D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim

Größe: px
Ab Seite anzeigen:

Download "D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim"

Transkript

1 D-ITET Aalysis I HS 2018 Prof. Alessadra Iozzi Musterlösug 6 1. a) Wir setze a := 1 (3+1) 4 ud bereche a a +1 = 1. ( 3( + 1) ( ) Der Limes existiert isbesodere ud liefert damit de gesuchte Kovergezradius. Es gilt also ϱ = 1. b) Wir setze a := (l(7)). Da der Koeffiziet eie Potez ist, bietet sich die Verwedug des Wurzelkriteriums für die Berechug des Kovergezradius a. Wege folgt c) Wir setze a := 1 π ud bereche a l(7) = 1 ϱ = 0. a ) 4 a ( + 1)π +1 a +1 π + 1 π = π. Der Limes existiert isbesodere ud liefert damit de gesuchte Kovergezradius. Es gilt also ϱ = π. ) 4 Bitte wede!

2 d) Wir setze a := (!)2 ud bereche (2)! a (!) 2 (2( + 1))! a +1 (2)!(( + 1)!) 2 (2 + 2)! (2)!( + 1) 2 = (2 + 2)(2 + 1) ( + 1) 2 = = 4. Der Limes existiert isbesodere ud liefert damit de gesuchte Kovergezradius. Es gilt also ϱ = a) Durch Vertausche der Summatiosreihefolge erhalte wir: (a k+1 a k )b k = a k+1 b k a k b k = a +1 b +1 a 1 b 1 + = a +1 b +1 a 1 b 1 a k+1 b k a k+1 b k+1 a k+1 (b k+1 b k ) b) Der Kovergezradius ϱ ist ach dem Quotietekriterium gegebe durch ϱ + 1 = 1. Folglich kovergiert die Potezreihe absolut i dem Eiheitskreis { z < 1} ud divergiert auf { z > 1}. Über das Kovergezverhalte auf der Kreisliie { z = 1} trifft das Quotietekriterium keie Aussage. Sei u z = 1. Für z = 1 erhalte wir die harmoische Reihe, die bekatlich divergiert. Für z = 1 erhalte wir die alterierede harmoische Reihe, welche ach dem Leibiz-Kriterium kovergiert. Wir wolle zeige, dass die Reihe für alle z 1 mit z = 1 kovergiert. Dazu verwede wir die partielle Summatiosregel aus (a) mit a k = 1 + z + z z k 1 = 1 zk 1 z, b k = 1 k. Siehe ächstes Blatt!

3 Da gilt a k+1 a k = z k ud wir erhalte z k k = z z 1 k ) 1 z k k 1 z. (1) Wir müsse zeige, dass die rechte Seite für kovergiert. Die Terme vor der Summe kovergiere offebar gege 1, da z+1 1 z 1 2 z = 0. Hierbei habe wir z +1 = z +1 = 1 ud z 1 beutzt. Die Reihe auf der rechte Seite kovergiert sogar absolut, de es gilt k ) 1 z k k 1 z 2 z 1 k 1 ) = 2 k + 1 z 1 Isbesodere kovergiert die rechte Seite i (1) mit z = 1, z 1 für ud das zeigt die Behauptug. 3. a) z = i b) z = 1 (28 17i) 29 c) z = i, ± i 2 d) z = 4(1 + i) e) z = 1 (6 35i) 13 f) z = ± ( 2 1 i + 2 2( 2 1) ) f) ist icht trivial. Seie a, b R so dass (a + ib) 2 = 1 + i. (2) (2) ist äquivalet zu also (a 0 weil 1 + i / R) gilt oder a 2 b 2 = 1 ab = 1 2 a 2 1 4a 2 = 1 a 4 + a = 0. (3) Bitte wede!

4 Somit gilt aber a 2 > 0, also a 2 = 1 ± 2 2 ud (dak (3)) a = ± 2 1 b = 1 2a = ± 1 2(. 2 1) 2 4. Wir schreibe komplexe Zahle als z = x + iy. a) Der sekrechte Streife zwische x = 0 ud x = 1. b) Die Parabel y 2 = 2x + 1 c) Wir bereche explizit die like Seite als Ausdruck i x ud y: 2 z z + 1 = z 2 z + 1 = x 2 + y 2 2 x 2 + 2x y 2 Die Gleichug ist damit äquivalet zu 4(x 2 + 2x y 2 ) = x 2 + y 2 3x 2 + 8x y 2 = 0 ( 3 x + 4 ) y2 = 0 ( x + 4 ) 2 + y 2 = 4 ( = 3 Die Lösugsmege ist also der Kreis mit Radius 2/3 um de Pukt 4/3 + 0i i der komplexe Zahleebee. d) We wir die Gleichug explizit i x ud y ausdrücke, erhalte wir: (x 2)2 + y 2 + (x + 2) 2 + y 2 = 5 ) 2 durch zweimaliges quadriere erhalte wir (x 2) 2 + y 2 = (x + 2) 2 + y 2 + (x + 2) 2 + y 2 8x + 25 = 10 (x + 2) 2 + y 2 64x x = 100(x 2 + 4x y 2 ) (6x) 2 + (10y) 2 = Siehe ächstes Blatt!

5 Die Lösugsmege liegt also auf der Ellipse (6x) 2 + (10y) 2 = Umgekehrt gilt, we (x, y) die ursprügliche Gleichug erfüllt, da erfülle alle 4 Pukte (±x, ±y) ebefalls die Gleichug. Wir köe also x 0 aehme ud da gilt i obiger Rechug auch die Rückrichtug. Somit liefert jeder Pukt auf dieser Ellipse auch eie Lösug der ursprügliche Gleichug. Geometrisch sid 2 ud +2 die Brepukte der Ellipse ud die Summe der beide Abstäde eies Puktes auf der Ellipse zu de beide Brepukte ist jeweils 5. e) Da der Betrag eier komplexe Zahl reell ist gilt trivialerweise für alle z C\{ 1} ( ) z i z + 1 R Im z i z + 1 = 0. Die Lösugsmege ist somit die gesammte komplexe Ebee. f) Die Gleichug ist äquivalet zu: z i 2 = z x 2 + (y 1) 2 = (x + 1) 2 + y 2 2y = 2x Die Lösugsmege ist also die Gerade y = x. 5. Sei z = re iϑ = r(cos(ϑ) + i si(ϑ)). Wir wolle die Gleichug z 5 = z löse. Wir setze z = r(cos(ϑ) + i si(ϑ)) ei ud erhalte r 5 (cos(5ϑ) + i si(5ϑ)) = r(cos(ϑ) i si(ϑ)) = r( cos(ϑ) + i si(ϑ)) = r(cos(π ϑ) + i si(π ϑ)), wobei wir im letzte Schritt bekate trigoometrische Formel beutzt habe. Somit bekomme wir das System { r 5 = r, 5ϑ = ( ϑ + π) + 2kπ, k Z, d.h. { r = 0; 1, ϑ = 2k+1 6 π, k Z. Die Lösuge sid daher z = 0 ud z = cos((2k + 1)π/6) + i si((2k + 1)π/6) mit k Z. Bitte wede!

6 6. Um die Gleichug zu löse, setze wir daher z = a + ib. Die Gleichug wird somit a 2 + b 2 (a + ib) a 2 + b 2 + a + ib = 0. Wir tree de Realteil ud de Imagiärteil ud erhalte das System { a 2 + b 2 a a 2 + b 2 + a = 0, b a 2 + b 2 + b = 0, d.h. { a 2 + b 2 a a 2 + b 2 + a = 0, b(1 a 2 + b 2 ) = 0. Aus der zweite Gleichug bekomme wir zwei Systeme { b = 0, a 2 a a + a = 0, b 0, a2 + b 2 = 1, 1 = 0. Das zweite System besitzt keie Lösug. Das erste System besitzt die Lösuge b = 0, a = 0 ud b = 0, a = 1/2. Die gesuchte Lösuge sid somit z = 0 ud z = 1/2.

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

( 1) n 1 n n n + 1. n=1

( 1) n 1 n n n + 1. n=1 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmud Musterlösug zum 6. Übugsblatt zur Höhere Mathematik I P/ET/AI/IT/IKT/MP) WS 20/2 Aufgabe mittels Zeige Sie die Kovergez der Reihe )

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Musterlösung Schnellserie 4

Musterlösung Schnellserie 4 D-ITET Aalysis HS 3 Prof. Richard Pik Musterlösug Schellserie 4. a Wir sete a : + 3 ud bereche a a + + + + + 7 3 + + 7 3 +. Der Limes existiert isbesodere ud liefert damit, ach dem Quotietekriterium, de

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Lösungen 7.Übungsblatt

Lösungen 7.Übungsblatt Karlsruher Istitut für Techologie (KIT) WS 20/202 Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.tech. Raier Madel Lösuge 7.Übugsblatt Aufgabe 25 (K) Bestimme Sie de Kovergezradius der folgede

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 5. Übungsblatt Istitut für Aalsis WS206/7 PD Dr Peer Christia Kustma 8206 Dipl-Math Leoid Chaicheets Johaa Richter, MSc Tobias Schmid, MSc Höhere Mathematik I für die Fachrichtug Phsik Lösugsvorschläge zum 5 Übugsblatt

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung Repetitorium Aalysis für Physier WS08/09 Motag - Folge ud Reihe Musterlösug. Verstädisfrage Thomas Blasi a Sid folgede Aussage richtig oder falsch: Jede overgete Folge hat eie Grezwert. Richtig. i Der

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80 KAPITEL 3 Zahlereihe 3. Geometrische Reihe......................... 7 3.2 Kovergezkriterie......................... 72 3.3 Absolut kovergete Reihe.................... 80 Lerziele 3 Eigeschafte der geometrische

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch Karlsruher Istitut für Techologie KIT Istitut für Aalysis Priv.-Doz. Dr. P. C. Kustma Dr. D. Frey WS 20/2 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe 23 a

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Musterlösungen zur Klausur Analysis I Verständnisteil

Musterlösungen zur Klausur Analysis I Verständnisteil WS 2008/2009 Prof. Dr. Scheider Musterlösuge zur Klausur Aalysis I Verstädisteil 04.02.2009. a A ist ach Defiitio abzählbar, falls A edlich ist, oder falls carda = cardn gilt. b Ei Pukt x A ist ei ierer

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. 6. Saalübung ( )

Höhere Mathematik I für die Fachrichtung Informatik. 6. Saalübung ( ) KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr Christoph Schmoeger Heio Hoffma WS 0/4 90 Höhere Mathemati I für die Fachrichtug Iformati 6 Saalübug (90) Aufgabe Ma bestimme alle x R, für

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

Analysis IV. Lösungsvorschläge zum 2. Übungsblatt. sin(z) = 1 2i (eiz e iz ). = 1 e y

Analysis IV. Lösungsvorschläge zum 2. Übungsblatt. sin(z) = 1 2i (eiz e iz ). = 1 e y Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 8 6.4.8 Aalysis IV Lösugsvorschläge zum. Übugsblatt Aufgabe 5 Sei z x + iy C. Beweise Sie folgede

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Scheinklausur Analysis 1 WS 2007 /

Scheinklausur Analysis 1 WS 2007 / Scheiklausur Aalysis 1 WS 2007 / 2008 08.02.2008 Es gibt 11 Aufgabe ud 1 Zusatzaufgabe. Die jeweilige Puktzahl steht am like Rad. Die Gesamtpuktzahl ist 40 Pukte plus 4 Zusatzpukte. Zum Bestehe der Klausur

Mehr

7. Potenzreihen und Taylor-Reihen

7. Potenzreihen und Taylor-Reihen 7. Potezreihe ud Taylor-Reihe 39 7. Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgabe zu Kapitel 9 Aufgabe zu Kapitel 9 Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt?

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Aufgabe 32 Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen und bestimmen Sie ihr Konvergenzverhalten

Aufgabe 32 Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen und bestimmen Sie ihr Konvergenzverhalten Lösuge zur Fuktioetheorie Aufgabe 32 Bestimme Sie de Kovergezradius der folgede Potezreihe ud bestimme Sie ihr Kovergezverhalte am Rade des Kovergezkreises: (): (2): (3): 2 Hiweis: Beutze für (2) ( N )

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiegag: Matrikelummer: 4 5 6 Z Pukte Note Prüfugsklausur zum Modul Höhere Mathematik für Igeieure 7. 7. 7, 8. -. Uhr Zugelassee Hilfsmittel: A4-Blätter eigee, hadschriftliche Ausarbeituge aber keie

Mehr

Berechnen Sie folgende Integrale durch Anwendung entsprechender Integrationsverfahren und vereinfachen Sie das Ergebnis. c) dx

Berechnen Sie folgende Integrale durch Anwendung entsprechender Integrationsverfahren und vereinfachen Sie das Ergebnis. c) dx Mathematik II für Elektrotechik, Medietechik ud Iformatik, SS 9.6.9 Aufgabe : Itegratiosverfahre ( Pukte a 7P., b 8P., c P. ) Bereche Sie folgede Itegrale durch Awedug etsprecheder Itegratiosverfahre ud

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n Kapitel 4 Folge ud Reihe Josef Leydold Auffrischugskurs Mathematik WS 2017/18 4 Folge ud Reihe 1 / 38 Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Formal: Eie

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

1 Integrationsmethoden

1 Integrationsmethoden KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma WS 3/4 4..4 Höhere Mathematik I für die Fachrichtug Iformatik Itegratiosmethode. Saalübug (4..4) Aufgabe Bereche

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich. Lösuge. Es gibt drei Lösuge.. Lösug: Ato ist traurig ud er trikt keie Likör. Bruo isst Torte ud ist besorgt. Christa ist icht übel ud sie macht Purzelbäume.. Lösug: Ato ist traurig ud trikt keie Likör.

Mehr

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 1, 3.Aufl. (Version 2010), Kapitel 2

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 1, 3.Aufl. (Version 2010), Kapitel 2 Lösugsvorschläge zu ausgewählte Übugsaufgabe aus Storch/Wiebe: Lehrbuch der Mathematik Bad, 3.Aufl. Versio 00, Kapitel 4 Die reelle Zahle Abschitt 4.A, Aufg., p. 83.7.00 : Sei α eie positive ratioale Zahl,

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie KIT) Istitut für Aalysis Prof. Dr. Tobias Lamm Dr. Patric Breuig SS 3.9.3 Klausur Höhere Mathemati I für die Fachrichtug Physi Aufgabe 4+3+3) Pute) a) Sei a ) N eie reelle

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Lösungsvorschlag zur Klausur zur Analysis III

Lösungsvorschlag zur Klausur zur Analysis III Prof. Dr. H. Garcke, D. Deper WS 9/ NWF I - Mathematik 8..9 Uiversität Regesburg Lösugsvorschlag zur Klausur zur Aalysis III 6 Pukte pro Aufgabe) Aufgabe i) Bestimme Sie für die Fuktioefolge f :, 4) R,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

3.2 Potenzreihen und komplexe Taylorentwicklung

3.2 Potenzreihen und komplexe Taylorentwicklung 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu. 3.2. Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Breer Osabrück WS 2014/2015 Aalysis I Vorlesug 20 Kovexe Fuktioe Eie kovexe Teilmege. Eie ichtkovexe Teilmege. Defiitio 20.1. Eie Teilmege T R heißt kovex, we mit je zwei Pukte P, Q T auch

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr