5.1 Zweite Quantisierung 5.2 Coupled-Cluster KAPITEL 5: COUPLED CLUSTER METHODE

Größe: px
Ab Seite anzeigen:

Download "5.1 Zweite Quantisierung 5.2 Coupled-Cluster KAPITEL 5: COUPLED CLUSTER METHODE"

Transkript

1 5. Zwete Qutserug 5. Coupled-Cluster KAPITEL 5: COUPLED CLUSTER METHODE

2 5. Eführug de zwete Qutserug Ws st de erste Qutserug: Observble werde Opertore zugeordet; Zustäde werde Futoe zugeordet. Zwete Qutserug: Zustäde werde durh Erzeugug ud Verhtug vo Vuu-Zustäde beshrebe. Buhhlter-Syste Kee eue Phys ur dere Drstellug. Egeshfte vo Wellefutoe werde lgebrshe Egeshfte (ud At-Syetre) vo Opertore beshrebe.

3 5. Eführug de zwete Qutserug. Der Vuu-Zustd Vuu-Zustd st e bstrter leerer Zustd (ethält e Eletro). Wrd durh br bzw. et-vetor beshrebe; v st uf orert bzw. v v v ud orthogol zu lle dere Zustäde. 3

4 5. Eführug de zwete Qutserug. Erzeugug vo Eletroe Sporbtl χ besetzt t ee Eletro wrd beshrebe durh: Der Erzeuger -Opertor erzeugt e Eletro Vuuzustd Zustd : ( ) v χ v Für -Eletroesyste: v ( ) χ χ ( ) χ ( ) ( ) χ ( ) Rehefolge welher de Opertore gewedet werde st whtg! (Pul-Przp) 4

5 5. Eführug de zwete Qutserug. Erzeugug vo Eletroe Rehefolge welher de Opertore gewedet werde st whtg! (Pul-Przp) ( ) ( ) v v Atsyetre erfüllt werde we für de Erzeugeropertore glt (At-Kouttor-Bezehug): 0 hl uh: { } [ ] 5

6 5. Eführug de zwete Qutserug. Erzeugug vo Eletroe (Gbt es uh für Bosoe d llerdgs t der Bedgug dss de Wellefuto syetrsh bzgl. Austush der Eletroe st d lso Kouttorbezehug. Werde wr ht besprehe.) ( ) ( ) 0 [ ] Pul-Verbot: Es öe ht Eletroe glehe Sporbtl erzeugt werde: llgee: 0 χ χ χ χ χ χ χ χ χ χ χ 0 l 0 { l} 6

7 5. Eführug de zwete Qutserug 3. Telhezhldrstellug Telhezhldrstellug eer -Deterte-Wellefuto (t bs zu M Eletroe); Besetzugszhle: flls Eletro -te Sporbtl 0 flls Sporbtl leer st M Vuu-Zustd ethält ee Eletroe lso v Erzeugug Eletroe: Der Erzeuger-Opertor ädert lso de Werte der Besetzugszhle. 7

8 5. Eführug de zwete Qutserug 3. Telhezhldrstellug Wege Pul-Przp 3 M 3 M Mehr-Eletroefll: Mehr-Eletroe-Wellefuto wrd erzeugt durh suzessve Awedug vo Erzeuger-Opertore uf de Vuu- Zustd ( ) v Sehr efhe Drstellug; explztes Ausshrebe der Deterte bzw. dere orerug ht otwedg. 8

9 5. Eführug de zwete Qutserug 4. Verhtug vo Eletroe Ist Sporbtl χ besetzt t ee Eletro wrd desse Etferug us de Orbtl beshrebe durh: v Der Verhter -Opertor (der djugerte Opertor des Erzeugers) verhtet e Eletro Zustd. Wr der Zustd zuvor ubesetzt d hederusführug vo Erzeuger- ud Verhteropertor: v v v 0 v v 9

10 5. Eführug de zwete Qutserug 4. Verhtug vo Eletroe Für de Verhter-Opertore glt ebeflls de At-Kouttor- Bezehug): 0 hl uh: { } [ ] Es ht e Eletro ee Sporbtl zwel verhtet werde: 0 χ χ 0 { l} l 0

11 5. Eführug de zwete Qutserug 4. Kouttorbezehug zwshe Erzeuger- ud Verhter-Opertor Awedug ees Erzeuger- ud Verhteropertors uf ee - Eletroe--Deterte-Wellefuto Der Ausdru wrd 0 flls 0 (e Eletro ds verhtet werde ) oder (Eletro ht erzeugt werde). Dt st de Wellefuto (Kurzfor) ud: Aregug ees Eletros us Orbtl Orbtl Vorzehewehsel! ±

12 5. Eführug de zwete Qutserug 4. Kouttorbezehug zwshe Erzeuger- ud Verhter-Opertor Ugeehrte Rehefolge der Opertore: Der Ausdru wrd 0 flls 0 oder. Dt: v Aregug ees Eletros us Orbtl Orbtl deres Vorzehe ls zuvor! Addto der bede Glehuge: [ ] 0 etweder de Sue wrd 0 oder bede Ezelglehuge dvduell 0

13 5. Eführug de zwete Qutserug 3 4. Kouttorbezehug zwshe Erzeuger- ud Verhter-Opertor Ausdru wrd 0 flls Für vershedee t-outere Erzeuger- ud Verhteropertor. Kouttorbezehug für Erzeuger- ud Verhteropertor (I): 0 0 [ ] 0 0

14 5. Eführug de zwete Qutserug 4 4. Kouttorbezehug zwshe Erzeuger- ud Verhter-Opertor Kouttorbezehug für Erzeuger- ud Verhteropertor (II): Zusegefsst: Der Atouttor des Erzeuger- ( ) ud Verhteropertors ( ) st der Ehetsopertor (). 0 0 [ ] [ ]

15 5. Eführug de zwete Qutserug 4. Kouttorbezehug zwshe Erzeuger- ud Verhter-Opertor Kouttorbezehug für Erzeuger- ud Verhteropertor (III): δ 5

16 5. Eführug de zwete Qutserug 5. Orthogoltät ud de Adjugerte Bslg ur: Kouttorbezehug für Erzeuger- ud Verhteropertor: δ v Zu zege: Der Verhteropertor st der Adjugerte zu Erzeugeropertor flls de zugrude legede E- Eletroefutoe orthogol sd Betrhte: bäres Produt ( orthogole Futoe) δ v v ( ) 6

17 5. Eführug de zwete Qutserug 5. Orthogoltät ud de Adjugerte Betrhte: bäres Produt ( orthogole Futoe). I. Qutserug erhlte wr: v ( ) v δ Vergleh t : δ v Dt st ( ) der Verhteropertor (ur für orthogole Sporbtle) ( ) Br-Futoe öe efh us de Ket-Futoe erhlte werde de de Adjugerte bldet. 7

18 5. Eführug de zwete Qutserug 5. Orthogoltät ud de Adjugerte Br-Futoe öe efh us de Ket-Futoe erhlte werde de de Adjugerte bldet. Für ht-orthogole Futoe st der djugerte Erzeugeropertor ht ehr gleh de Verhteropertor. Se folge ht der glehe At-Kouttor-Bezehug v v S v ( ) v S 8

19 5. Eführug de zwete Qutserug 9 6. Korrespodez Wellefuto/ Deterte ud. Qutserug Wellefutoe. -Eletroe-Deterte Lerobto us Deterte v v v v ψ ψ [ ] [ ] v v Ψ Ψ

20 5. Eführug de zwete Qutserug ueropertor Egewerte des ueropertors Azhl der Eletroe Zustd Awedug des ueropertors uf ee -Deterte- Wellefuto: Ergebs hägt b vo Besetzugszhl : We 0 st ds Ergebs 0. Ist d we obe. (Ke VZW d Azhl Vertushuge für Verhter ud Erzeuger gleh groß.

21 5. Eführug de zwete Qutserug 3 7. ueropertor Egewertglehug. Ee -Deterte-Wellefuto st ee Egefuto des ueropertors. ( Besetzugszhlopertor) Telhezhlopertor ergbt de Azhl der Eletroe Syste: M M M M M

22 5. Eführug de zwete Qutserug 3 7. ueropertor Awedug des Besetzugszhlopertors uf ee Mehr-Deterte- Wellefuto Flls z.b. 0: seletert bzw. projzert de Kopoete vo Ψ dee ds Orbtl besetzt st. st e Projetosopertor. { } Ψ Ψ o Ψ ) (

23 5. Eführug de zwete Qutserug ueropertor Mehrfhe (her zwefhe) Awedug des Besetzugszhlopertors uf ee Mehr-Deterte-Wellefuto d er etweder 0 oder st. st depotet. { } ( ) ( ) Ψ

24 5. Eführug de zwete Qutserug ueropertor Alog Awedug bzw. ehrfhe Awedug des Telhezhlopertors uf ee Mehr-Deterte-Wellefuto st depotet ( reorerter For). Ψ Ψ M M Ψ

25 Eletrosher Hlto Opertor H h < j r j H h j j j [ ] j l j l jl Gute Eführug.Qutserug: P.R. Surjá Seod qutzed pproh to qutu hestry Spger (989) 35

26 Hrosher Oszlltor 36

27 Hrosher Oszlltor 37

28 Hrosher Oszlltor 38

29 Hrosher Oszlltor 39

30 Vortele der Shrebwese 40

31 5. Coupled-Cluster Methode 43 Przpell ählh we de CI Methode es werde ehrere Kofgurtoe tgeoe. (Full CI Full CC) De Areguge werde über de Cluster-Opertor T erzeugt: T erzeugt Efhreguge T erzeugt Doppelreguge Ψ ! 4! 3!! e e T HF T CC T T T T T T T T T r r r HF r r r HF T Ψ 0 0 rs b s r b rs b HF r b s s r b rs b HF T Ψ < < < < 0 0

32 5. Coupled-Cluster Methode De Areguge werde über de Cluster-Opertor T erzeugt: T Ψ e Ψ CC HF 0 T T T T 3 T 3 4 e T T T T T! 3! 4!! 0 T 3 e T T T T TT T3! 3! 4 T4 TT 3 T TT T 4! 44

33 5. Coupled-Cluster Methode Abbrehe der Rehe h eer bestte Ordug e.g. T T T CCSD T T CCD Bespel CCSD: T Ψ e Ψ CC HF 0 T T T T T 3 4 T 3 e T T T T TT T3! 3! 4 T4 TT 3 T TT T 4! Auh we z.b. 4-fh Areguge ht dret dr sd (e T 4 ) sd se t dbe über Produte der edrgere Areguge (z.b. T T ) 45

34 5. Coupled-Cluster Methode Quelle: Helger 47

35 5. Coupled-Cluster Methode Truted CC-Wellefutoe ethlte Beträge vo lle Deterte der Full-CI Wellefuto 48

36 Vergleh CC ud CI-Methode 5. Coupled-Cluster Methode De CC-Wellefuto de be ee bestte Aregugsgrd bgebrohe wurde ethält Beträge vo Deterte de ee höhere Aregugsgrd etsprehe. De CI-Wellefuto de glehe Aregugsgrd bgebrohe wurde ethält ur Beträge vo Deterte bs zu dese Level Für größere Systee verhält sh CI sehr shleht währed de Qultät der CC-Beshrebug ubhägg vo der Azhl der Eletroe st 49

37 5. Coupled-Cluster Methode Kovergezverhlte der CC Rehuge: Utershed zwshe -pvdz Eerge vo H O Full-CI-Lt ud vershedee CC-Methode (Wel: R ref ) Rehe overgert sehr shell Glehgewhtsbstd ud lgser be der gedehte Geoetre be der der Mult-Referezhrter usgeprägter st. 50

38 5. Coupled-Cluster Methode T -Dgost Verlässlhet eer CC-Rehug Qultät der HF-Deterte ls Referez A efhste: Utersuhug der Koeffzete der CSFs der Wellefuto. Kleer Koeffzet der HF-Deterte oder große Koeffzete für bestte CSFs Altertv: T -Dgost T t or des Vetors der T Apltude slert (ubhägg vo der Azhl der orrelerte Eletroe ) Eprsh: we T < 0.0 d wrd ee CCSD Rehug ls verlässlh gesehe Höhere Aregugslevel öe ee lee Atel Multreferezhrter tbeshrebe. 5

39 5. Coupled-Cluster Shrödger-Glehug Vrtoelle Opterug der CC-Eerge? E t µ Ψ Ψ CC CC H Ψ Ψ CC CC Ψ Ψ ( tt ) ν ν CC t µ ν µ Ψ µ Ψ ( * tt ) ( ) ν ν H CC E tt ν ν ν ν Deser Stz geoppelte ht-lere Glehuge st uöglh zu löse (ußer für sehr lee Systee) ht-verwedug des Vrtosprzs Eerge öe hl leer ls de Full-CI Eerge se. CC CC 53

40 5. Coupled-Cluster Methode Projeto der Shrödger-Glehug uf Uterräue der geregte Deterte µ T µ HF 0 CC HF 0 µ H Ψ E µ Ψ E H Ψ CC CC Futoert d H ur Deterte oppelt de sh Aregugsgrd u ht ehr ls zwe utershede; de Rehe brht lso b Utershed zu vrtoelle Ergebsse st sehr le 55

41 5. Coupled-Cluster Methode: Lösug De CC-Glehuge werde ht vrtoell gelöst soder durh de verüpfte Coupled-Cluster-Glehuge ( T) H ( T) 0 HF µ exp exp 0 De CC Eerge wrd berehet us de Apltude welhe de projzerte Glehug ert ( ) H exp( ) exp T T E HF HF 0 0 Ählhetstrsforto des Hlto-Opertors De CC-Eerge sd ht vrtoell 57

42 5. Coupled-Cluster Methode 59

43 5. Coupled-Cluster Methode Größeosstez 60

44 5. Coupled-Cluster Methode 6

45 5. Coupled-Cluster Methode De Coupled Cluster Methode st sehr geue Methode. Auh bgebrohee (truted) Coupled-Cluster Rehuge sd größeosstet CCSD(T) st der Gold-Stdrd für geshlosseshlge Moleüle Struture geu zu etw 000 A Vbrtosfrequeze geu zu etw % Cheshe Geuget < l/ol Fehler de Bdugseerge htele: sehr ufwädg ud ICHT vrtoell 6

46 5. Coupled-Cluster Methode 63

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

5. Approximation periodischer Funktionen: die schnelle FOURIER-Transformation ( FFT )

5. Approximation periodischer Funktionen: die schnelle FOURIER-Transformation ( FFT ) 8 5 Aroxmto erodsher Futoe: de shelle FOURIER-rsformto FF Motvto: Shelle Fourer-rsformto egl: Fst Fourer rsform fdet vele Berehe Awedug, dee erodshe Iformtoe uftrete Besel Bldverrbetug: E zwedmesoles dgtles

Mehr

2.1 -Elektronensysteme 2.2 Generelle Semiempirische Verfahren KAPITEL 2: SEMIEMPIRISCHE VERFAHREN

2.1 -Elektronensysteme 2.2 Generelle Semiempirische Verfahren KAPITEL 2: SEMIEMPIRISCHE VERFAHREN . -Elektroesysteme. Geerelle Sememprshe Verfhre KPITEL : SEMIEMPIRISHE VERFHREN . Sememprshe Verfhre Für sehr große Moleküle / Systeme sd b-to Verfhre (Rehuge behlte ur Nturkostte) tehsh kum lösbr. Sememprshe

Mehr

4. Interpolation und Approximation

4. Interpolation und Approximation Uwelt-Caus Brefeld Nuershe Matheat der Fahhohshule Trer Prof. Dr.-Ig. T. Preußler. Iterolato ud Aroato I allgeee geht a davo aus, dass Bezehuge zwshe Varable ees hsalshe Probles aaltsh beshrebe werde a.

Mehr

5. Abstrakte Formulierung der QM im Hilbert-Raum. 5.1 Motivation

5. Abstrakte Formulierung der QM im Hilbert-Raum. 5.1 Motivation 5 Wohe 0./.5. 5. Astrte Formulerug der M m Hlert-Rum 5. Motvto Frge () Welhe mthemtshe Strutur legt der Orts- ud der Impulsdrstellug (r,t) w. φ(p,t) ugrude? Estere wetere Drstelluge der M? () Zuordug lssshe

Mehr

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe.

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe. Deftoe ud Aussge über Rehe Bchräume ud Hlberträume E vollstädger ormerter Vektorrum (sehe Bemerkuge zur Alyss) heßt Bchrum Stmmt de Norm vo eem Sklrprodukt v = , so sprcht m vo eem Hlbertrum ZB sd

Mehr

Hochschule Darmstadt Fachbereich MK Prof. Dr. Fritz Bierbaum Mathematik I Wintersemester 2017 / 2018 Kapitel 1, Übungen, Seite 1/7

Hochschule Darmstadt Fachbereich MK Prof. Dr. Fritz Bierbaum Mathematik I Wintersemester 2017 / 2018 Kapitel 1, Übungen, Seite 1/7 Hohshule Darmstadt Fahbereh K Prof Dr Frtz Berbaum athematk I Wtersemester 0 / 08 Kaptel, Übuge, Sete / Aufgabe We es x Lter auf de Quadratmeter reget, we hoh steht da das Wasser m Aufgabe Gegebe sd utershedlhe

Mehr

= Ortsd. x ih. (stetige WF)

= Ortsd. x ih. (stetige WF) Produte vo Operatore. Kommutator 6 Wohe 17./18.5.11 Def.: ( )  ( )  (5.10) Im Allgemee sd Operatore ht vertaushbar. De Dffere [ Â, ] :   (5.11) wrd Kommutator der Operatore  ud geat. [ ] x h h x h

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Progrmmerug ud Agewdte Mthemtk C++ /Sclb Progrmmerug ud Eführug ds Kozept der objektoreterte Aweduge zu wsseschftlche Reches SS Ihlt Folge Rehe Verfhre zur Kovergez Bestmmug Progrmmerug ud Agewdte Mthemtk

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

Folgende Axiome definieren den linearen Vektorraum (vgl. Vorlesung lineare Algebra):

Folgende Axiome definieren den linearen Vektorraum (vgl. Vorlesung lineare Algebra): 5. Abstrate Forulerug der M 5Wo_AoForulerugM_3/4-5-5 Frage: Verbrgt sh hter de Kaptel 4 behadelte äquvalete Beshrebuge des Zustades ees quateehashe Telhes t Hlfe der Wahrshelhetsapltude (r,t) ud φ(p,t)

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Tutoraufgabe 1 (Induktionsbeweis): Lösung:

Tutoraufgabe 1 (Induktionsbeweis): Lösung: Prof Dr J Gesl M Brokshmdt, F Emmes, C Fuhs, C Otto, T Ströder Hwese: De Husufge solle Gruppe vo je 2 Studerede us dem glehe Tutorum eretet werde De Lösuge der Husufge müsse s M, 12052010 m Tutorum gegee

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes Quellecoderug Durch de Quellecoderug werde de Date aus der Quelle codert, bevor se ee Übertragugskaal übertrage werde De Coderug det der Verkleerug

Mehr

Konzentrationsmessung

Konzentrationsmessung Kozetrtosmessug We telt sch de gesmte Merkmlssumme uf de ezele uf? Auftelug der Gesmtbevölkerug Gemede verschedeer Größeklsse Auftelug des gesmte Steuerufkommes uf de ezele Steuersubekte Auftelug der gesmte

Mehr

Polynomprodukt und Fast Fourier Transformation

Polynomprodukt und Fast Fourier Transformation Polomrodut ud Fst Fourer Trsformto Polome Reelles Polom eer Vrble...... R : oeffzete vo Grd vo : höchste Potez Besel: 3 3 5 8 Mege ller reelle Polome: R[] 3 Oertoe uf Polome. Addto b b b q b b b b b q

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Wahrscheinlichkeitsrechnung. Zufallsexperiment. I A i? I A i

Wahrscheinlichkeitsrechnung. Zufallsexperiment. I A i? I A i Whrshelhketsrehug Zufllseeret Gruegrffe Vorgg h eer estte Vorshrft usgeführt Prz eleg oft weerholr se Erges st zufllshägg e ehrlge Durhführug es Eerets eeflusse e Ergesse eer ht KAD 0.09.5 I A? I A Besele:

Mehr

5. Abstrakte Formulierung der Quantenmechanik im Hilbert-Raum H

5. Abstrakte Formulierung der Quantenmechanik im Hilbert-Raum H 5 Abstrate Forulerug der uateeha Hlbert-Rau H 5Wo_AxoForulerugM_16/17-5-17 Motvato/offee Frage: Verbrgt sh hter de Kaptel 4 behadelte äquvalete Beshrebuge des Zustades ees quateehashe Telhes t Hlfe der

Mehr

Formeln zur Numerik Numerik - Neff

Formeln zur Numerik Numerik - Neff Forel zur Nuer Nuer - Neff (.) Lere Glechugssstee (.) Deterte (.) GAUß-JORDAN-Verfhre (.4) GAUß-Verfhre (.5) LR-Zerlegug (.6) Spur eer Mtr (.7) Iverse Mtr (.8) Iverse Mtr (FADDEJEW) (.9) LEONTIEF-Modell

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Beispiel: QR-Zerlegung für Least Squares:

Beispiel: QR-Zerlegung für Least Squares: 86 Bespel: QR-Zerlegug für Least Squares: Erster Shrtt: a : m m b A 4 / / π ϕ s mt s s s s s s 87 s s s / π ϕ s Zweter Shrtt: a 3 : mt / / / / Q T A R 88 / / / / Q Also m m / / / / m m A Awedug auf Mmerugsproblem

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Isttut für Physkalshe Chee lbert-ludwgs-uverstät Freburg Lösuge zu 1. Übugsblatt zur orlesug Physkalshe Chee I SS 2014 Prof. Dr. Bartsh 1.1 L We groß st de olasse vo Dethylether (CH CH 2 OCH 2 CH )? We

Mehr

Methodik: auf einer kompakten (beschränkten und abgeschlossenen) Menge, z.b. einem n-dimensionalen Quader,

Methodik: auf einer kompakten (beschränkten und abgeschlossenen) Menge, z.b. einem n-dimensionalen Quader, . Verllgemeeruge Aweduge Glole Etrem Defto: Ee ukto f : M R R ht der Stelle M e gloles Mmum we f f M. = M = [] = f m m Allgeme glt der Stz vo Weerstrss: Ist f ee stetge ukto uf eer eschräkte ud geschlossee

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

3.9. Die QR-Zerlegung einer Matrix

3.9. Die QR-Zerlegung einer Matrix 3.9. De QR-Zerlegug eer Matr Sho vorher habe wr bemerkt: - odu der Gauß-Elmato ev. groß, auh be kleem oda; - falls A shleht kodtoert: was st der Rag vo A? Welhe Pvotelemete werte wr als? - oda T A oft

Mehr

Ein paar einfache q-analoga des binomischen Lehrsatzes

Ein paar einfache q-analoga des binomischen Lehrsatzes E paar efache -Aaloga des bosche Lehrsatzes Joha Cgler Sowet r beat st, gbt es ee allgeee Utersuchuge darüber, we sch das Reurrezverhalte vo Boalsue ädert, we a de Boaloeffzete durch ersetzt U ee erste

Mehr

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann Jhrgg, Het, Otober, ISSN 99-88 IAL Übuge t Lösuge zur Mthet ür Wrtschtsort Ulrch Ho Techcl Reports d Worg Ppers Leuph Uverstät Lüeburg Hrsg der Schrtrehe INAL: Ulrch Ho Schrhorststrße, D-5 Lüeburg Übuge

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zk Isttut für Matheatk Huboldt-Uverstät zu Berl Eleete der Algebra ud Zahletheore Musterlösug, Sere 7, Wterseester 2005-06 vo 21. Jauar 2006 1. Se = 2 p 1 Mersee-Zahl, d.h. p P 1. a) Zege:

Mehr

Verallgemeinerungen. Vorlesung 7. p 2. (a) Mehr aber endlich viele Strategien, mehr aber endlich viele Spieler (b) Unendlich viele Strategien

Verallgemeinerungen. Vorlesung 7. p 2. (a) Mehr aber endlich viele Strategien, mehr aber endlich viele Spieler (b) Unendlich viele Strategien Prof Dr Fredel Bolle Vorlesug Seltheore mt Sozalwsseshaftlhe Aweduge Prof Dr Fredel Bolle Vorlesug Seltheore mt Sozalwsseshaftlhe Aweduge Vorlesug 7 Verallgemeeruge (a) Mehr aber edlh vele Stratege, mehr

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Kapitel XI. Funktionen mit mehreren Variablen

Kapitel XI. Funktionen mit mehreren Variablen Kaptel XI Fuktoe mt mehrere Varable D (Fuktoe vo uabhägge Varable Se R ud D( f R Ist jedem Vektor (Pukt (,,, D( f durch ee Vorschrft f ee reelle Zahl z = f (,,, zugeordet, so heßt f ee Fukto vo uabhägge

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Eführg de dgtle glverrbetg Prof. Dr. tef Wezerl. Afgbebltt. Egeschfte dsreter stee. Erläter e de Begrffe Lertät Zetvrz pecherfrehet Ksltät d tbltät Lertät: E ste wrd ls ler bezechet, we für ds ste ds perpostosprzp

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Klausur SS 2005 Version 1

Klausur SS 2005 Version 1 BEMERKUG: für de Rchtgket der Lösuge wrd atürlch kee Garate überomme!! Klausur SS 005 Verso Aufgabe : e Gamma-Quat hat kee Ladug > el. Felder übe kee Kräfte aus > kee Kräfte, kee Äderug der Bewegug (ewto)

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Aufgabe 1 Ordnen Sie die folgenden vier Funktionen gemäß ihrem asymptotischen Wachstums ( ) ( ) log( n) ( ) ( ) ( log ( n)

Aufgabe 1 Ordnen Sie die folgenden vier Funktionen gemäß ihrem asymptotischen Wachstums ( ) ( ) log( n) ( ) ( ) ( log ( n) Dtestrukture ud Agorthme: Btt Berhrd Detrh (656800 Lrs Ferhomberg (65600 Sebst Kesburges (65710 Mrus Köthebürger (658550 Übugsgruppe 11 Mttwoh, 11:00-1:00 Uhr D1.0 Mtths Erst Aufgbe 1 Orde Se de fogede

Mehr

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4:

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4: Derptve Sttt Löug zu. Übugufgbe Aufgbe. Betmme Se zu Aufgbe 4 der. Sere jewel uter Verwedug der 0 Stchprobedte ud uter Verwedug der Kleetelug de Atel der Glühlmpe, dere Lebeduer zwche 400 ud 600 Stude

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Reversible Zustandsänderungen eines idealen Gases, Grundlagen der Carnot Maschine

Reversible Zustandsänderungen eines idealen Gases, Grundlagen der Carnot Maschine 6 eversble Zustasäeruge ees eale Gases, Grulage er Carot Mashe Ee Aweug es Erste Hautsatzes: eversble sotherme Exaso De olumearbet beträgt: Im ersble Fall st er äußere Druk mmer gleh em Druk m Iere es

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ;

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ; Wahrschelchet Ee Futo X : Ω R, de edem Ergebs ees zufällge Vorgages ee reelle Zahl zuordet, heßt Zufallsgröße (oder auch Zufallsvarable Ee Zufallsgröße X heßt edlch, we X ur edlch vele Werte x aehme a

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fchberech Mthemtk Algebr und Zhlentheore Chrstn Curll Grundbldung Lnere Algebr und Anltsche Geometre (LPSI/LS-M) Bltt 1 SoSe 011 - C. Curll/ B. Jnssens Präsenzufgben (P1) Mch Se sch be den folgenden Glechungssstemen

Mehr

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2 Werstoffe der letrotechi WS 11 / 1 Lösuge ur Übug Aufgbe 1: Wdh. De roglie-welleläge: ewegt sich ei Objet it icht verschwideder Ruhesse it de Ipuls p = v d ih eie Mteriewelle der Welleläge ugeordet werde:

Mehr

Formelsammlung Maschinendynamik/-akustik

Formelsammlung Maschinendynamik/-akustik R Masheau orelsalug Mashedyak/-akustk ete vo Matheatshe Beshreug vo hwguge y As t B os t y s Urehug: A y os y A B B y s B ta A B Ugedäfte free hwguge A Newto: Δ Δ hoogee Dgl.. Ordug ösug der hoogee Dfferetalglehug:

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Die Strömungsrichtung ist (aufgrund freier Konvektion) von unten nach oben. Die Wärmeübertragungsfläche ist im abgebildeten Fall: mit Ra = Gr Pr S ;

Die Strömungsrichtung ist (aufgrund freier Konvektion) von unten nach oben. Die Wärmeübertragungsfläche ist im abgebildeten Fall: mit Ra = Gr Pr S ; Prof. Dr.-Ing. Mtths n Insttut für Thershe Verfhrenstehnk Dr.-Ing. Thos etel äreübertrgung I ösung ur 4. Übung (ehälterseen r ene Flüssgket erhtt, so sett be Übershreten er eetepertur T Verpfung en. e

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Einschub: Fourier-Transformation

Einschub: Fourier-Transformation Epermetlphys III TU Dortmud WS/ Shut Kh @ TU - Dortmud. de Kptel Eschub: Fourer-Trsormto Perodsche Vorgäge Ntur ud Tech Erdrotto, Herzschlg, Schll, Lcht, Schwgres... motvere de Zerlegug ees Vorggs de betelgte

Mehr

Arithmetische Schaltkreise

Arithmetische Schaltkreise Kptel Arthmetsche Schltkrese. Adderer. Sutrherer Multplzerer ALU Berd Becker Techsche Iformtk I Wederholug: Se -... ee Folge vo Zffer, {,} Bärdrstellug: Zweerkomplemet: [ -... ] Recheregel: mt [ ] [

Mehr

Fernstudium. Technische Thermodynamik Teil: Energielehre

Fernstudium. Technische Thermodynamik Teil: Energielehre Fakultät Maschewese Isttut für Eergetechk, Professur für Techsche Therodyak Ferstudu Techsche Therodyak Tel: Eergelehre Prof. Dr. C. Bretkopf Wterseester 2012/13 Adstratves Techsche Therodyak Eergelehre

Mehr

Hier die ausführlichen Lösungen (wenn auch nicht druckreif ): Zeigen Sie für vollkommene Konkurrenz auf dem Faktormarkt:

Hier die ausführlichen Lösungen (wenn auch nicht druckreif ): Zeigen Sie für vollkommene Konkurrenz auf dem Faktormarkt: Her de ausführlche Lösuge (e auch cht druckref ): ufgabeblatt 5: ufgabe : Zege Se für ollkoee Kokurrez auf de Faktorarkt: a) e ollstädger Kokurrez auf de Güterarkt rd jeder Faktor t see Wertgrezrodukt

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Modell zur Berechnung des Massenstromes der Abgasrückführung

Modell zur Berechnung des Massenstromes der Abgasrückführung odell zur Berechug des assestroes der asrückführug Be odere otore besteht aufgrud der Forderug ach er gergere NO-Essoe de Notwedgket as als Iertgaskopoete de Brerau zurückzuführe, u de Verbreugsteperatur

Mehr

ξ i ξ i N ψ i 7. Zusammensetzung fluider Stoffgemische

ξ i ξ i N ψ i 7. Zusammensetzung fluider Stoffgemische 7. Zusaesetzug fluder Stoffgesche I der Techk sele flude Stoffgesche ee bedeutede Rolle. ebe der atoshärsche Luft, de überweged aus Stckstoff ud Sauerstoff besteht, se vor alle auf de als Eergeträger für

Mehr

Kochbuch der Linearen Algebra. 1. Gleichungssysteme (GS) 3. Matrizen. 2. LR-Zerlegung. - mit Zeilenvertauschung: L R P A

Kochbuch der Linearen Algebra. 1. Gleichungssysteme (GS) 3. Matrizen. 2. LR-Zerlegung. - mit Zeilenvertauschung: L R P A Kohuh der Leare lgera. Glehugsssteme (GS) m Glehuge, Uekate Glehugssstem: =m : edeutge Lösug m< : Lösuge ( m parametrge Shar vo Lsg) m> : Verträglhketsedguge: m Glehuge erfüllt : Lsg m Glehuge ht erfüllt

Mehr

Aufgabe 1: Abweichungsrechnung

Aufgabe 1: Abweichungsrechnung Aufgbe 1: Abwehugrehug ) Volltädge eergeb für f(, H,,, ω) t P 98%: De gegebee Glehug k drekt der vorlegede For verwedet werde: 1 1 4π H ω Abwehugbehftete Eflugröße:,,, ω Gegebee du SI-Behete ud vo P 99%

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213)

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213) A. Bertrd sches Seheprdoxo, Modellierug V Zwei Pukte zufällig i Kreis (S. /) I Abb..58 sid 5 Sehe gezeichet, vo dee 7 kürzer ls die Dreiecksseite sid. Die reltive Häufigkeit ist,8. Bei große Versuchszhle

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Das klassische Transportproblem

Das klassische Transportproblem ptel 6 Lere Opterg Ds klsssche Trsportproble D. 6.. (Ds klsssche Trsportproble) Uter de klsssche Trsportproble versteht folgede Afgbe Her sd: M = c =, = b,, =,,..., ; =,,...,. = = = = (,,..., ) : (,,...,

Mehr

3 Finite Difference Time Domain Method (FDTD)

3 Finite Difference Time Domain Method (FDTD) - - Fe eree Te oa Mehod FT. sehug der Mehode. skaare Weegehug Lösuge: = F + F + Taorrehe ür vo Puk 0 u Puk 0 ± u Zeuk :... 6... 6 Addo beder Ausdrüke:... Zerae eree Aroao der. Abeug. Geaugke:. rdug Feher

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Interpolationspolynome

Interpolationspolynome Iterpolatospolyome Ac Gegebe sd +1 Stützstelle x 0 bs x zusamme mt hre Stützwerte y 0 bs y. Durch de Pukte ( x / y ) soll e Polyom p(x) -te Grades gelegt werde : p(x) = a 0 + a 1 x + a 2 x² + + a x = Das

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Zur knappen Schreibweise von Summen wird ein eigenes Symbol eingeführt. Definition: a = 0, wenn m > n.

Zur knappen Schreibweise von Summen wird ein eigenes Symbol eingeführt. Definition: a = 0, wenn m > n. Suezeche.. Boscherr Lehrrsttz.. Suezze che Zur e Schrewese vo Sue wrd e egees Syol egeführt. Defto: Ds Suezeche Σ wrd folgeder Wese eutzt... -, < ud Oder Worte: Setze de llgeee Gled für cheder de Zhle,,

Mehr

(2) Splines. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(2) Splines. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU () Sples Vorlesug Compuergrphk S. Müller KOBLENZ LANDAU Wederholug I Drsellug vo ukewolke: uke svoll durh Dreeke verbde (Trgulerug) ud reder; Normle uke us Normle der Nhbrflähe mel Deluy-Trgulerug Azhl

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

5. Mehrkomponentensysteme - Gleichgewichte

5. Mehrkomponentensysteme - Gleichgewichte 5. Mehrkooetesystee - lechgewchte 5. hesches lechgewcht lechgewchtskostte Erläutertug der Verlufs der free Ethle währed eer ekto edkeeeret: regert zu, er ud sche sch cht ud lee ree Phse de free Ethle ädert

Mehr

(0) = 0 mit Mittelwert μi

(0) = 0 mit Mittelwert μi Semarvortrag vo Xaotog Guo am 26. Ma 29 5. Da dvduelle Romodell 5. Eletug Geamtchadeumme (olletve Romodell) - N : de Azahl Ezelchde,ZV N S = X - X : de Schadehhe,ZV X t detch vertelt - N, X, X,... tochatch

Mehr

Formelsammlung Finanzmathematik

Formelsammlung Finanzmathematik FH D WS 9/ Pof. D. Hos Pees Oobe 9 Foelslug Fze BA-Sudegg Ieol Mgee See /7 Foelslug Fze Sue, Folge ud ee eceegel fü Sue: U Aesce Folge: U U... U U U (Dsbuvgesez) U U U U (Udzeug) d d,,3,... Aesce ee: d

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phskalsch-chesches Praktku I Modul Eführug. Tel: Fehleraalse Ja Helbg, 7.09.08 Uterlage: htt://www.che.uzh.ch/stud/old/docuets/ear/che3.htl Fehlerrechug Gesucht: wahrer Wert eer Grösse Aber: Sere vo Messuge

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr