Entmischungsgleichgewichte

Größe: px
Ab Seite anzeigen:

Download "Entmischungsgleichgewichte"

Transkript

1 ntischungsgleichgewichte Ideale binäre Mischungen Bei der Behandlung von Mischungserscheinungen in binären ysteen geht an von den beiden betreffenden reinen Koponenten aus. Für den jeweiligen toffengenanteil ( Molenbruch ) einer dieser Koponenten gilt dann: x n n =, x =, () n + n n + n wenn it n und n die toffengen der entsprechenden an der Mischung beteiligten reinen Koponenten bezeichnet werden. Als ideales olares Voluen erhält an: V, id binärer Mischungen V. (), id = x V, + x V, In analoger Weise ist die olare nthalpie einer idealen binären Mischung durch den Ausdruck:, id gegeben, id = x, + x,. (3) V,id und, id x i sind also lineare Funktionen des Molenbruchs x i (Man beachte, daß gilt: = x ( i, j = ; it i j) ). Wie die leichungen () und (3) erkennen lassen, sind bei j idealen Mischungen i Falle des Voluens und der nthalpie die partiellen olaren Voluina V ( V / und partiellen olaren nthalpien ( /, i = n i ), n j i identisch it den olaren Voluina Koponenten: V, i und den olaren nthalpien, i = n i ), n j i, der reinen i V i,id = V, i,, i,id =, i. ( i ;) (4), = ine etwas andere estalt der funktionalen Abhängigkeit von der usaensetzung der binären Mischung besitzt die ideale olare freie nthalpie, id :, id = x µ + x µ + R ( x ln x + x ln x ), (5) woraus sich unter Beachtung von ableiten läßt: = ( für die ideale olare ntropie, id / ) n i 6

2 , id = x, + x, R( x ln x + x ln x ). (6) In Abbildung ist der Verlauf der olaren rößen V, id,, id und, id, idealer binärer Mischungen in Abhängigkeit vo Molenbruch x = x der als unabhängig gewählten Koponente graphisch veranschaulicht. Abbildung : Molare rößen idealer binärer ystee Funktion des toffengenanteils x = x. ( = V ; ; ) als, id ur therodynaischen Beschreibung von Mischphasen werden weiterhin die sogenannten olaren Mischungsgrößen eingeführt. Für eine beliebige extensive igenschaft einer aus N ix Koponenten bestehenden Mischphase ist die olare Mischungsfunktion definiert als die Differenz der entsprechenden olaren röße ix und der auf ein Mol der Mischung bezogenen röße der ungeischten reinen Koponenten x k Mit N i=, k : N ix = x k, k (7) k =, id liefert die obige Beziehung für den pezialfall eines sich ideal verhaltenden eisches für die olare Mischungsgröße ix, id den Ausdruck: 7

3 N ix,id =,id x k, k. (8) k = Aus leichung (5) ergibt sich unter Beachtung der Definition (8) die ideale olare freie Mischungsenthalpie ix, id einer binären Mischung zu: = R x ln x + x ln x ). ix,id ( (9) Analog erhält an unter Verwendung von (6) geäß Definition (8) für die olare Mischungsentropie idealer binärer Mischphasen ix, id den Ausdruck: = R x ln x + x ln x ). ix,id ( (0) Weil x i [ 0;] ( i =,), gilt stets 0 und 0. Die entsprechenden Kurvenverläufe für die olaren Mischungsfunktionen ix,id ix,id ix, id idealer binärer Mischungen sind in Abbildung dargestellt (Wie groß ist die teigung der ix, id - bzw. ix, id -Kurve für x gegen und gegen 0?). Abbildung : Molare Mischungsgrößen sich ideal verhaltender binärer Mischphasen ( = V ; ; ; ) als Funktion der usaensetzung. ix, id 8

4 wischen olarer freier Mischungsenthalpie, olarer Mischungsentropie und olarer Mischungsenthalpie besteht der folgende, als ibbs-elholtz-leichung bekannte usaenhang: ix,id = () ix,id ix,id Reale Mischungen: herodynaische xzeßgrößen Bei realen Mischungen beobachtet an nun aber eine Abweichung der geessenen Mischungsgrößen von den Werten, die an aus den leichungen (), (3), (5) und (6) berechnet. o findet an bei binären Mischungen z.b. häufig eine zusätzliche Voluenkontraktion. Diese Abweichung vo ideal berechneten olaren Voluen bezeichnet an als olares xzeßvoluen V. Auch die anderen olaren rößen (olare nthalpie, olare freie nthalpie und olare ntropie) weisen i allgeeinen einen solchen von Null verschiedenen xzeßanteil, bzw. auf. Alle vier genannten xzeßgrößen können sowohl positive als auch negative Werte annehen. ie hängen jedoch nicht linear von der usaensetzung ab; die Variationsöglichkeiten der zugehörigen Funktionen wurden an and vieler Messungen festgestellt. Nach de oben esagten sind die olaren xzeßgrößen ganz allgeein wie folgt definiert: = =. (),real,id ix,real ix,id Abbildung 3: ypen von isother-isobaren ( x ) -Kurven ( = V,,, ; 9 Kurventypen, : ohne Wendepunkte; Kurventypen 3, 4: it Wendepunkt). Bei niedrigolekularen Nichtelektrolytlösungen wird für ( x ) nur in seltenen Ausnahefällen ein Kurvenverlauf it Wendepunkt beobachtet. Noralerweise finden sich unter den Kurventypen für ( x ) nur die Verläufe geäß und.

5 wischen olarer freier xzeßenthalpie, olarer xzeßentropie und olarer xzeßenthalpie gilt ein analoger usaenhang, wie er durch die ibbs-elholtz-leichung für die entsprechenden olaren Mischungsfunktionen () gegeben ist: =. (3) Die a häufigsten auftretenden Kurvenverläufe für dargestellt., und sind in Abbildung 3 3 ntischung in binären flüssigen Mischungen s ergeben sich folgende Konsequenzen aus de. auptsatz der herodynaik für die tabilitätsbetrachtung in eine abgeschlossenen binären yste: Das yste soll sich in eine definierten Anfangszustand befinden. s erfolgt eine Auslenkung aus diese ustand. Betrachtet an ein abgeschlossenes yste, bei de V = 0, U = 0 und = 0 ( i = 0;;...; N) sind, so ist eine Auslenkung aus eine definierten n i Ausgangszustand dann stabil, wenn die ntropieänderung positiv ist ( > 0). at an ein therodynaisches yste vorliegen, bei de die Nebenbedingungen = 0, p = 0 und n i = 0 ( i = 0;;...; N) erfüllt sind, so führt eine Auslenkung aus eine definierten Ausgangszustand dann spontan in einen stabilen leichgewichtszustand, wenn die Änderung der freien nthalpie bei diese Prozeß abnit ( < 0). Die ntropie nit i stabilen leichgewichtszustand einen Maxialwert an, die freie nthalpie einen Minialwert. s gibt Mischungen, bei denen diese xtrea nur bei ntischung erreicht werden. Verschiedene ystee it Mischungslücke unterscheiden sich rein qualitativ voneinander. o gibt es ystee, die eine obere kritische ntischungsteperatur zeigen, aber auch solche, die eine untere, oder eine obere und untere kritische ntischungsteperatur aufweisen. I Folgenden sind die vs. x - Diagrae (Abbildung 4) verschiedener Mischungen it Mischungslücke dargestellt. Abbildung 4. Isobare vs. x Diagrae it (von links nach rechts): obere kritischen, untere kritischen, obere und untere kritischen nischungspunkt bei Auftreten zweier getrennter ntischungsgebiete und bei Auftreten einer geschlossenen Mischungslücke. 0

6 Bei ysteen it oberer kritischer ntischungsteperatur spielen (vor alle in kürzeren olekularen Abständen stärker zwischen gleichartigen pezies wirkende) van der Waals- Kräfte eine Rolle, die bei Überschreiten einer gewissen eperatur ok aufgebrochen werden, was gleichzeitig it einer ntropieerhöhung einhergeht. In der ibbs-elholtz- leichung schlägt sich dieses Verhalten i ix, id - er nieder. Bei binären Mischungen, deren Koexistenzkurve eine untere kritische ntischungsteperatur uk besitzt, können unterhalb dieses renzwerts Wechselwirkungen (z.b. Wasserstoffbrücken) doinierend werden, die zu eine nergiegewinn führen. rägt an für eine binäre Mischung die olare freie nthalpie der Mischung toffengenanteil x auf, so erhält an Kurven folgender Art (Abb. 5): gegen den Abbildung 5: Molare freie nthalpie einer binären flüssigen Mischung als Funktion des toffengenanteils x = x bei zwei verschiedenen eperaturen und konstante Druck. Die obere Kurve zeigt den Verlauf von ( x ) bei einer eperatur, bei der die Mischung über de gesaten usaensetzungsbereich als hoogene Mischung vorliegt, der zu gehörende Funktionsgraph entspricht einer Isotheren i ntischungsgebiet. Die obere Kurve in Abbildug 5 zeigt die olare freie Mischungsenthalpie bei eine bestiten vorgegebenen Wert des Drucks p und bei der eperatur. Dieses eisch zeigt über den gesaten usaensetzungsbereich Mischungsverhalten.

7 Die tabilitätsbedingung für binäre Mischungen ist gegeben durch die Relation: > 0. (4) Kurve b zeigt die olare freie Mischungsenthalpie der gleichen Mischung bei einer anderen eperatur, bei der das yste eine Mischungslücke besitzt. ibt an die beiden Koponenten in eine toffengenverhältnis zusaen, das eine toffengenanteil x entspricht, der in de von den Punkten A und A begrenzten Bereich liegt, so zerfällt dieses eisch, indestens, wenn keine kinetischen eungserscheinungen auftreten, in zwei Phasen it den usaensetzungen x und x. Die Kurvenbereiche zwischen A und B bzw. B und A arkieren den etastabilen Bereich. nergetisch gibt es dort günstigere Anordnungsöglichkeiten, der erfall in die beiden Phasen it den usaensetzungen x und x ist jedoch kinetisch gehet. wischen den Punkten B und B befindet sich der instabile Bereich. ier ist die ''Mischung'' kinetisch und energetisch instabil, und es gilt: < 0. (5) An den Punkten B und B (Wendepunkte) uß die zweite partielle Ableitung von ( x ) nach x notwendigerweise verschwinden, das heißt, es uß die leichung: = 0 (6) erfüllt sein. Bei eperaturerhöhung oder -erniedrigung gelangt an jeweils zu einer eperatur, bei der die vier Punkte A, A, B und B zusaenfallen. Diese eperatur wird obere bzw. untere kritische ntischungsteperatur genannt. An diese(n) ausgezeichneten Punkt(en) findet an: 3 = = = 3,, p p 0. (7) Für die olare freie xzeßenthalpie = x µ x µ R( x ln x + x ln x ) (8) ist it (4) die tabilitätsbedingung durch die folgende Ungleichung gegeben: + R + > 0. x x (9)

8 ur theoretischen Vorbereitung auf den Versuch sind neben den Lehrbüchern der physikalischen Cheie vor alle das Buch von Kortü und der Artikel,,Wiederkehrende Phasen'' (aus pektru der Wissenschaft, Juli 7/987) notwendig. 4 Aufgabe s ist die ntischungsteperatur eines binären eisches in Abhängigkeit vo Molenbruch zu bestien. In eine Diagra ist gegen x aufzutragen und hieraus der obere kritische ntischungspunkt zu bestien. 5 Ausführung Man beginnt nach Möglichkeit it der an organischer ubstanz reichsten Mischung und verdünnt diese dann schrittweise it Wasser. Bei der binären Mischung Phenol + Wasser füllt an in das herostatengefäß zunächst 6 g Phenol und l Wasser. Unter Rühren wird nun aufgeheizt, bis die Mischung klar wird. Diese ntischungsteperatur wird notiert; anschließend kühlt an langsa ab, notiert die eperatur, bei der die erste rübung auftritt und wiederholt das rwären und Abkühlen. Aus den auf diese Weise gewonnenen vier eperaturen wird der Mittelwert gebildet und aus der usaensetzung der Mischung der Molenbruch berechnet. Anschließend werden der Mischung 4 l Wasser hinzu gefügt und für die neue usaensetzung wie oben die ntischungsteperatur bestit. Diese schrittweise Verdünnung wiederhole an insgesat 0 al. 6 Literatur. Atkins, P. W., Physical Cheistry, Oxford University Press.. Barrow,. M., Physikalische Cheie, Bohann Verlag, Wien, Friedrich Viehweg & ohn, Braunschweig/Wiesbaden. 3. Brdicka, R., rundlagen der Physikalischen Cheie, VB-Verlag, Berlin. 4. Kortü,., inführung in die Cheische herodynaik, Verlag Vandenhoek & Ruprecht, öttingen und Verlag Cheie, Weinhei. 5. chäfer, K., Physikalische Cheie, pringer-verlag, Berlin, öttingen, eidelberg, New York. 6. Wedler,., Lehrbuch der Physikalischen Cheie, Verlag Cheie, Weinhei. 3

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt Hochschule Eden / Leer Physikalische Cheie Praktiku Reale Gase, Kritischer Punkt Vers.Nr. 1 April 015 Allgeeine Grundlagen Reale Gase, Kopressionsfaktor (Realgasfaktor), Van der Waals Gleichung, Kritischer

Mehr

5.2 Thermische Ausdehnung (thermische Zustandsgleichung)

5.2 Thermische Ausdehnung (thermische Zustandsgleichung) 5.2 herische Ausdehnung (therische Zustandsgleichung) Praktisch alle festen, gasförigen und flüssigen Stoffe dehnen sich bei Erwärung bei konstante Druck aus, vergrößern also ihr Voluen. Alle Stoffe lassen

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme Physikalische Cheie Physikalische Cheie I SoSe 29 Prof. Dr. Norbert Ha /7. Phasendiagrae Phasendiagrae In Phasendiagraen wird die eeratur- und Druckabhngigkeit der Aggregatzustnde von Stoffen bzw. Stoffischungen

Mehr

Mischungslücke in der flüssigen Phase

Mischungslücke in der flüssigen Phase Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S05 Version 2015 Kurzbezeichnung: Mischungslücke Mischungslücke in der flüssigen Phase Aufgabenstellung Die Entmischungskurven von Phenol/Wasser

Mehr

Chemische Thermodynamik: Grundlagen

Chemische Thermodynamik: Grundlagen Cheische herodynai: Grundlagen Marosoische Größen aros. Obserable in aros. Syste Intensie Größen (engenunabhängig): Druc eeratur Magnetfeld H r Magnetisierung M r Eletrisches Feld E r... Etensie Größen

Mehr

Versuch 5: Adsorption von Essigsäure an Aktivkohle

Versuch 5: Adsorption von Essigsäure an Aktivkohle Versuch 5: Adsorption von Essigsäure an Aktivkohle Aufgabenstellung Es ist die Adsorption von Essigsäure an Aktivkohle quantitativ zu untersuchen und 1) der Verlauf der Adsorptionsisotheren nach Freundlich

Mehr

Protokoll Grundpraktikum I: M5 - Oberflächenspannung

Protokoll Grundpraktikum I: M5 - Oberflächenspannung Protokoll Grundpraktiku I: M5 - Oberflächenspannung Sebastian Pfitzner 28. April 2013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (550727) Arbeitsplatz:!!Platz!! Betreuer: Stefan Weideann Versuchsdatu:

Mehr

Physikalisch-chemisches Praktikum

Physikalisch-chemisches Praktikum Physikalisch-cheisches Praktiku Versuch: Oberflächenspannung (Tensioetrie) Datu: 28.03.2008 Gruppe: B23 ars Thiele, Matthias Wolz, Andreas van Kapen 1 Einleitung In diese Versuch wird die Oberflächenspannung

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Reale Zustandsdiagramme und ihre Interpretation

Reale Zustandsdiagramme und ihre Interpretation 4 Reale Zustandsdiagramme und ihre Interpretation 4. Grundlagen Was zu beachten ist, wird hier anhand einer kurzen Wiederholung dargestellt - die grundlegenden egriffe binärer ysteme: ufbau einer Legierung

Mehr

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG VERDAMPFUNGSGLEICHGEWICHTE: RAMM EINER BINÄREN MISCHUNG 1. Lernziel Ziel des Versuchs ist es, ein zu bestimmen, um ein besseres Verständnis für Verdampfungsgleichgewichte und Mischeigenschaften flüssiger

Mehr

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme)

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme) Spezifische Erstarrungs- und Verdapfungsenthalpie des Wassers (Latente Wäre) Stichworte: Erster Hauptsatz der Therodynaik, Kalorieter, Phasenuwandlung, Latente Wäre 1 Grundlagen Solange ein cheisch einheitlicher

Mehr

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2 hasengleichgewichte Definitionen: hase: Homogener Raumbereich, innerhalb dessen sich keine physikalische Größe (z.b. Dichte, Zusammensetzung, emperatur...) sprunghaft ändert. Das Berührungsgebiet zweier

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Physikalisch-Chemisches Grundpraktikum

Physikalisch-Chemisches Grundpraktikum Physikalisch-Cheisches Grundpraktiku Versuch Nuer G3: Bestiung der Oberflächen- spannung it der Blasenethode Gliederung: I. Aufgabenbeschreibung II. Theoretischer Hintergrund III. Versuchsanordnung IV.

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE -1-7 HASENGLEICHGEWICHE UND HASENÜBERGÄNGE 7.1 Ein-Koponenten-Systee Verdapfen, Gefrieren, oder die Uwandlung von Graphit in Diaant sind Beispiele für hasenüergänge einzelner Koponenten. Noralerweise werden

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

Die Maxwell-Boltzmann-Verteilung

Die Maxwell-Boltzmann-Verteilung Die Maxwell-Boltzann-Verteilung Sebastian Meiss 5. Oktober 8 Mit der Maxwell-Boltzann-Verteilung kann an Aussagen über die Energie- bzw. Geschwindigkeitsverteilung von Teilchen in eine Syste beschreiben.

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Reale Gase. 1. Grundlagen. a 2. pv m. 1.1. Van der Waals-Gleichung. Die allgemeine Gasgleichung für ideale Gase lautet:

Reale Gase. 1. Grundlagen. a 2. pv m. 1.1. Van der Waals-Gleichung. Die allgemeine Gasgleichung für ideale Gase lautet: Reale Gase Stichworte: Van der Waals-Gleichung, Phasenuwandlung 1 Grundlagen 11 Van der Waals-Gleichung Die allgeeine Gasgleichung für ideale Gase lautet: pv RT it p: Druck (1) V : Molvoluen des Gases

Mehr

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1.

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Versuch 7/1 HYGROMETRIE 04.06.2012 Blatt 1 HYGROMETRIE Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Grundbegriffe Die Luftfeuchtigkeit

Mehr

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06 . Klausur zur Vorlesung Einführung in die hysikalische Cheie für Lehratskandidaten Modul 4, Winterseester 5/6 3. März 6, 9 5 45 Uhr Nae, Vornae:... Geburtsdatu, -ort:... Matrikelnuer:... Fachseester,.

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

Tropfenkonturanalyse

Tropfenkonturanalyse Phasen und Grenzflächen Tropfenkonturanalyse Abstract Mit Hilfe der Tropfenkonturanalyse kann die Oberflächenspannung einer Flüssigkeit ermittelt werden. Wird die Oberflächenspannung von Tensidlösungen

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Tabellen und Formelsammlung Chemie

Tabellen und Formelsammlung Chemie Tabellen und Forelsalung Cheie Fakultät Maschinenbau Stand SS 2015 Nachfolgende Tabellen und Inforationen staen aus de Lehrbuch G. Kickelbick, Cheie für Ingenieure, Pearson-Verlag, 2008 soweit nicht anderweitig

Mehr

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob Bestiun der Molaren Masse nach Duas (MO Gruppe 8 Sione initz, Sebastian Jakob 1. Grundlaen In diese ersuch wird nach de erfahren von Duas die Molare Masse von hlorofor bestit. Dazu wird anenoen, daß hlorofor

Mehr

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1.

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1. Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Physikalisch-Chemische Praktika Daniell-Element 1 Grundlagen

Mehr

Einführung in die chemische Thermodynamik

Einführung in die chemische Thermodynamik G. Kortüm /H. Lachmann Einführung in die chemische Thermodynamik Phänomenologische und statistische Behandlung 7., ergänzte und neubearbeitete Auflage Verlag Chemie Weinheim Deerfield Beach, Florida Basel

Mehr

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st Thermodynamik II Lösung ufgabe 89 sgleichgewicht a us der efinition der Freien Enthalie H T S ergibt sich bei Referenzdruck Index aus den molaren ildungsenthalien und den absoluten Entroien die Freie Enthalie

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Zur Theorie - die Dampfdruckkurve

Zur Theorie - die Dampfdruckkurve Labor Therodynaik Zur Theorie - die I Zweihasengebiet liegt siedende Flüssigkeit zusaen it ihre gesättigten Daf vor. Der Druck eines solchen Systes ist auf einer Isothere konstant. Man kann also i Zweihasengebiet

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Gander Daniel, WS 2004 Mayrhofer Reinhard; GEOPHYSICS & GEODYNAMICS TU GRAZ

Gander Daniel, WS 2004 Mayrhofer Reinhard; GEOPHYSICS & GEODYNAMICS TU GRAZ Gander Daniel, WS 004 TECHNISCHE BEICHT st lab: Gravity and Pressure in the Earth s Interior POBLEMSTELLUNG... LÖSUNG UND EGEBNISSE.... Berechnung der Massen.... Berechnung der Schwerebeschleunigung...4.

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

B06A DAMPFDRUCK VON WASSER B06A

B06A DAMPFDRUCK VON WASSER B06A B06A DAMPFDRUCK VON WASSER B06A 1. ZIELE Wir aten euchtere Lut aus als ein. Müssen wir daür Enerie auwenden? Waru werden die Kartoeln in eine Dapdrucktop schneller ar? Was passiert, wenn Wasser verdapt?

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

5 Preise. Ziele dieses Kapitels

5 Preise. Ziele dieses Kapitels Preise EBDL Kostenrechnung 5 Preise Ziele dieses Kapitels Den Begriff Preispolitik erklären können. Die drei weiteren Marketing-Instruente neben der Preisgestaltung nennen und erläutern können. Den Marktechanisus

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Mathematisches Pendel und Federpendel

Mathematisches Pendel und Federpendel INSIU FÜR ANGEWANE PHYSIK Physikaisches Praktiku für Studierende der Ingenieurswissenschaften Universität Haburg, Jungiusstraße 11 Matheatisches Pende und Federpende 1 Zie In zwei Versuchsteien soen die

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

10 DIE KINETISCHE GASTHEORIE. 10.1 Vorbemerkungen. 10.2 Berechnung des Drucks

10 DIE KINETISCHE GASTHEORIE. 10.1 Vorbemerkungen. 10.2 Berechnung des Drucks -1-1 DIE KINEISCHE GASHEORIE 1.1 Vorbeerkungen Die kinetische Gastheorie beschreibt it einfachen Annahen einen Zustand der Materie (nälich den gasförigen) in ielen Fällen erblüffend gut. Insofern ist die

Mehr

Physik 2 (B.Sc. EIT) 7. Übungsblatt

Physik 2 (B.Sc. EIT) 7. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof. Dr. H. Baugärtner Übungen: Dr.-Ing. Tanja Stipel-Lindner,

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

Dieter Suter - 228 - Physik B

Dieter Suter - 228 - Physik B Dieter Suter - 228 - Physik B 4.5 Erzwungene Schwingung 4.5.1 Bewegungsgleichung In vielen Fällen schwingt ein Syste nicht frei, sondern an führt ih von außen Energie zu, inde an eine periodische Kraft

Mehr

Versuch: Wasserdampfdestillation

Versuch: Wasserdampfdestillation Versuch: asserdafdestillation Die Molasse stellt für einen cheisch einheitlichen, niederolekularen toff eine charakteristische Kenngröße dar. Mit hysikalisch-cheischen Messethoden lässt sich die Molasse

Mehr

Mischungsenthalpie. E AB zwischen den verschiedenen Molekülsorten in der Mischung. Wenn die

Mischungsenthalpie. E AB zwischen den verschiedenen Molekülsorten in der Mischung. Wenn die 1 ischungsenthalpie Ziel des Versuches Aus essungen der mittleren molaren ischungsenthalpie sind die partiell molaren ischungsenthalpien als Funktion der Zusammensetzung zu bestimmen. Unter Annahme des

Mehr

1u = A r = Die relativen Atom-, Molekül- und Ionenmassen. atomare Masseneinheit 1u. relative Atommasse A r :

1u = A r = Die relativen Atom-, Molekül- und Ionenmassen. atomare Masseneinheit 1u. relative Atommasse A r : Die relativen Ato-, Molekül- und Ionenassen atoare Masseneinheit u: u Masse von Kohlenstoffato C u,6655 7 kg relative Atoasse A r : Masse eines Atos A r atoare Masseneinheit u relative Molekülasse M r

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Reaktorvergleich mittels Verweilzeitverteilung

Reaktorvergleich mittels Verweilzeitverteilung Reaktorvergleich mittels Verweilzeitverteilung Bericht für das Praktikum Chemieingenieurwesen I WS06/07 Studenten: Francisco José Guerra Millán fguerram@student.ethz.ch Andrea Michel michela@student.ethz.ch

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Formel X Leistungskurs Physik WS 2005/2006

Formel X Leistungskurs Physik WS 2005/2006 Die Therodynaik ist die Lehre von der Energie. Sie lehrt Energieforen zu unterscheiden, sie zeigt deren Verknüfungen auf (Energiebilanz, 1. Hautsatz) und sie klärt die Bedingungen und Grenzen für die Uwandelbarkeit

Mehr

Einführung in Werkstoffkunde Zustandsdiagramme

Einführung in Werkstoffkunde Zustandsdiagramme Einführung in Werkstoffkunde Dr.-Ing. Norbert Hort norbert.hort@gkss.de Magnesium Innovations Center (MagIC) GKSS Forschungszentrum Geesthacht GmbH Inhalte Über mich Einführung Aufbau von Werkstoffen Physikalische

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Auswertung einer DSC-Kurve

Auswertung einer DSC-Kurve Versuch Nr. 7 Auswertung einer DSC-Kurve Einleitung: Sie haben bislang bereits die Thermogravimetrie (TG) und die Differenzthermoanalyse (DTA) als wichtige thermische Analysenverfahren kennengelernt. Während

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Der M-Bus: Ausdehnung des Netzes bei unterschiedlichen Baudraten. Version 1 vom 19.12.1995

Der M-Bus: Ausdehnung des Netzes bei unterschiedlichen Baudraten. Version 1 vom 19.12.1995 Der M-Bus: Ausdehnung des Netzes bei unterschiedlichen Baudraten Version 1 vom 19.12.1995 Prof. Dr. Horst Ziegler Dipl.-Phys. Ing. Carsten Bories Arbeitsgruppe Prof. Dr. Ziegler Fachbereich Physik Universität-GH

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Kapitel 9 Anwendungen der Integralrechnung in der Flächenmessung

Kapitel 9 Anwendungen der Integralrechnung in der Flächenmessung 9. Flächenmessung mit Integralen 9.1 Flächen mit ausschließlich positiven bzw. ausschließlich negativen Randfunktionen Bis jetzt haben wir den unmittelbaren Zusammenhang zwischen dem Integral einer Funktion

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer Grundlagen der DURCHFLUSSMESSUNG ittels Heißfilaneoeter 1/9 Inhaltsverzeichnis: 1. Definitionen 1.1. Luftgeschwindigkeit 1.2. Gasenge 1.. Durchfluss 1..1. Massendurchfluss (Massenstro) 1..2. Voluendurchfluss

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Versuch MG: Molmassenbestimmung eines Gases nach der Methode von Dumas

Versuch MG: Molmassenbestimmung eines Gases nach der Methode von Dumas Dies ist ein Beispielprotokoll zu fiktiven Versuch Molassenbestiung, das Ihnen insbesondere für die physikalischcheischen Versuche (GMS, ABS, BSP, MWG, LFG) aufzeigt, wie Ihr Protokoll auszusehen hat.

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Hauptkomponentenanalyse PCA

Hauptkomponentenanalyse PCA Hauptkoponentenanalyse PCA Die Hauptkoponentenanalyse (Principal Coponent Analysis, PCA) ist eine Methode zur linearen Transforation der Variablen, so dass: öglichst wenige neue Variablen die relevante

Mehr