstärke: riesiger Itesitätsbereich,

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Vorschau reiseführer

Vorschau reiseführer V ü üj 0 ä, ä, ö Z Z U v T T v V ö üzv (v ) VIT ü U v V V V ä z v jz v, äi, z vä v zü I z: ä T V ü ü, ü z z T Iv z ö, ü I z D ü ü ä D Z ä,, jz z ü z : D z Cy, v ä I ü z zäz v v U 0 äü I z I z v,, vä T

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Handout. Instationäre Wärmeleitung. ka t. kat V. ktg D. Mit dem Körperfaktor G = bzw. = folgt. ktga. ktg = D. λkörper. ktga. kdfog. Mit = + folgt.

Handout. Instationäre Wärmeleitung. ka t. kat V. ktg D. Mit dem Körperfaktor G = bzw. = folgt. ktga. ktg = D. λkörper. ktga. kdfog. Mit = + folgt. T T T T k ex t ρcv D G Mit dem Körerfaktor G bzw. folgt V V D kt ρc V ktg ρc D Körer Körer Mit a bzw. ρc folgt ρc a ktg ρc D ktga D Körer at at Mit Fo bzw. D Fo folgt D D ktga D Körer kdfog Körer Mit +

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Korrektur 6.06.06:.,3. ; 7.07.06: 3. Name, Vorame: Studiegag: Matrikelummer: 3 4 5 6 Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0.

Mehr

5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz.

5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz. 5 Eie weitere Klae vo -Fiboacci-Zahle ud der Euler che Petagoalzahleatz I dieem Abchitt betrachte wir ei weitere Aalogo der Fiboacci-Polyome, für da auch ei chöe Aalogo der Luca-Polyome exitiert ud da

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte Modul 0 Regressiosgerade ud Korrelatio Has Walser: Modul 0, Regressiosgerade ud Korrelatio ii Ihalt Die Regressiosgerade.... Problemstellug.... Berechug der

Mehr

10. Übung Grundlagen der analogen Schaltungstechnik

10. Übung Grundlagen der analogen Schaltungstechnik . Übung Grundlagen der analogen Schaltungstechnik 7.2.26 Schaltung Netzwerk & Ersatzschaltbilder ( Views ) Schaltung Schaltbild/Schaltplan/Schematic Arbeitspunktersatzschaltbild Kleinsignalersatzschaltbilder

Mehr