Tutoraufgabe 1 (Induktionsbeweis): Lösung:

Größe: px
Ab Seite anzeigen:

Download "Tutoraufgabe 1 (Induktionsbeweis): Lösung:"

Transkript

1 Prof Dr J Gesl M Brokshmdt, F Emmes, C Fuhs, C Otto, T Ströder Hwese: De Husufge solle Gruppe vo je 2 Studerede us dem glehe Tutorum eretet werde De Lösuge der Husufge müsse s M, m Tutorum gegee werde Altertv st es s 17 Uhr möglh, dese de Kste m Flur des LuFG I2 ezuwerfe (Ahorstr 55, E1, 2 Etge) Nme ud Mtrkelummer der Studerede sowe de Nummer der Üugsgruppe sd uf jedes Bltt der Age zu shree Hefte zw tker Se de Blätter! De Tutorufge werde de jewelge Tutore gemesm esprohe ud eretet Tutorufge 1 (Iduktosewes): Se Σ e Alphet Wr wolle de Verdoppelugsfukto dup : Σ Σ etrhte, de lle Buhste Wörter verdoppelt, lso zb ds Wort uf ud 123 uf ldet Deere se de Fukto dup forml uf duktve (rekursve) Wese ) Se M e DFA We k m u utomtsh (dh mt eem llgemee Verfhre, ds uhägg vom Automte M st) ee DFA M 2 kostruere, der de Sprhe dup(l(m)) := {dup(w) w L(M)} erket? ) Bewese Se, dss L(M 2 ) = dup(l(m)) glt dup() := dup(w := dup(w) Σ, w Σ ) De Idee st her, jede Trsto des Ursprugsutomte ufzutree ud ee Zwshezustd ezusetze, so dss ds Zehe der ursprüglhe Trsto zwe ml gelese wrd Dmt der resulterede Automt e DFA let, müsse für dese eue Zustäde lle Symole, mt dee de zershttee Trsto ht eshrftet wr, zu eem Fehlerzustd führe, vo dem us e weder e Edzustd erreht werde k Se M = (Q, Σ, δ,, F ) D deere wr M 2 := (Q 2, Σ, δ 2,, F ) mt Q 2 := {e} ( q Q ({q Σ} {q})), woe wr obda verlge, dss q Q glt (etsprehedes k m durh e Umeee der Zustäde Q errehe) Her st e der gesprohee eue Fehlerzustd Zuletzt deere wr q δ 2 (q, = δ( q, e q Q q = q Q 2, q Q sost 1

2 ) Wr müsse u L(M 2 ) = dup(l(m)) zege Wr ewese des, dem wr de Aussge ( ) ˆδ(q, w) = q ˆδ 2 (q, dup(w)) = q für lle q Q (lso ht de eue Zustäde Q 2 \ Q) per Idukto üer de Wortläge w zege Zum Iduktosfg st w = ud es glt ˆδ(q, ) = q ud ˆδ 2 (q, dup()) = ˆδ 2 (q, ) = q Im Iduktosshrtt etrhte wr w = w für e Σ ud setze vorus, dss de Aussge für w erets glt D M e DFA st, gt es geu e q mt ˆδ(q, w = q ud e q mt ˆδ(q, w ) = q, so dss δ( q, = q glt Nh user Iduktoshypothese glt des für w geu d, we uh ˆδ 2 (q, dup(w )) = q glt Nh Kostrukto glt er uh δ 2 ( q, = q ud δ 2 ( q, = q Dmt glt d uh de Aussge ˆδ(q, w) = ˆδ(q, w = q ˆδ 2 (q, dup(w)) = ˆδ 2 (q, dup(w ) = ˆδ 2 (q, dup(w ) = q Nu glt w L(M) ˆδ(, w) = f F ud h ( ) st des äquvlet zu ˆδ 2 (, dup(w)) = f F dup(w) L(M 2 ) Dmt st de Aussge ewese Husufge 2 (Iduktosewes): ( = 8 Pukte) Se Σ e Alphet Wr wolle de Spegelfukto rev : Σ Σ etrhte, de Wörter uf hr Spegelld ldet, lso zb ds Wort uf ud 123 uf 321 Deere se de Fukto rev forml uf duktve (rekursve) Wese ) Se M e DFA We k m u utomtsh (dh mt eem llgemee Verfhre, ds uhägg vom Automte M st) ee -NFA M rev kostruere, der de Sprhe rev(l(m)) := {rev(w) w L(M)} erket? ) Bewese Se, dss L(M rev ) = rev(l(m)) glt Hwes: Bewese se ee llgemee Aussge üer de Zusmmehg zwshe der Zustds-Üerggsfukto ˆδ des Automte M ud der Zustds-Üerggsfukto ˆδ rev des Automte M rev Verwede Se dzu we der Vorlesug ee Idukto üer de Läge der etrhtete Wörter rev() := rev(w := rev(w) Σ, w Σ ) De Idee st her, de Kte m Automte umzudrehe, lso M rev ee -Trsto vo q h q zu erlue, we es M ee -Trsto vo q h q g Der Strtzustd M wrd d zum ezge Edzustd vo M rev Als Strtzustäde M rev wolle wr egetlh de Edzustäde vo M zulsse D er uh -NFAs ee edeutge Strtzustd he müsse, führe wr ee eue, edeutge Strtzustd e, der per -Trsto mt de Edzustäde vo M verude wrd Se M = (Q, Σ, δ,, F ) Mt eem eue Zustd q s (dh q s Q) st M rev := (Q {q s }, Σ, δ rev, q s, { }) De st δ rev we folgt deert: {q Q q = δ(q, } q q s δ rev (q, = F q = q s = q = q s 2

3 ) Wr müsse u ewese, dss L(M rev ) = rev(l(m)) glt Wr zege dfür de llgemeere Aussge ˆδ(q, w) = q q ˆδ rev (q, rev(w)) für lle q, q Q (dh für lle Zustäde uÿer dem eu egeführte Strtzustd q s ) per Idukto üer de Wortläge w Im Iduktosfg st de Läge 0, lso w = D glt ˆδ(q, ) = q ud ˆδ rev (q, ) = {q} Im Iduktosshluss setze wr für w = w, Σ vorus, dss de Aussge für w glt Se u ˆδ(q, w) = q mt ˆδ(q, w ) = q ud δ( q, = q Nh Kostrukto vo δ rev glt d uh q δ rev (q, Nh userer Iduktoshypothese glt uÿerdem ˆδ(q, w ) = q q ˆδ rev ( q, rev(w )) Zusmme mt q δ rev (q, folgt dmt drekt uh q ˆδ rev (q, rev(w )) = ˆδ rev (q, rev(w ) = ˆδ rev (q, rev(w)) ˆδ(q, w) = q Dmt glt w L(M) ˆδ(, w) = f F ˆδ rev (f, rev(w)) D h Kostrukto δ rev (q s, ) = Huelle(q s ) = F, glt des geu d we ˆδ rev (q s, rev(w)) ud dmt glt rev(w) L(M rev ) w L(M) Tutorufge 3 (Potezmegekostrukto): Se Σ := {,, z} e Alphet Der folgede NFA kzeptert lle Wörter, de mdestes eml ds Wort g ethlte, lso de Sprhe Σ gσ Um de Drstellug des Automte zu verefhe, utze wr de verkürzede Shrewese, de Tutorufge 4 uf dem zwete Üugsltt egeführt wurde, ud erlue es, Trstoe mt Mege vo Symole zu eshrfte Σ Σ q 1 q 2 q 3 q g 4 q 5 q 6 Gee Se de Potezutomte für dese NFA, um ee DFA zu erhlte, der desele Sprhe kzeptert We der Vorlesug dürfe Se ht errehre Zustäde weglsse Folgede Telle vershulht de Kostrukto des Potezutomte g Σ \ {g,, } F? { } { } {, } { } { } {, } { } {, } {, } { } {, } { } {, } {, } { } {, } { } {,, q 5 } { } { } {,, q 5 } {, q 6 } {, } {, } { } {, q 6 } {, q 6 } {,, q 6 } {, q 6 } {, q 6 } {,, q 6 } {, q 6 } {,, q 6 } {,, q 6 } {, q 6 } {,, q 6 } {, q 6 } {,, q 6 } {,, q 6 } {, q 6 } {,, q 6 } {, q 6 } {,, q 5, q 6 } {, q 6 } {, q 6 } {,, q 5, q 6 } {, q 6 } {,, q 6 } {,, q 6 } {, q 6 } 3

4 Σ \ {} { } Σ \ {} Σ \ {g,, } {, } {,, q 5 } Σ \ {, } g Σ \ {} {, } {, } {, q 6 } Σ \ {, } Σ \ {, } Σ \ {, } {,, q 6 } {,, q 5, q 6 } Σ \ {} {,, q 6 } {,, q 6 } Σ \ {, } Husufge 4 (Potezmegekostrukto): (3 Pukte) Se Σ := {, } e Alphet Betrhte Se de folgede NFA 4

5 Gee Se de Potezutomte für dese NFA, um ee DFA zu erhlte, der desele Sprhe kzeptert We der Vorlesug dürfe Se ht errehre Zustäde weglsse Folgede Telle vershulht de Kostrukto des Potezutomte F? { } {, } { } {, } { } { } { } {, } { } {, } {,,, } {, } {,,, } {,,, } {, } { }, { } {, } { }, {, } {,,, } Tutorufge 5 (Smulto): Gegee se folgeder NFA üer dem Alphet Σ = {, } 5

6 Gee Se, we sh der Algorthmus zur Smulto deses NFAs e Ege der folgede Wörter verhält Es geügt de, de Mege S h jeder Iterto des Smultosverfhres us der Vorlesug ud de Rükgewert zugee ) ) Iterto S 0 { } 1 {, } 2 {, } 3 {, } 4 {, } 5 {, } Rükge: flse Iterto S 0 { } 1 {, } 2 {, } 3 {, } 4 {, } 5 {, } Rükge: true Husufge 6 (Smulto): (1 + 1 = 2 Pukte) Gegee se folgeder NFA üer dem Alphet Σ = {, } 6

7 , Gee Se, we sh der Algorthmus zur Smulto deses NFAs e Ege der folgede Wörter verhält Es geügt de, de Mege S h jeder Iterto des Smultosverfhres us der Vorlesug ud de Rükgewert zugee ) ) Iterto S 0 { } 1 { } 2 {, } 3 { } 4 { } 5 {, } 6 {, } 7 {,, } 8 { } Rükge: true Iterto S 0 { } 1 {, } 2 { } 3 { } 4 {, } 5 { } 6 {, } Rükge: flse 7

8 Tutorufge 7 (Thompso-Kostrukto): Erzeuge Se mt der Thompso-Kostrukto ee NFA (mt -Trstoe) zum reguläre Ausdruk (+) q 5 q 6 q 7 q 8 q 9 0 q 11 2 Husufge 8 (Thompso-Kostrukto): (3 Pukte) Erzeuge Se mt der Thompso-Kostrukto ee NFA (mt -Trstoe) zum reguläre Ausdruk ( ) + (( ) ) q 5 q 6 q 7 q 8 q Tutorufge 9 (Thompso-Kostrukto): Se α e eleger regulärer Ausdruk I der Vorlesug wurde de Thompso-Kostrukto für α, llerdgs ht für α + vorgestellt D α + := α α deert wurde, st ds llerdgs ke groÿes Prolem Trotzdem st es mhml hlfreh, de Thompso-Kostrukto uh drekt für α + wede zu köe Erweter Se de Thompso-Kostrukto so, dss für jede Ausdruk α + drekt e Automt kostruert wrd, der uf dem Automte für α sert Here sollte der für α + erzeugte Automt weger Trstoe he ls der Automt, der vo der Thompso-Kostrukto für α erzeugt wrd Der etstehede Automt sollte ur ee Edzustd he, der Edzustd sollte kee usgehede Kte ud der Strtzustd sollte kee egehede Kte he 8

9 α q 5 q 6 Husufge 10 (Thompso-Kostrukto): (3 Pukte) Se α e eleger regulärer Ausdruk Um Wederholuge der vo desem Ausdruk erkte Wörter uszudrüke, gt es de reguläre Ausdrüke (α 0-ml), α (α 1-ml), α + (α m 1-ml) ud α (α eleg oft) Uter Umstäde st es er uh teresst, e egees Kostrukt für de 0-mlge s 2-mlge Awedug vo α zu he Se α := + α + α α ee etsprehede Erweterug der reguläre Ausdrüke Erweter Se de Thompso-Kostrukto so, dss für jede Ausdruk α drekt e Automt kostruert wrd, der uf dem Automte für α sert Here sollte der für α erzeugte Automt mxml so vele Zustäde he we der Automt, der vo der Thompso-Kostrukto für α α erzeugt wrd Der etstehede Automt sollte ur ee Edzustd he, der Edzustd sollte kee usgehede Kte ud der Strtzustd sollte kee egehede Kte he Hwes: Bs uf de Edzustd drf jeder Zustd eleg vele usgehede Trstoe he Auÿerdem drf s uf de Strtzustd jeder Zustd eleg vele egehede Trstoe he α α q 5 q 6 Tutorufge 11 (-Kte etfere): Se Σ := {,, d} e Alphet Gee se zu de folgede -NFAs jewels ee NFA ohe -Trstoe, der desele Sprhe erket 9

10 ) ) d) d q 5 e) 10

11 q 0 q 6 q 7 q 5 Se Σ := {,, d} e Alphet Gee se zu de folgede -NFAs jewels ee NFA ohe -Trstoe : ) ) q 0 q, 1, 11

12 d) q 5 d e) q 6 q 7 q 5 Husufge 12 (-Kte etfere): (2 + 2 = 4 Pukte) Se Σ := {,, d} e Alphet Gee se zu de folgede -NFAs jewels ee NFA ohe -Trstoe, der desele Sprhe erket 12

13 ) ) 13

14 Tutorufge 13 (Ashlussegeshfte): De Sprhe L = { 0} üer dem Alphet Σ = {} st ht regulär Beutze Se de Ashlussegeshfte regulärer Sprhe, um zu zege, dss folgede Sprhe eeflls ht regulär sd Hwes: Se dürfe für jede Telufge eutze, dss de Sprhe vorherger Telufge ht regulär sd L 1 = { m m, 0, m + > 0, m } Σ Σ ) L 2 = { m m, 0, m } Σ Σ ) L 3 = { 0} L = Σ \ L 1 ) L 1 = L 2 ) L = h(l 3 ) mt h( = ud h() = De Fukto h st e Homomorphsmus, d oeshtlh h(ww ) = h(w)h(w ) I der Tt st h sogr e Isomorphsmus 14

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

Arithmetische Schaltkreise

Arithmetische Schaltkreise Kptel Arthmetsche Schltkrese. Adderer. Sutrherer Multplzerer ALU Berd Becker Techsche Iformtk I Wederholug: Se -... ee Folge vo Zffer, {,} Bärdrstellug: Zweerkomplemet: [ -... ] Recheregel: mt [ ] [

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe.

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe. Deftoe ud Aussge über Rehe Bchräume ud Hlberträume E vollstädger ormerter Vektorrum (sehe Bemerkuge zur Alyss) heßt Bchrum Stmmt de Norm vo eem Sklrprodukt v = , so sprcht m vo eem Hlbertrum ZB sd

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Wahrscheinlichkeitsrechnung. Zufallsexperiment. I A i? I A i

Wahrscheinlichkeitsrechnung. Zufallsexperiment. I A i? I A i Whrshelhketsrehug Zufllseeret Gruegrffe Vorgg h eer estte Vorshrft usgeführt Prz eleg oft weerholr se Erges st zufllshägg e ehrlge Durhführug es Eerets eeflusse e Ergesse eer ht KAD 0.09.5 I A? I A Besele:

Mehr

Aufgabe 1 Ordnen Sie die folgenden vier Funktionen gemäß ihrem asymptotischen Wachstums ( ) ( ) log( n) ( ) ( ) ( log ( n)

Aufgabe 1 Ordnen Sie die folgenden vier Funktionen gemäß ihrem asymptotischen Wachstums ( ) ( ) log( n) ( ) ( ) ( log ( n) Dtestrukture ud Agorthme: Btt Berhrd Detrh (656800 Lrs Ferhomberg (65600 Sebst Kesburges (65710 Mrus Köthebürger (658550 Übugsgruppe 11 Mttwoh, 11:00-1:00 Uhr D1.0 Mtths Erst Aufgbe 1 Orde Se de fogede

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Aufgaben zur Festigkeitslehre - ausführlich gelöst

Aufgaben zur Festigkeitslehre - ausführlich gelöst ufge ur Festgketslere - usfürlc gelöst Mt Grudegrffe, Formel, Frge, tworte vo Gerrd Kppste üerretet ufge ur Festgketslere - usfürlc gelöst Kppste scell ud portofre erältlc e eck-sop.de DE FCHBUCHHNDLUNG

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie Wintersemester 2016/2017 Scheinklusur Formle Sprchen und Automtentheorie 21.12.2016 Üungsgruppe, Tutor: Anzhl Zustzlätter: Zugelssene Hilfsmittel: Keine. Bereitungszeit: 60 Minuten Hinweise: Lesen Sie

Mehr

Formale Sprachen und Automaten. Schriftlicher Test

Formale Sprachen und Automaten. Schriftlicher Test Formle Sprchen und Automten Prof. Dr. Uwe Nestmnn - 23. Ferur 2017 Schriftlicher Test Studentenidentifiktion: NACHNAME VORNAME MATRIKELNUMMER S TUDIENGANG Informtik Bchelor, Aufgenüersicht: AUFGABE S EITE

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Methodik: auf einer kompakten (beschränkten und abgeschlossenen) Menge, z.b. einem n-dimensionalen Quader,

Methodik: auf einer kompakten (beschränkten und abgeschlossenen) Menge, z.b. einem n-dimensionalen Quader, . Verllgemeeruge Aweduge Glole Etrem Defto: Ee ukto f : M R R ht der Stelle M e gloles Mmum we f f M. = M = [] = f m m Allgeme glt der Stz vo Weerstrss: Ist f ee stetge ukto uf eer eschräkte ud geschlossee

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Progrmmerug ud Agewdte Mthemtk C++ /Sclb Progrmmerug ud Eführug ds Kozept der objektoreterte Aweduge zu wsseschftlche Reches SS Ihlt Folge Rehe Verfhre zur Kovergez Bestmmug Progrmmerug ud Agewdte Mthemtk

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12 Nichtdeterministische endliche Automten Nichtdetermistische Automten J. Blömer 1/12 Nichtdeterministische endliche Automten In mnchen Modellierungen ist die Forderung, dss δ eine Funktion von Q Σ Q ist,

Mehr

Zur knappen Schreibweise von Summen wird ein eigenes Symbol eingeführt. Definition: a = 0, wenn m > n.

Zur knappen Schreibweise von Summen wird ein eigenes Symbol eingeführt. Definition: a = 0, wenn m > n. Suezeche.. Boscherr Lehrrsttz.. Suezze che Zur e Schrewese vo Sue wrd e egees Syol egeführt. Defto: Ds Suezeche Σ wrd folgeder Wese eutzt... -, < ud Oder Worte: Setze de llgeee Gled für cheder de Zhle,,

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Kapitel 6: Codierung Diskreter Quellen

Kapitel 6: Codierung Diskreter Quellen Kptel 6: Zele des Kptels e Entrope ls Informtonsmss für de Güte enes odes Begrff der tenkompresson Endeutg deoderre odes Mttlere odelänge knn nht klener ls Quellenentrope sen Krft she Unglehung. Shnnon'shes

Mehr

5 Das reziproke Gitter

5 Das reziproke Gitter 107 5 Ds rezproke Gtter Deftoe ud Bespele Erste Brllou-Zoe Gttereee ud Mllersche Idzes Nel W. Ashcroft Dvd N. Merm. Festkörperphysk. 3. veresserte Auflge 2007. ISBN 978-3-486-58273-4. Oldeourg Wsseschftsverlg

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

Übungsblatt Nr. 2. Lösungsvorschlag

Übungsblatt Nr. 2. Lösungsvorschlag Institut für Kryptogrphie und Siherheit Prof. Dr. Jörn Müller-Qude Dirk Ahenh Tois Nilges Vorlesung Theoretishe Grundlgen der Informtik Üungsltt Nr. 2 svorshlg Aufge 1: Doktor Met in Gefhr (K) (4 Punkte)

Mehr

Polynomprodukt und Fast Fourier Transformation

Polynomprodukt und Fast Fourier Transformation Polomrodut ud Fst Fourer Trsformto Polome Reelles Polom eer Vrble...... R : oeffzete vo Grd vo : höchste Potez Besel: 3 3 5 8 Mege ller reelle Polome: R[] 3 Oertoe uf Polome. Addto b b b q b b b b b q

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zk Isttut für Matheatk Huboldt-Uverstät zu Berl Eleete der Algebra ud Zahletheore Musterlösug, Sere 7, Wterseester 2005-06 vo 21. Jauar 2006 1. Se = 2 p 1 Mersee-Zahl, d.h. p P 1. a) Zege:

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1 Stehn Brumme, SST,.FS, Mtrelnr. 7 5 44 Aufge... Zegen Se, dss de Folge onvergert und der Grenwert st, d.h. es glt lm Es st u egen, dss ene Nullfolge st D ene Nullfolge st, stellt ene onvergente Folge mt

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fchberech Mthemtk Algebr und Zhlentheore Chrstn Curll Grundbldung Lnere Algebr und Anltsche Geometre (LPSI/LS-M) Bltt 1 SoSe 011 - C. Curll/ B. Jnssens Präsenzufgben (P1) Mch Se sch be den folgenden Glechungssstemen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

5. Abstrakte Formulierung der QM im Hilbert-Raum. 5.1 Motivation

5. Abstrakte Formulierung der QM im Hilbert-Raum. 5.1 Motivation 5 Wohe 0./.5. 5. Astrte Formulerug der M m Hlert-Rum 5. Motvto Frge () Welhe mthemtshe Strutur legt der Orts- ud der Impulsdrstellug (r,t) w. φ(p,t) ugrude? Estere wetere Drstelluge der M? () Zuordug lssshe

Mehr

Zur Bestimmung des Terms der Regressionsgeraden

Zur Bestimmung des Terms der Regressionsgeraden Nme: Zu Betmmug de Tem de Regeogede Auggput ue Üeleguge t e vte Stz vo Dte ; ; ; ;; ; Dtum: mt de etpehede Mttelwete ud, de ze ud,de Kovz ud dem Koeltooeffzete. Geuht d de Wete de Stegugfto ud de Odtehtt

Mehr

Hochschule Darmstadt Fachbereich MK Prof. Dr. Fritz Bierbaum Mathematik I Wintersemester 2017 / 2018 Kapitel 1, Übungen, Seite 1/7

Hochschule Darmstadt Fachbereich MK Prof. Dr. Fritz Bierbaum Mathematik I Wintersemester 2017 / 2018 Kapitel 1, Übungen, Seite 1/7 Hohshule Darmstadt Fahbereh K Prof Dr Frtz Berbaum athematk I Wtersemester 0 / 08 Kaptel, Übuge, Sete / Aufgabe We es x Lter auf de Quadratmeter reget, we hoh steht da das Wasser m Aufgabe Gegebe sd utershedlhe

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Vorkurs Theoretische Informatik

Vorkurs Theoretische Informatik Vorkurs Theoretische Informtik Einführung in reguläre Sprchen Areitskreis Theoretische Informtik Freitg, 05.10.2018 Fchgruppe Informtik Üersicht 1. Chomsky-Hierchie 2. Automten NEA DEA 3. Grmmtik und Automten

Mehr

(2) Splines. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(2) Splines. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU () Sples Vorlesug Compuergrphk S. Müller KOBLENZ LANDAU Wederholug I Drsellug vo ukewolke: uke svoll durh Dreeke verbde (Trgulerug) ud reder; Normle uke us Normle der Nhbrflähe mel Deluy-Trgulerug Azhl

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Formale Sprachen, Automaten, Prozesse SS 2010 Musterlösung - Übung 1 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Sprachen, Automaten, Prozesse SS 2010 Musterlösung - Übung 1 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Sprhen, Automten, Prozesse SS 2010 Musterlösung - Üung 1 M Brokshmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem gleihen

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Einige dezimale Codes

Einige dezimale Codes Goethe-Gymsum Regesburg Semrrbet m Fch: Mthemtk Ege dezmle Codes XXXXXXXXX Schulhr: 7/8 be Mrkus Merger Ege teresste Dezmlcodes Vorwort 3 Ds Eschluss-Ausschluss-Przp 4. Allgemees 4. Awedug der Koderugstheore

Mehr

Klausur Statistik IV Sommersemester 2009

Klausur Statistik IV Sommersemester 2009 Klausur Statstk IV (Lösug) Name, Vorame 013456 Klausur Statstk IV Sommersemester 009 Prof. Dr. Torste Hothor Isttut für Statstk Name: Name, Vorame Matrkelummer: 013456 Wchtg: ˆ Überprüfe Se, ob Ihr Klausurexemplar

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automten un formle Sprhen Notizen zu en Folien 1 Grunlgen un formle Beweise Venn-Digrmme (Folie 6) Im oeren Digrmm er Folie 6 sin zwei Mengen ngegeen: A un B. Es ist explizit ein Element von A ngegeen,

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis Pumping Lemm für reguläre Sprhen (1/2) Informtik II SS 2004 Teil 6: Sprhen, Compiler un Theorie 2 Ds Pumping Lemm ist eine Methoe, um herus zu finen, o eine Sprhe niht regulär. Prof. Dr. Dieter Hogrefe

Mehr

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1 Gleihuge/Ugleihuge sltt Seite Gleihuge Aufge (Wurzel π37) Fide lle e (x, y, z) R 3 des Gleihugssystems M stellt ds System um zu x z y = 6 x z y = 36 x 3 z 3 y 3 = x z = y 6 x z = y 36 x 3 z 3 = y 3 Aus

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Interpolationspolynome

Interpolationspolynome Iterpolatospolyome Ac Gegebe sd +1 Stützstelle x 0 bs x zusamme mt hre Stützwerte y 0 bs y. Durch de Pukte ( x / y ) soll e Polyom p(x) -te Grades gelegt werde : p(x) = a 0 + a 1 x + a 2 x² + + a x = Das

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann Jhrgg, Het, Otober, ISSN 99-88 IAL Übuge t Lösuge zur Mthet ür Wrtschtsort Ulrch Ho Techcl Reports d Worg Ppers Leuph Uverstät Lüeburg Hrsg der Schrtrehe INAL: Ulrch Ho Schrhorststrße, D-5 Lüeburg Übuge

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombator Problemstellug Ausgagsput be ombatorsche Fragestelluge st mmer ee edlche Mege M, aus dere Elemete ma edlche Zusammestelluge vo Elemete aus M bldet Formal gesproche bedeutet das: Ist M a,, a ee

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Eführg de dgtle glverrbetg Prof. Dr. tef Wezerl. Afgbebltt. Egeschfte dsreter stee. Erläter e de Begrffe Lertät Zetvrz pecherfrehet Ksltät d tbltät Lertät: E ste wrd ls ler bezechet, we für ds ste ds perpostosprzp

Mehr

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ;

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ; Wahrschelchet Ee Futo X : Ω R, de edem Ergebs ees zufällge Vorgages ee reelle Zahl zuordet, heßt Zufallsgröße (oder auch Zufallsvarable Ee Zufallsgröße X heßt edlch, we X ur edlch vele Werte x aehme a

Mehr

5.1 Zweite Quantisierung 5.2 Coupled-Cluster KAPITEL 5: COUPLED CLUSTER METHODE

5.1 Zweite Quantisierung 5.2 Coupled-Cluster KAPITEL 5: COUPLED CLUSTER METHODE 5. Zwete Qutserug 5. Coupled-Cluster KAPITEL 5: COUPLED CLUSTER METHODE 5. Eführug de zwete Qutserug Ws st de erste Qutserug: Observble werde Opertore zugeordet; Zustäde werde Futoe zugeordet. Zwete Qutserug:

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Ein polynomialer Algorithmus für minimale Kreisbasen

Ein polynomialer Algorithmus für minimale Kreisbasen E polyomler Algorthmus für mmle Kresbse Überblck:. Motvto. Deftoe 2. Algorthmus für ee Kresbss mmler Läge, Lufzet O(m³) 3. Läge eer kürzeste Kresbss 4. Algorthmus für ee suboptmle Kresbss der Läge O(²);

Mehr

Filtern von Stoppwörtern mit endlichen Automaten

Filtern von Stoppwörtern mit endlichen Automaten Filter vo Stoppwörter mit edliche Automte HS Edliche Automte für die Sprchverrbeitug Ruprecht-Krls-Uiversität Heidelberg Semir für Computerliguistik 30.06.2008 Kthri Wäschle, Bistr Agelov Ihlt Eiführug

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Moments and Deviations

Moments and Deviations Tl dstrbuto Ds Ermttel des Erwrtugswertes, we zuletzt m Coupo Collector's Problem, st zwr oft Auge öffed ber be wetem cht mmer Zel führed ws de gesuchte Whrschelchkete geht. Ws pssert bespelswese we ee

Mehr