2 Grundlagen der Robotermathematik - Lösungen zu den Aufgaben

Größe: px
Ab Seite anzeigen:

Download "2 Grundlagen der Robotermathematik - Lösungen zu den Aufgaben"

Transkript

1 Gdlage de Roboemahemaik - Lösge z de Afgabe Afgabe. Gegebe is ei Recheck mi de Kaeläge l cm, bcm. Es is paallel z de Koodiaeachse asgeiche d sei like ee Eckpk lieg bei P,. a Selle Sie fü die ie Geade, die dch die Kae besimm sid, alle Dasellgsfome o abelle. af. Eplizie Dasellg: g: g: ich defiie g: g: ich defiie Implizie Dasellg: g: g: 5 g: g: Vekodasellg : g: 5 g: g: Die Kompoeedasellg wid ich agegebe, da sie eie weige kompake Scheibweise de Vekodasellg is.

2 Lösge -. Gdlage de Roboemahemaik g: Hesse-Nomalefom: g: g: 5 g: g: b Zeige Sie mi Hilfe de Hesse-Nomalefom, dass de Absad de Eckpke o de gegeübeliegede Kae de eie b, bzw. de Läge l espich. P, i die Hesse-Nomalefom o g eiseze: b P, i die Hesse-Nomalefom o g eiseze: 5 l Das egaie Vozeiche fü de Absad bedee, dass P ich i de Halbebee lieg, i welche de Nomaleeko de Geade zeig. Afgabe. Gegebe is ei allgemeies Deieck A. a eeche Sie die Höhe h c beim Eckpk mi Hilfe de Hesse-Nomalefom eie Geade g, die dch A d eläf. Dch Eiseze o A d i die allgemeie Gleichg de Hesse-Nomale sowie de edigg ehäl ma die Koeffiziee: b a a b a b b a a b a b Als eispiel wede die Pke A,,,,, gewähl. Daas folg:

3 Lösge -. Gdlage de Roboemahemaik ±. Es gib zwei Lösge, da es zwei Asichge fü de Nomaleeko gib. Fü ehäl ma: h d Dch Eiseze o, ehäl ma d h. Das Vozeiche is egai, da de Nomaleeko i die Halbebee zeig, die ich ehäl. b Emiel Sie h c dch die eechg des Absads, de de Lofßpkes D de Höhe h c om Eckpk ha. eechg o D dch Schi de Logeade g L mi de Geade g dch A,. s g g L : :. Es gil: c [ ] [ ] s s Mi de Lösg des Gleichgsssems beeche sich de Oseko S S S d des Lofßpkes D z s d S S Mi de Pke A,,,,, ehäl ma: : : g g L. Dch Gleichseze egib sich: -, d daas folg fü de Lofßpk D,. Afgabe. Vogegebe is eie Ebee E, die sekech af de -Ebee seh d die Pke P,, d P,, ehäl.

4 Lösge -. Gdlage de Roboemahemaik a Selle Sie die Ebee E mi alle Mehode o abelle. da. Eplizie Dasellg: ich möglich, da keie eideige Zodg z z beseh. Implizie Dasellg:. Vekodasellg: p p a a Hesse-Nomalefom: z / / / z b eeche Sie die Schigeade g s mi de -Ebee. : g S. c Welche Wikel schließ g s mi de -Achse ei? / a, a ϕ a S, Wikelbeeich: ϕ S. d eeche Sie de sekeche Absad des Uspgs o de Ebee E.

5 Lösge -. Gdlage de Roboemahemaik 5 d. Afgabe. Gegebe is ei gleichseiiges Deieck A mi de Kaeläge a cm. a eeche Sie die Höhe h. a Phagoas Kosissaz: a h h a b eeche Sie alle Iewikel mi Hilfe des Kosissazes. Alle Iewikel ϕ sid gleich: a a a cosϕ o a cosϕ a cos ϕ ϕ 6 c eeche Sie alle Iewikel mi Hilfe de iese agesfkio. h a a ϕ a a ϕ a a 6 o Afgabe.5 Ei echwikliges Deieck ha die Eckpke A,,,,,. a eeche Sie die Pojekio de Secke A af die -Achse. Fü die Pojekio eies Vekos a af eie Veko b gil Fomel.. Daas folg: c a. b eeche Sie die Pojekio de Secke A af die Secke A. b a c a 6. 5

6 Lösge -. Gdlage de Roboemahemaik 6 c eeche Sie de Wikel bei A. o 5cos a cos 7. 5 AIgabe.6 Gegebe sid dei Pke P,,, P,,, P,,, die eie Ebee E besimme. a eeche Sie de Nomaleeko o E mi Hilfe des Vekopodks., Gl..5. b Selle Sie die Hesse-Nomalefom o E af d zeige Sie, dass de so emiele Nomaleeko bis af eie Fako k mi übeeisimm. HNF: z l P eiseze: k l af omiee: HNF: z k. Afgabe.7 eeche Sie jeweils de Schipk S mi Hilfe de ame'sche Regel. Gegebe sid die Gleichge o: a zwei Geade i de Ebee mi: g : g : A de A D A de A D A de A D

7 Lösge -. Gdlage de Roboemahemaik 7 D D s s. D D b zwei Geade i de Ebee mi: g : g : A de A D A de A D D D 8 s s 8. D D A de A 8 D c dei Ebee mi: z 5 z 6 E : z E : z 5 E : z 6 D D 5 5 D 5 D 5. Regel Sas D 5 D D s 5 s s. D D D Afgabe.8 Die Ebee E ehäl die z-achse d de Pk P,,. Fü die Ebee E gil z. a Selle Sie die beide Ebee als lieae Gleichgssseme da. E : E : z LGS: A b z

8 Lösge -. Gdlage de Roboemahemaik 8 b eeche Sie dee Schigeade mi Hilfe des allgemeie Lösgsefahes fü lieae Gleichgssseme. Allgemeie homogee Lösg:. R h Eie beliebige ihomogee Lösg: p Allgemeie Lösge: dies sell eie Geade im Ram da. p h Afgabe.9 Gegebe sid die beide asfomaioe A d A a Zeiche Sie die Lage de Koodiaesseme {} d {} bezüglich {A}. {} {A} A A {} b eeche Sie die asfomaio.

9 Lösge -. Gdlage de Roboemahemaik 9 A A A A c asfomiee Sie de Diffeezeko [ ] d ach {}. d d as de Zeichg folg ode dch eechg: d d wid als feie Veko behadel Siehe S. 56. Afgabe. a Zeige Sie dass fü eie beliebige Wikel gil: / / Ro Roz Ro Ro cos si si cos Ro Roz Ro cos si si cos Ro b Ei Pk P,, soll bezüglich eie Geade mi dem Hifühgseko [ a ] d dem Richgseko [ ] m ϕ gedeh wede. eeche Sie de gedehe Pk P D. Gib es mehee Lösge? p D Roz D p D

10 Lösge -. Gdlage de Roboemahemaik Fü die asfomaiosmai D des Oskoodiaessem de Dehachse gil: P D D D p D,, Es gib zwei Lösge, da die Dehg ach mi egegegesezem Dehsi efolge ka. Da gil: D Afgabe. Gegebe is das Eiheisfame E d die beide asfomaioe /,, /,, Roz as Ro as. Es folg: a E wid bezüglich asfomie. Welche Lage imm das Fame ei? Es gil: E b Das asfomiee Fame soll dch eimal absol d eimal elai asfomie wede. Zeiche Sie die ee Lage des asfomiee Fames. Absole asfomaio: E E abs

11 Lösge -. Gdlage de Roboemahemaik Relaie asfomaio: E el E E {E abs } z E E {E el } z E Afgabe. Gegebe is eie ZYZ-Eleasfomaio mi 9, β 9, γ 5. a Zeiche Sie fü jede Dehg die Pojekio des asfomiee Refeezkoodiaessems af die -Ebee. 9 β 9 γ 5 z z a b eeche Sie die eslieede homogee asfomaiosmai E. E c eeche Sie as E die beide Lösge fü die iese ZYZ-Eleasfomaio.

12 Lösge -. Gdlage de Roboemahemaik Mi Hilfe de Fomel. bis.6 ehäl ma die beide Lösge a a, β a a, β γ a a, γ Afgabe. Gegebe is die Fkio z f, cos si. a eeche Sie die paielle Ableige o z f,. f, cos f, si b Selle Sie das oale Diffeeial dz als Skalapodk da. dz d [ cos si ] d

18 Homogene lineare Gleichungssysteme

18 Homogene lineare Gleichungssysteme Lieae Algeba II SS 0 - Pof. D.. afed Leiz Kapiel V: Lieae Gleichgssyseme 8: Homogee lieae Gleichgssyseme 8 Homogee lieae Gleichgssyseme A Zm Begiff lieaes Gleichgssysem B Theoeische Gdlage C Lösgsvefahe

Mehr

Das Skalarprodukt ist ein Produkt zweier Vektoren, das als Ergebnis ein Skalar (eine reelle Zahl) liefert. Es ist folgendermaßen definiert: r o

Das Skalarprodukt ist ein Produkt zweier Vektoren, das als Ergebnis ein Skalar (eine reelle Zahl) liefert. Es ist folgendermaßen definiert: r o Rechemehode de Aalyiche Geomeie B & S Skipedie, 6. bee. Nowedige Gudlage.. a Skalapoduk a Skalapoduk i ei Poduk zweie Vekoe, da al gebi ei Skala eie eelle Zahl liefe. i folgedemaße defiie b a b a b a b

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

Vektorrechnung (analytische Geometrie) für Schüler und Studenten

Vektorrechnung (analytische Geometrie) für Schüler und Studenten Michael Buhlma Vekoechu (aalyiche Geomeie) fü Schüle ud Sudee Dae- ud Aufabebläe zu Mahemaik Veio Ee Vowo Diee Sammlu au Dae- ud Aufabebläe eh au eie jahelae Täikei al Nachhilfelehe fü Obeufechüle ud Ewachee

Mehr

Mechanik-1b. fh-pw. Mechanik-1b 1

Mechanik-1b. fh-pw. Mechanik-1b 1 Mechik-b Mechik-b Eiimesiole eweu Geschwiikei Duchschis- u Momeeschwiikei 3 eispiel Momeeschwiikei 4 eschleuiu 5 Gleichfömi beschleuie eweu 7 eispiel Gleichfömi beschleuie eweu Gleichfömi beschleuie eweu

Mehr

Der Drehimpuls von Licht

Der Drehimpuls von Licht De Dehils vo Licht Qelle: htt://www.otiqe-igeie.og/e/coses/opi_ag_m_c3/co/cote_4.htl htt://load.wikiedia.og/wikiedia/coos/7/77/cicla.polaiatio.ciclal.polaied.light_with.cooets_right.haded.svg 3..3 Fachbeeich

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

3. Lineare autonome Systeme

3. Lineare autonome Systeme 3. Liee uoome yseme Liee uoome yseme öe ewede duh yseme o Diffeeilgleihuge. Odug ode duh eie Diffeeilgleihug -e Odug de A eshiee wede. Beide Besheiugsweise sid eide äquile, d.h. sie lsse sih ieide üefühe.

Mehr

Wir sprechen von einer Rente, wenn die Ein- oder Auszahlungen (= Raten) regelmässig erfolgen und konstant immer in der gleichen Höhe erfolgen.

Wir sprechen von einer Rente, wenn die Ein- oder Auszahlungen (= Raten) regelmässig erfolgen und konstant immer in der gleichen Höhe erfolgen. 2. eteechge 2.1 Gdlage Weitee Afgabestellge i de Fiazmathematik egebe sich, we die apitaleilage ode die ückzüge egelmässig d i gleiche Höhe efolge. I diese Fälle spicht ma vo ete. Die Altesete ist davo

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben.

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben. Pof. D. Jüge Rot Didati de eometie alte Pizip d Satz vo Cavaliei dlage des olmebegiffs (eiscließlic Satz vo De) olme de d des stmpfs Kgelvolme d Kgelobefläce Pizip vo Cavaliei Boaveta Cavaliei (598 47;

Mehr

wwwmathe-aufgabecom Abitupüfug Mathematik Bae-Wüttembeg (ohe CAS) Wahlteil Aufgabe Aalytische Geometie II, Aufgabe II Gegebe si ie Pukte A(//), B(//) u C(//) a) Zeige Sie, ass as Deieck ABC gleichscheklig

Mehr

5.3 Überlagerung von Schwingungen

5.3 Überlagerung von Schwingungen 5.3 Überlagerg vo Schwigge Ka ei Objek i ehrere Freqeze gleichzeiig schwige? Ja - das is sogar der Regelfall z.b. Msikisree: Oberöe a Überlagerg zweier Schwigge gleicher Freqez zr Vereifachg: gleiche plide

Mehr

Analytische Geometrie

Analytische Geometrie Alyihe Geomeie Leiko z Kl- d Aioeeig Eo Pojek de Mhe LK /: Fi Fedde Koie Kleiheiz Simo Ldeg Le Mo J Oeek Khi Shellh Fiedeike Th Chiohe Wehl Alyihe Geomeie Ihl Seie Seie Them ---/--- Ihl Gdegiffe Gdegiffe

Mehr

Fachhochschule Hannover

Fachhochschule Hannover Fachhochschle annove 8..5 Fachbeeich Maschinenba Zei: 9 min Fach: Physik im WS 4/5 ilfsmiel: Fomelsammlng z Volesng. in PKW(, de mi konsane Geschwindigkei von 7 kmh - fäh, wid von einem andeen PKW( mi

Mehr

7.7. Abstände und Winkel

7.7. Abstände und Winkel uu uu uu uu uu uu uu uu 77 Astäde ud Wikel 77 Wikel Geade - Geade Schittwikel zweie Geade: Am Schittpukt zweie Geade g ud g lasse sich die eide Wikel (g, g ) ud (g, g ) messe Als Schittwikel ezeichet ma

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

3 Harmonische Anregung

3 Harmonische Anregung 3 Harmoische Aregg Lieare ihomogee Dieretialgleichg Partikläre Lösg: + ζ + p () t (3.4) Lösg der homogee DGL: h h + ζ h + h (3.5) Vollstädige Lösg: + C h Bei eier harmoische Aregg ka die Krat Ft () etweder

Mehr

Aufgaben Reflexionsgesetz und Brechungsgesetz

Aufgaben Reflexionsgesetz und Brechungsgesetz Aufgabe Reflexiosgesetz ud Brechugsgesetz 24. Zeiche zwei Spiegel, die sekrecht zueiader stehe. Utersuche mit zwei verschiede eifallede Strahle, welche Eigeschafte die reflektierte Strahle habe, die acheiader

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Isiu für Aalysis SS7 Arbeisgruppe Agewade Aalysis 997 PD Dr Peer Chrisia Kusma Höhere Mahemaik I für die Fachrichug Physik Lösugsvorschläge zur Bachelor-Modulprüfug Aufgabe : (a) (i) Kurze Rechug liefer

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) =

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) = Techische Uivesität Dotmud Sommesemeste 2017 Fakultät fü Mathematik Übugsblatt 3 Pof. D. Detlev Hoffma 22. Mai 2017 Maco Sobiech/ Nico Loez Lieae Algeba 1 Lösug zu Aufgabe 3.1: Voaussetzuge: Sei V ei deidimesioale

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Integralrechnung III.Teil

Integralrechnung III.Teil Inegalechnung III.eil 1 Inegalechnung III.eil ngewande Mahemaik GM Wolgang Kugle Inegalechnung III.eil Inhalsvezeichnis 1. Mielwee peiodische Signale 1.1 Deiniion des aihmeischen Mielwees 1. Deiniion des

Mehr

> 0, da cos 0 = 1. < 0, da cos 180 = 1

> 0, da cos 0 = 1. < 0, da cos 180 = 1 Weitterre Dettge des Skalarrprrodktts Ei iiee wi iicchht ti iiggee FFoor rmeel ll Daass Vorrzzeei icchee deess Skkaal laarrprrodkkttss Stellt ma die Wikelformel cos a b m da ka ma das Skalarprodkt asdrücke

Mehr

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b r M J auer Algebraische trukture 7 Kapitel : Gruppe Gruppe: efiitio, Beispiele efiitio (Gruppe) Eie Mege G (G ) zusamme mit eier Verküpfug heißt eie Gruppe, we folgede Eigeschafte erfüllt sid: (G ) G ist

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Kein Anspruch auf Vollständigkeit und Fehlerfreiheit

Kein Anspruch auf Vollständigkeit und Fehlerfreiheit Uivesität Regesbug Natuwisseschaftliche Fakultät I Didaktik de athematik D. Güte Rothmeie WS 008/09 5 7 Elemetamathematik (LH) Pivate Volesugsaufzeichuge Kei spuch auf Vollstädigkeit ud Fehlefeiheit 9.

Mehr

Strategie der Modellbildung

Strategie der Modellbildung Saegie de Modellbildg (Phase de Modellbildg) Keie Sigifikaz de Paameeschäze d/ode Saioaiäsode Iveibiliäsbedigge ich efüll Modellideifikaio (Modellsezifikaio) Modellschäzg esimmg de Odg d de Diffeeze esimmg

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4)

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4) Lösugshiweise zu Eiseeabeit 2 zum Kus 452, ake u öse, WS 2/2 Lösugshiweise zu Eiseeabeit 2: WS 2/2 ake u öse, Kus 452 (Ihaltliche ezug: KE 4) alyse festvezisliche Wetpapiee 5 Pukte Vo Ihe ak wee Ihe ie

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Forschungsstatistik I

Forschungsstatistik I Pschologie Pof. D. G. Meihadt 6. Stock, TB II R. 06-206 (Pesike) R. 06-321 (Meihadt) Spechstude jedezeit ach Veeibaug Foschugsstatistik I D. Malte Pesike pesike@ui-maiz.de http://psmet03.sowi.ui-maiz.de/

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Dieses lässt sich auf Funktionen in mehreren Veränderlichen verallgemeinern.

Dieses lässt sich auf Funktionen in mehreren Veränderlichen verallgemeinern. 4. Mehfachitegale eitag Volesg gewate Mathematik Maste M Pof. D.. Gaowski HTW es Saalaes GIS 4 Mehfachitegale Pof. D. aaa Gaowski HTW es Saalaes GIS Z Volesg gewate Mathematik Maste M Ihalt: 4 Mehfachitegale...

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Für Trapeze ABC D mit de parallele Seite [AD ] ud [BC ]

Mehr

5 Das Bode Diagramm. Frequenzkennlinienverfahren

5 Das Bode Diagramm. Frequenzkennlinienverfahren 6a Das Bode Diagramm. Frequezkeliieverfahre Ahag zum Kapitel Das Bode Diagramm. Frequezkeliieverfahre. Darstellug i Reihe geschalteter Glieder im Bode-Diagramm..a Kostruktio des Amplitudegages mittels

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf.

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf. Physik awede ud verstehe: Lösuge 5. Brechug ud Totalreflexio 004 Orell Füssli Verlag AG 5. Brechug ud Totalreflexio Beim Übergag i ei Medium gilt obige Aussage icht mehr. Würde das Licht die kürzeste Strecke

Mehr

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag 1. Übung 1. Schi: Wann is Miag? Mie zwischen den beiden Messungen besimmen: 14h 44 19 + 17h 02 09 31h 46 28 31h 46 28 2 15h 53 14 Wahe Osmiag 2. Schi: Weil Miag is sind wi auf dem selben Längengad wie

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen)

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen) Maheaik 3 Übug Schwiguge als koplexe Zeiger KI Maheaik 3 Lösug zu Übugsbla Nr. I. LFZ Zu Aufgabe Wiederholug Liearfakorzerlegug vo Polyoe Zerlege Sie folgede Polyoe i Liearfakore: a y x 4 x 5 4 3 b y.5x.5x

Mehr

Physik für Wirtschaftsingenieure

Physik für Wirtschaftsingenieure Phsik fü Wischafsingenieue Chisophe Diemaie, Mahias Mändl ISBN 3-446-373-8 Lesepobe Weiee Infomaionen ode Besellungen une hp://www.hanse.de/3-446-373-8 sowie im Buchhandel Mechanik Bild. Bewegung eines

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT - SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT - SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Plaz-Nr.: Name: Vorame: Marikel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT - SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Prüfgsgebie: Eiführg i die Wirschafsiformaik (Happrüfg

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) peimenalphsik II Kip SS 7 Zusavolesungen: Z-1 in- und mehdimensionale Inegaion Z- Gadien Divegen und Roaion Z-3 Gaußsche und Sokessche Inegalsa Z-4 Koninuiäsgleichung Z-5 lekomagneische Felde an Genflächen

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Lagebeziehungen. Titel Beschreibung Allgemeine Vorgehensweise Beispiel. Lage zwischen Geraden. g und h gleichsetzen. LGS lösen.

Lagebeziehungen. Titel Beschreibung Allgemeine Vorgehensweise Beispiel. Lage zwischen Geraden. g und h gleichsetzen. LGS lösen. Lagebeziehngen Titel Bescheibng Allgemeine Vogehensweise Beispiel Lage zwischen Geaden Zwei Geaden g nd h im Ram können......sich schneiden. Sie besitzen einen einzigen gemeinsamen Pnkt...zeinande paallel

Mehr

Abschlussprüfung 20XX Muster an den Realschulen in Bayern

Abschlussprüfung 20XX Muster an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0XX Muster a de Realschule i ayer Mathematik I Hilfsmittelfreier Teil Name: orame: Klasse: Platzziffer: Pukte: A Aufgabeteil A ereche Sie. a) vo 70 sid Haupttermi

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz Lösungen II. / selbe Länge:,, 7;,, ;,, ;, ;, 9 selbe Tanslation:, ;, ;,, ;, Lösungen II. / a b a b c c d d s u v s u v b) ein Pfeil de Länge /7 a b ; y b a b) Kommutativgesetz / u a b ; v b c b) w u c

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Mekhilfe Mthemtik m Gymsium Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 00 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 I eiem Hadbuch zur Wetterkude fide Sie im Kapitel Erdatmosphäre die

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Pof. D. Tatjaa Lage Lehgebiet: egelugstechik Laboübug 6: Thea: Stabilität vo egelkeise: Wuzelotsvefahe 1. Übugsziele: etiefug de egel zu Bildug vo Wuzelotskuve Deostatio echegestützte efahe de lieae Systeaalyse

Mehr

Mathematik Formeln 3. und 4. Semester von Gerald Meier

Mathematik Formeln 3. und 4. Semester von Gerald Meier Mahea Foel 3. d 4. Seese o Geald Mee Ke. Veoe.. ageeeo = ( s = & ( &(.. Kügseo & = = & κ κ= : Küg ρ = : Kügsads ( κ ( & && && & Paaeedasellg: = κ= 3 ( ( & + & f eplze asellg: = f( κ= 3 + f Poladasellg:

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

2. Das multiple Regressionsmodell

2. Das multiple Regressionsmodell . Das mliple Regressiosmodell. Modellspezifikaio Bei ökoomerische Eigleichgsmodelle is eie edogee Variable vo eier oder mehrere eogee Variable abhägig. Allgemei lasse sich ökoomerische Eigleichgsmodelle

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Name: Abschlussprüfug 204 a de Realschule i Bayer Mathematik I Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Gegebe ist das rechtwiklige Dreieck ABC mit der Hypoteuse

Mehr

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart: E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge

Mehr

α β Ein sphärisches Dreieck ist durch drei Großkreise begrenzt (Abb. 2).

α β Ein sphärisches Dreieck ist durch drei Großkreise begrenzt (Abb. 2). Has Walser, [20150801] Sphärische Vielecke Aregug: H. E., P. 1 Worum geht es? Die Flächeformel für sphärische Vielecke, isbesodere sphärische Dreiecke, lässt sich eifach ud kosistet mit Hilfe der Außewikel

Mehr

R05 - Reibschlüssige Verbindungen

R05 - Reibschlüssige Verbindungen IZ-ÜCIG-IIU Ü MCIEEE DE ECICE UIEIÄ CLUL Pofesso D.-Ig. Pee Diez 0..00 e 05 - eibschlüssige ebiduge ufgabe: uf eie ohlwelle aus Ck 5 soll eie ieescheibe aus eie luiiulegieug iels eie zlidische Peßvebidug

Mehr

Musterlösung Serie 10

Musterlösung Serie 10 Prof. D. Salamo Aalysis I MATH, PHYS, CHAB HS 04 Muserlösug Serie 0. a Wir bereche mi der biomische Formel e cos ix + e ix x = = =0 =0 e ix e i x = =0 e i x Da = gil, öe wir i der leze Summe die Terme

Mehr

Geckos gehören zur Familie der Schuppenkriechtiere. Sie bevölkern seit etwa 50 Millionen Jahren die Erde und haben sich im Laufe ihrer Entwicklung

Geckos gehören zur Familie der Schuppenkriechtiere. Sie bevölkern seit etwa 50 Millionen Jahren die Erde und haben sich im Laufe ihrer Entwicklung Gymasie, Gesamschule, Berufliche Gymasie Behörde für Schule ud Berufsbildug Haupermi Lehrermaerialie zum Leisugskurs Mahemaik II.2 Geckos LA/AG 2 Geckos gehöre zur Familie der Schuppekriechiere. Sie bevölker

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

Mathematische Probleme, SS 2017 Montag 3.7. $Id: convex.tex,v /07/03 14:07:59 hk Exp $

Mathematische Probleme, SS 2017 Montag 3.7. $Id: convex.tex,v /07/03 14:07:59 hk Exp $ $Id: covex.tex,v 1.44 2017/07/03 14:07:59 hk Exp $ 4 Kovexgeometrie 4.1 Die platoische Körper Wir hatte bereits bemerkt das die kovexe Polyeder im R 3 i gewisse Sie die dreidimesioale Versio der kovexe

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Lineare Algebra 2. A m. A 3 XI n3

Lineare Algebra 2. A m. A 3 XI n3 Techische Uivesität Dotmud Sommesemeste 27 Fakultät fü Mathematik Übugsblatt 6 Pof D Detlev Hoffma 6 Jui 27 Maco Sobiech/ Nico Loez Lieae Algeba 2 Lösug zu Aufgabe 6: Voaussetzuge: Sei K ei Köpe ud sei

Mehr

Mathematik 4 Vektorräume und affine Räume

Mathematik 4 Vektorräume und affine Räume 4 ektoäume ud affie äume olesugsmitschift - Kuzfassug Etwuf Pof. D. e. at. B. Gabowski HTW des Saalades 4 Ihalt Mathematik Kapitel 4 INHALTSEZEICHNIS 4 EKTOÄUME UND AFFINE ÄUME... 4.. EINLEITUNG... 4.

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i ayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A 1.0 A 1.1 Aufgabe A 1 Haupttermi Der Wertverlust verschiedeer E-ike-Modelle

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 10 Die gleichscheklige Dreiecke ABC habe die Base AB

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Mathematik I Aufgabengruppe A Aufgabe A 1

Mathematik I Aufgabengruppe A Aufgabe A 1 Seite vo 9 Prüfugsdauer: Abschlussprüfug 004 50 Miute a de Realschule i Bayer Mathematik I Aufgabegruppe A Aufgabe A A.0 Ei Kodesator (Speicher für elektrische Eergie) wird a eier Elektrizitätsquelle für

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Kapitel 2 Kontinuierliche Systemmodelle (III)

Kapitel 2 Kontinuierliche Systemmodelle (III) Modellerg d Smlao mecharoscher Syseme Kapel Koerlche Sysemmodelle III 8. Orsdskreserg Syseme m verele Parameer 8. Gewöhlche d parelle Dfferealglechge sher: Mahemasche Modelle koerlcher dyamscher Syseme

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $ $Id: covex.tex,v 1.18 2015/05/21 18:28:20 hk Exp $ 3 Kovexgeometrie 3.2 Die platoische Körper Ei platoischer Körper vo Typ (, m) ist ei kovexer Polyeder desse Seitefläche alle gleichseitige -Ecke ud i

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/27 12:19:07 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/27 12:19:07 hk Exp $ $Id: covete,v 130 2016/05/27 12:19:07 hk Ep $ 3 Kovegeometrie 32 Die platoische Körper User mometaes Ziel ist die Berechug der geometrische Date der platoische Körper Gemäß des i der letzte itzug eschrieee

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Drehpendel. Aufgaben. Grundlagen = D. T r. = 4π. mgr T T. Versuchsprotokolle. Physikalisches Grundpraktikum. Versuch 114

Drehpendel. Aufgaben. Grundlagen = D. T r. = 4π. mgr T T. Versuchsprotokolle. Physikalisches Grundpraktikum. Versuch 114 Phyikaliche Gupakiku Veuch 114 ehpeel Veuchpookolle Ralf Elebach Aufgabe 1. Beiug e ägheioee eie u eie Ruage (hoizoal) yaich.. Beiug e iekiooee e Appaau aich u yaich. Gulage a ehpeel i eie hoizoal- chwigee,

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte Modul 0 Regressiosgerade ud Korrelatio Has Walser: Modul 0, Regressiosgerade ud Korrelatio ii Ihalt Die Regressiosgerade.... Problemstellug.... Berechug der

Mehr

Bestimmung der Extrema von Funktionen mehrerer Veränderlicher

Bestimmung der Extrema von Funktionen mehrerer Veränderlicher Mathematk ü Natuwsseschatle II Bestmmug de Etema vo Fuktoe mehee Veädelche R R ; etwckel um (, ) Taylopolyom. Gades Vektoom ( ) ( ) + ( ) o ( ) + ( ) o Hess( ) o ( ) Vekto Vekto Vekto Mat Vekto Mat Vekto

Mehr

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule Passive Neweke Diffeenialgleichungen H. Fiedli Dasellung de passiven auelemene Widesand Kondensao Spule du U R I( ) I U& di( ) ( ) U L L I& d d Mi diesen Definiionen lassen sich alle passiven Kombinaionen

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

A. Zahleneinteilung. r a b

A. Zahleneinteilung. r a b Aus FUNKSCHAU 14/1953 (Blatt 1+) ud 17/1953 (Blatt 3), im Origial -spaltig. Digitalisiert 07/016 vo Eike Grud für http://www.radiomuseum.org mit freudlicher Geehmigug der FUNKSCHAU- Redaktio. Die aktuelle

Mehr

Fragen zur Abschlussprüfung Mathematik I. Welche Funktionen kennst Du? Skizziere kurz eine solche Funktion.

Fragen zur Abschlussprüfung Mathematik I. Welche Funktionen kennst Du? Skizziere kurz eine solche Funktion. Frage zur Abschlussprüfug Mathematik I Frage 1: Welche Fuktioe kest Du? Skizziere kurz eie solche Fuktio. Frage 2: Gib zu f: y = 620 1,032 x + 32 Defiitios- ud Wertemege a Frage 3.1: Für die Vermehrug

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Lösugsmuster ud ewertug bschlussprüfug 0 a de Realschule i ayer Mathematik I ufgabe 3 Nachtermi RUMGEOMETRIE 6. ta 56,3 L. PS( ) P sis 3 P si 56,3 si 80 56,3 P si56,3 cm si(56,3 ) ]0 ; 90 ] si56,3 3 (

Mehr

Lösung: Die Zahl ist die größte Zahl mit der in der Aufgabenstellung genannten Eigenschaft.

Lösung: Die Zahl ist die größte Zahl mit der in der Aufgabenstellung genannten Eigenschaft. Ladeswettbewerb Mathematik ade-württemberg 005 Rude ufgabe Eie atürliche Zahl besteht aus paarweise verschiedee Ziffer, vo dee keie Null ist. Streicht ma i dieser Zahl eie beliebige Ziffer k, so ist die

Mehr