Entmischungsgleichgewichte

Größe: px
Ab Seite anzeigen:

Download "Entmischungsgleichgewichte"

Transkript

1 ntischungsgleichgewichte Ideale binäre Mischungen Bei der Behandlung von Mischungserscheinungen in binären ysteen geht an von den beiden betreffenden reinen Koponenten aus. Für den jeweiligen toffengenanteil ( Molenbruch ) einer dieser Koponenten gilt dann: x n n =, x =, () n + n n + n wenn it n und n die toffengen der entsprechenden an der Mischung beteiligten reinen Koponenten bezeichnet werden. Als ideales olares Voluen erhält an: V, id binärer Mischungen V. (), id = x V, + x V, In analoger Weise ist die olare nthalpie einer idealen binären Mischung durch den Ausdruck:, id gegeben, id = x, + x,. (3) V,id und, id x i sind also lineare Funktionen des Molenbruchs x i (Man beachte, daß gilt: = x ( i, j = ; it i j) ). Wie die leichungen () und (3) erkennen lassen, sind bei j idealen Mischungen i Falle des Voluens und der nthalpie die partiellen olaren Voluina V ( V / und partiellen olaren nthalpien ( /, i = n i ), n j i identisch it den olaren Voluina Koponenten: V, i und den olaren nthalpien, i = n i ), n j i, der reinen i V i,id = V, i,, i,id =, i. ( i ;) (4), = ine etwas andere estalt der funktionalen Abhängigkeit von der usaensetzung der binären Mischung besitzt die ideale olare freie nthalpie, id :, id = x µ + x µ + R ( x ln x + x ln x ), (5) woraus sich unter Beachtung von ableiten läßt: = ( für die ideale olare ntropie, id / ) n i 6

2 , id = x, + x, R( x ln x + x ln x ). (6) In Abbildung ist der Verlauf der olaren rößen V, id,, id und, id, idealer binärer Mischungen in Abhängigkeit vo Molenbruch x = x der als unabhängig gewählten Koponente graphisch veranschaulicht. Abbildung : Molare rößen idealer binärer ystee Funktion des toffengenanteils x = x. ( = V ; ; ) als, id ur therodynaischen Beschreibung von Mischphasen werden weiterhin die sogenannten olaren Mischungsgrößen eingeführt. Für eine beliebige extensive igenschaft einer aus N ix Koponenten bestehenden Mischphase ist die olare Mischungsfunktion definiert als die Differenz der entsprechenden olaren röße ix und der auf ein Mol der Mischung bezogenen röße der ungeischten reinen Koponenten x k Mit N i=, k : N ix = x k, k (7) k =, id liefert die obige Beziehung für den pezialfall eines sich ideal verhaltenden eisches für die olare Mischungsgröße ix, id den Ausdruck: 7

3 N ix,id =,id x k, k. (8) k = Aus leichung (5) ergibt sich unter Beachtung der Definition (8) die ideale olare freie Mischungsenthalpie ix, id einer binären Mischung zu: = R x ln x + x ln x ). ix,id ( (9) Analog erhält an unter Verwendung von (6) geäß Definition (8) für die olare Mischungsentropie idealer binärer Mischphasen ix, id den Ausdruck: = R x ln x + x ln x ). ix,id ( (0) Weil x i [ 0;] ( i =,), gilt stets 0 und 0. Die entsprechenden Kurvenverläufe für die olaren Mischungsfunktionen ix,id ix,id ix, id idealer binärer Mischungen sind in Abbildung dargestellt (Wie groß ist die teigung der ix, id - bzw. ix, id -Kurve für x gegen und gegen 0?). Abbildung : Molare Mischungsgrößen sich ideal verhaltender binärer Mischphasen ( = V ; ; ; ) als Funktion der usaensetzung. ix, id 8

4 wischen olarer freier Mischungsenthalpie, olarer Mischungsentropie und olarer Mischungsenthalpie besteht der folgende, als ibbs-elholtz-leichung bekannte usaenhang: ix,id = () ix,id ix,id Reale Mischungen: herodynaische xzeßgrößen Bei realen Mischungen beobachtet an nun aber eine Abweichung der geessenen Mischungsgrößen von den Werten, die an aus den leichungen (), (3), (5) und (6) berechnet. o findet an bei binären Mischungen z.b. häufig eine zusätzliche Voluenkontraktion. Diese Abweichung vo ideal berechneten olaren Voluen bezeichnet an als olares xzeßvoluen V. Auch die anderen olaren rößen (olare nthalpie, olare freie nthalpie und olare ntropie) weisen i allgeeinen einen solchen von Null verschiedenen xzeßanteil, bzw. auf. Alle vier genannten xzeßgrößen können sowohl positive als auch negative Werte annehen. ie hängen jedoch nicht linear von der usaensetzung ab; die Variationsöglichkeiten der zugehörigen Funktionen wurden an and vieler Messungen festgestellt. Nach de oben esagten sind die olaren xzeßgrößen ganz allgeein wie folgt definiert: = =. (),real,id ix,real ix,id Abbildung 3: ypen von isother-isobaren ( x ) -Kurven ( = V,,, ; 9 Kurventypen, : ohne Wendepunkte; Kurventypen 3, 4: it Wendepunkt). Bei niedrigolekularen Nichtelektrolytlösungen wird für ( x ) nur in seltenen Ausnahefällen ein Kurvenverlauf it Wendepunkt beobachtet. Noralerweise finden sich unter den Kurventypen für ( x ) nur die Verläufe geäß und.

5 wischen olarer freier xzeßenthalpie, olarer xzeßentropie und olarer xzeßenthalpie gilt ein analoger usaenhang, wie er durch die ibbs-elholtz-leichung für die entsprechenden olaren Mischungsfunktionen () gegeben ist: =. (3) Die a häufigsten auftretenden Kurvenverläufe für dargestellt., und sind in Abbildung 3 3 ntischung in binären flüssigen Mischungen s ergeben sich folgende Konsequenzen aus de. auptsatz der herodynaik für die tabilitätsbetrachtung in eine abgeschlossenen binären yste: Das yste soll sich in eine definierten Anfangszustand befinden. s erfolgt eine Auslenkung aus diese ustand. Betrachtet an ein abgeschlossenes yste, bei de V = 0, U = 0 und = 0 ( i = 0;;...; N) sind, so ist eine Auslenkung aus eine definierten n i Ausgangszustand dann stabil, wenn die ntropieänderung positiv ist ( > 0). at an ein therodynaisches yste vorliegen, bei de die Nebenbedingungen = 0, p = 0 und n i = 0 ( i = 0;;...; N) erfüllt sind, so führt eine Auslenkung aus eine definierten Ausgangszustand dann spontan in einen stabilen leichgewichtszustand, wenn die Änderung der freien nthalpie bei diese Prozeß abnit ( < 0). Die ntropie nit i stabilen leichgewichtszustand einen Maxialwert an, die freie nthalpie einen Minialwert. s gibt Mischungen, bei denen diese xtrea nur bei ntischung erreicht werden. Verschiedene ystee it Mischungslücke unterscheiden sich rein qualitativ voneinander. o gibt es ystee, die eine obere kritische ntischungsteperatur zeigen, aber auch solche, die eine untere, oder eine obere und untere kritische ntischungsteperatur aufweisen. I Folgenden sind die vs. x - Diagrae (Abbildung 4) verschiedener Mischungen it Mischungslücke dargestellt. Abbildung 4. Isobare vs. x Diagrae it (von links nach rechts): obere kritischen, untere kritischen, obere und untere kritischen nischungspunkt bei Auftreten zweier getrennter ntischungsgebiete und bei Auftreten einer geschlossenen Mischungslücke. 0

6 Bei ysteen it oberer kritischer ntischungsteperatur spielen (vor alle in kürzeren olekularen Abständen stärker zwischen gleichartigen pezies wirkende) van der Waals- Kräfte eine Rolle, die bei Überschreiten einer gewissen eperatur ok aufgebrochen werden, was gleichzeitig it einer ntropieerhöhung einhergeht. In der ibbs-elholtz- leichung schlägt sich dieses Verhalten i ix, id - er nieder. Bei binären Mischungen, deren Koexistenzkurve eine untere kritische ntischungsteperatur uk besitzt, können unterhalb dieses renzwerts Wechselwirkungen (z.b. Wasserstoffbrücken) doinierend werden, die zu eine nergiegewinn führen. rägt an für eine binäre Mischung die olare freie nthalpie der Mischung toffengenanteil x auf, so erhält an Kurven folgender Art (Abb. 5): gegen den Abbildung 5: Molare freie nthalpie einer binären flüssigen Mischung als Funktion des toffengenanteils x = x bei zwei verschiedenen eperaturen und konstante Druck. Die obere Kurve zeigt den Verlauf von ( x ) bei einer eperatur, bei der die Mischung über de gesaten usaensetzungsbereich als hoogene Mischung vorliegt, der zu gehörende Funktionsgraph entspricht einer Isotheren i ntischungsgebiet. Die obere Kurve in Abbildug 5 zeigt die olare freie Mischungsenthalpie bei eine bestiten vorgegebenen Wert des Drucks p und bei der eperatur. Dieses eisch zeigt über den gesaten usaensetzungsbereich Mischungsverhalten.

7 Die tabilitätsbedingung für binäre Mischungen ist gegeben durch die Relation: > 0. (4) Kurve b zeigt die olare freie Mischungsenthalpie der gleichen Mischung bei einer anderen eperatur, bei der das yste eine Mischungslücke besitzt. ibt an die beiden Koponenten in eine toffengenverhältnis zusaen, das eine toffengenanteil x entspricht, der in de von den Punkten A und A begrenzten Bereich liegt, so zerfällt dieses eisch, indestens, wenn keine kinetischen eungserscheinungen auftreten, in zwei Phasen it den usaensetzungen x und x. Die Kurvenbereiche zwischen A und B bzw. B und A arkieren den etastabilen Bereich. nergetisch gibt es dort günstigere Anordnungsöglichkeiten, der erfall in die beiden Phasen it den usaensetzungen x und x ist jedoch kinetisch gehet. wischen den Punkten B und B befindet sich der instabile Bereich. ier ist die ''Mischung'' kinetisch und energetisch instabil, und es gilt: < 0. (5) An den Punkten B und B (Wendepunkte) uß die zweite partielle Ableitung von ( x ) nach x notwendigerweise verschwinden, das heißt, es uß die leichung: = 0 (6) erfüllt sein. Bei eperaturerhöhung oder -erniedrigung gelangt an jeweils zu einer eperatur, bei der die vier Punkte A, A, B und B zusaenfallen. Diese eperatur wird obere bzw. untere kritische ntischungsteperatur genannt. An diese(n) ausgezeichneten Punkt(en) findet an: 3 = = = 3,, p p 0. (7) Für die olare freie xzeßenthalpie = x µ x µ R( x ln x + x ln x ) (8) ist it (4) die tabilitätsbedingung durch die folgende Ungleichung gegeben: + R + > 0. x x (9)

8 ur theoretischen Vorbereitung auf den Versuch sind neben den Lehrbüchern der physikalischen Cheie vor alle das Buch von Kortü und der Artikel,,Wiederkehrende Phasen'' (aus pektru der Wissenschaft, Juli 7/987) notwendig. 4 Aufgabe s ist die ntischungsteperatur eines binären eisches in Abhängigkeit vo Molenbruch zu bestien. In eine Diagra ist gegen x aufzutragen und hieraus der obere kritische ntischungspunkt zu bestien. 5 Ausführung Man beginnt nach Möglichkeit it der an organischer ubstanz reichsten Mischung und verdünnt diese dann schrittweise it Wasser. Bei der binären Mischung Phenol + Wasser füllt an in das herostatengefäß zunächst 6 g Phenol und l Wasser. Unter Rühren wird nun aufgeheizt, bis die Mischung klar wird. Diese ntischungsteperatur wird notiert; anschließend kühlt an langsa ab, notiert die eperatur, bei der die erste rübung auftritt und wiederholt das rwären und Abkühlen. Aus den auf diese Weise gewonnenen vier eperaturen wird der Mittelwert gebildet und aus der usaensetzung der Mischung der Molenbruch berechnet. Anschließend werden der Mischung 4 l Wasser hinzu gefügt und für die neue usaensetzung wie oben die ntischungsteperatur bestit. Diese schrittweise Verdünnung wiederhole an insgesat 0 al. 6 Literatur. Atkins, P. W., Physical Cheistry, Oxford University Press.. Barrow,. M., Physikalische Cheie, Bohann Verlag, Wien, Friedrich Viehweg & ohn, Braunschweig/Wiesbaden. 3. Brdicka, R., rundlagen der Physikalischen Cheie, VB-Verlag, Berlin. 4. Kortü,., inführung in die Cheische herodynaik, Verlag Vandenhoek & Ruprecht, öttingen und Verlag Cheie, Weinhei. 5. chäfer, K., Physikalische Cheie, pringer-verlag, Berlin, öttingen, eidelberg, New York. 6. Wedler,., Lehrbuch der Physikalischen Cheie, Verlag Cheie, Weinhei. 3

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE -1-7 HASENGLEICHGEWICHE UND HASENÜBERGÄNGE 7.1 Ein-Koponenten-Systee Verdapfen, Gefrieren, oder die Uwandlung von Graphit in Diaant sind Beispiele für hasenüergänge einzelner Koponenten. Noralerweise werden

Mehr

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG VERDAMPFUNGSGLEICHGEWICHTE: RAMM EINER BINÄREN MISCHUNG 1. Lernziel Ziel des Versuchs ist es, ein zu bestimmen, um ein besseres Verständnis für Verdampfungsgleichgewichte und Mischeigenschaften flüssiger

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

Physikalisch-Chemisches Grundpraktikum

Physikalisch-Chemisches Grundpraktikum Physikalisch-Cheisches Grundpraktiku Versuch Nuer G3: Bestiung der Oberflächen- spannung it der Blasenethode Gliederung: I. Aufgabenbeschreibung II. Theoretischer Hintergrund III. Versuchsanordnung IV.

Mehr

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2 hasengleichgewichte Definitionen: hase: Homogener Raumbereich, innerhalb dessen sich keine physikalische Größe (z.b. Dichte, Zusammensetzung, emperatur...) sprunghaft ändert. Das Berührungsgebiet zweier

Mehr

Physikalisch-chemisches Praktikum

Physikalisch-chemisches Praktikum Physikalisch-cheisches Praktiku Versuch: Oberflächenspannung (Tensioetrie) Datu: 28.03.2008 Gruppe: B23 ars Thiele, Matthias Wolz, Andreas van Kapen 1 Einleitung In diese Versuch wird die Oberflächenspannung

Mehr

B06A DAMPFDRUCK VON WASSER B06A

B06A DAMPFDRUCK VON WASSER B06A B06A DAMPFDRUCK VON WASSER B06A 1. ZIELE Wir aten euchtere Lut aus als ein. Müssen wir daür Enerie auwenden? Waru werden die Kartoeln in eine Dapdrucktop schneller ar? Was passiert, wenn Wasser verdapt?

Mehr

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1.

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Versuch 7/1 HYGROMETRIE 04.06.2012 Blatt 1 HYGROMETRIE Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Grundbegriffe Die Luftfeuchtigkeit

Mehr

Dieter Suter - 228 - Physik B

Dieter Suter - 228 - Physik B Dieter Suter - 228 - Physik B 4.5 Erzwungene Schwingung 4.5.1 Bewegungsgleichung In vielen Fällen schwingt ein Syste nicht frei, sondern an führt ih von außen Energie zu, inde an eine periodische Kraft

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

Physikalische Chemie III. Vorlesung F. Schneider

Physikalische Chemie III. Vorlesung F. Schneider Physikalische Chemie III Vorlesung F. Schneider 6. Auflage 2005 - I - Inhaltsverzeichnis Seite inführung...1 Thermodynamik realer Systeme...1 1 Gase...1 1.1 Fugazität reiner Gase...1 1.2 Fugazität und

Mehr

5.6 Kreisprozesse. Folge von Zustandsänderungen eines Arbeitsmittels Endzustand = Anfangszustand

5.6 Kreisprozesse. Folge von Zustandsänderungen eines Arbeitsmittels Endzustand = Anfangszustand 5.6 Kreisprozesse Große technische Bedeutung haben ärekraftaschinen (Motoren, Turbinen, Strahltriebwerke), d.h. Maschinen r Uwandlung von therischer Energie in echanische Energie. Gleiches gilt für Kühlaschinen

Mehr

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine 24 ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine gerade Linie. Die (:~). Kurve (verg I. Fig. 5) ist ein Parabel. Wenn nun d gröszer als a wird. wird die Kurve wieder steigen. Die

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

Physik und Chemie der Minerale

Physik und Chemie der Minerale Physik und Chemie der Minerale Phasendiagramme Mehrere Komponenten Segregation, konstitutionelle Unterkühlung Keimbildung Kinetik des Kristallwachstums Kristallzüchtung Literaturauswahl D.T.J Hurle (Hrsg.):

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1.

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1. Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Physikalisch-Chemische Praktika Daniell-Element 1 Grundlagen

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

2 Gleichgewichtssysteme

2 Gleichgewichtssysteme Studieneinheit III Gleichgewichtssysteme. Einstoff-Systeme. Binäre (Zweistoff-) Systeme.. Grundlagen.. Systeme mit vollständiger Mischbarkeit.. Systeme mit unvollständiger Mischbarkeit..4 Systeme mit Dreiphasenreaktionen..4.

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Klassische Finanzmathematik (Abschnitt KF.1 )

Klassische Finanzmathematik (Abschnitt KF.1 ) Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.

Mehr

Messsystemanalyse (MSA)

Messsystemanalyse (MSA) Messsystemanalyse (MSA) Inhaltsverzeichnis Ursachen & Auswirkungen von Messabweichungen Qualifikations- und Fähigkeitsnachweise Vorteile einer Fähigkeitsuntersuchung Anforderungen an das Messsystem Genauigkeit

Mehr

4. Grenzflächenspannung 1

4. Grenzflächenspannung 1 4. Grenzflächenspannung 1 4. GRENZFLÄCHENSPANNUNG 1. Aufgabe Mit Hilfe der Ringmethode soll die Grenzflächenspannung als Funktion der Konzentration einer grenzflächenaktiven Substanz gemessen werden. Für

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer Grundlagen der DURCHFLUSSMESSUNG ittels Heißfilaneoeter 1/9 Inhaltsverzeichnis: 1. Definitionen 1.1. Luftgeschwindigkeit 1.2. Gasenge 1.. Durchfluss 1..1. Massendurchfluss (Massenstro) 1..2. Voluendurchfluss

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Sebastian Pfitzner 13. Mai 013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz Betreuer: Michael Große Versuchsdatum:

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Phasendiagramme. Seminar zum Praktikum Modul ACIII

Phasendiagramme. Seminar zum Praktikum Modul ACIII Phasendiagramme Seminar zum Praktikum Modul ACIII Definition Phase Eine Phase ist ein Zustand der Materie, in dem sie bezüglich ihrer chemischen Zusammensetzung und bezüglich ihres physikalischen Zustandes

Mehr

Versuch: Siedediagramm eines binären Gemisches

Versuch: Siedediagramm eines binären Gemisches Versuch: Siedediagramm eines binären Gemisches Aufgaben - Kalibriermessungen Bestimmen Sie experimentell den Brechungsindex einer gegebenen Mischung bei unterschiedlicher Zusammensetzung. - Theoretische

Mehr

Name: Klasse: Datum:

Name: Klasse: Datum: Arbeitsblatt 10.1 Versuch 1: Man füllt eine mittelgroße Glasschale mit Wasser und legt vorsichtig eine Büroklammer auf die Oberfläche des Wassers. Anschließend gibt man mit einer Pipette am Rand der Glasschale

Mehr

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN INSIU FÜR ANGEWANDE PHYSIK Physikaisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße WÄRMELEIFÄHIGKEI UND ELEKRISCHE LEIFÄHIGKEI VON MEALLEN Eineitung In diesem

Mehr

Schmelzdiagramm. Grundlagen

Schmelzdiagramm. Grundlagen Grundlagen Schmelzdiagramm Grundlagen Bei Schmelzdiagrammen handelt es sich um flüssig-fest Phasendiagramme von Zweikomponentensystemen (binären Systemen). Dargestellt wird die bhängigkeit der Zusammensetzung

Mehr

Oberflächenspannung und Dichte von n-propanollösungen

Oberflächenspannung und Dichte von n-propanollösungen Oberflächenspannung und Dichte von n-propanollösungen Zusammenfassung Die Oberflächenspannungen von n-propanollösungen wurden mit Hilfe eines Tropfentensiometers bei Raumtemperatur bestimmt. Dabei wurden

Mehr

Synthese und Charakterisierung von binären Polyaziden

Synthese und Charakterisierung von binären Polyaziden Synthese und Charakterisierung von binären Polyaziden Gegenstand der vorliegenden Arbeit war die Untersuchung der binären Polyazide der p-blockelemente. Hierbei standen vor allem die Etablierung neue Synthesewege

Mehr

4. Legierungsbildung

4. Legierungsbildung Letzte VL: - Phasenumwandlungen im festen Zustand - Erstellung von Zustandsdiagrammen - Zweistoffsysteme - Kristallseigerungen - Hebelgesetz Heutige VL: - Eutektische Entmischung, eutektoider Zerfall,

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID Thermodynamik Anwendung einer ionenselektiven Elektrode auf LUORID die potentiometrische Bestimmung von luorid ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AU DIE POTENTIOMETRISCHE BESTIMMUNG VON LUORID 1.

Mehr

Siedediagramm binärer Systeme

Siedediagramm binärer Systeme Versuch Nr. 1 Siedediagramm binärer Systeme Praktikum der physikalischen Chemie der Universität Würzburg unter der Leitung von Dr. Roland Colditz im Zeitraum 01.03-21.03.10 Würzburg den 19.03.10 Gruppe:

Mehr

12. Gemische und Gemenge. Gegenstand: Ursache von Vermischung und Entmischung von Stoffen; chemischdynamisches

12. Gemische und Gemenge. Gegenstand: Ursache von Vermischung und Entmischung von Stoffen; chemischdynamisches 12 Gemische und Gemenge 12 Gemische und Gemenge Gegenstand: Ursache von Vermischung und Entmischung von Stoffen; chemischdynamisches Verhalten von Gemischen 121 Einführung Schauen wir uns zunächst Gemische

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

Versuch 21. Der Transistor

Versuch 21. Der Transistor Physikalisches Praktikum Versuch 21 Der Transistor Name: Christian Köhler Datum der Durchführung: 07.02.2007 Gruppe Mitarbeiter: Henning Hansen Assistent: Jakob Walowski testiert: 3 1 Einleitung Der Transistor

Mehr

4. Quantitative Analyse der Ligand-Bindungsstudien

4. Quantitative Analyse der Ligand-Bindungsstudien 4. Quantitative Analyse der Ligand-Bindungsstudien Im folgenden apitel sollen die grundlegenden analytischen Methoden zur Interpretation der experimentell gewonnenen Bindungsdaten vorgestellt werden. ie

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Abb. 1 Akustikprüfstand, gemessene Geschwindigkeitsprofile hinter der Mehrlochblende (links); Spektrogramm der Mehrlochblende (rechts)

Abb. 1 Akustikprüfstand, gemessene Geschwindigkeitsprofile hinter der Mehrlochblende (links); Spektrogramm der Mehrlochblende (rechts) IGF-Vorhaben Nr. 17261 N/1 Numerische Berechnung des durch Turbulenz erzeugten Innenschalldruckpegels von Industriearmaturen auf der Basis von stationären Strömungsberechnungen (CFD) Die Vorhersage der

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Formelsammlung zur Vorlesung Physikalische Chemie I (Thermodynamik)

Formelsammlung zur Vorlesung Physikalische Chemie I (Thermodynamik) Formelsammlung zur Vorlesung Physikalische Chemie I (hermodynamik) Ulrich K. Deiters Institut für Physikalische Chemie, Universität zu Köln 1 Symbole M N N A n p R V Molmasse eilchenzahl Avogadro-Konstante,

Mehr

Elektrische Leitfähigkeit

Elektrische Leitfähigkeit A. Allgemeines Unter der elektrischen Leitfähigkeit versteht man die Fähigkeit F eines Stoffes, den elektrischen Strom zu leiten. Die Ladungsträger ger hierbei können k sein: Elektronen: Leiter 1. Art

Mehr

Umrechnung der Feuchtegrößen bei Stickstoff und Druckluft

Umrechnung der Feuchtegrößen bei Stickstoff und Druckluft Reort Nr. 2 Seteber 2003 Urechnung er Feuchtegrößen bei Stickstoff un Druckuft Doh Pharaceutica Engineering Autor Dr. Wof Zieer wof.zieer@he.e Seite 3 Urechnung er Feuchtegrößen bei Stickstoff un Druckuft

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

VO-5. Organische Chemie 2. Priv. Doz. DI Dr. Wolfgang Schoefberger Johannes Kepler Universität Linz Altenberger Str. 69, 4040 Linz, Austria.

VO-5. Organische Chemie 2. Priv. Doz. DI Dr. Wolfgang Schoefberger Johannes Kepler Universität Linz Altenberger Str. 69, 4040 Linz, Austria. VO-5 Organische Chemie 2 Priv. Doz. DI Dr. Wolfgang Schoefberger Johannes Kepler Universität Linz Altenberger Str. 69, 4040 Linz, Austria. wolfgang.schoefberger@jku.at 89 Mesomerer Effekt verringert die

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Protokoll zum Physik-Anfängerpraktikum. Hygrometrie

Protokoll zum Physik-Anfängerpraktikum. Hygrometrie Protokoll zum Physik-Anfängerpraktikum SS2002 Versuch 7-1 Hygrometrie Assistent: Steffen Schwientek Sven Eschenberg/ 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen 3 3 Aufbau & Auswertung

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Flüssig/Fest Phasengleichgewicht binärer Systeme

Flüssig/Fest Phasengleichgewicht binärer Systeme Fest/Flüssig Phasengleichgewicht binärer Systeme 1 Flüssig/Fest Phasengleichgewicht binärer Systeme In diesem Experiment geht es um das Gleichgewicht zwischen festen und flüssigen Phasen in einem Zwei-Komponenten-System.

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Einkommensteuertarif. Herleitung der Zahlenwerte

Einkommensteuertarif. Herleitung der Zahlenwerte Anhang D: Steuertarife in Deutschland Einommensteuertarif Herleitung der Zahlenwerte Prof Dr Andreas Pfeifer, Hochschule Darmstadt Februar 015 In diesem Beitrag wird erlärt, wie die Berechnungsformeln

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit.

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit. 1. Schachbrett voller Reis Wir haben uns für mehr als 1000 kg entschieden, da wir glauben, dass aufgrund des stark ansteigenden Wachstums (exponentiell!) dieses Gewicht leicht zustande kommt. Anfangs eine

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Technische Universität München Lehrstuhl I für Technische Chemie

Technische Universität München Lehrstuhl I für Technische Chemie Technische Universität München Lehrstuhl I für Technische Chemie Klausur WS 2012/2013 zur Vorlesung Grenzflächenprozesse Prof. Dr.-Ing. K.-O. Hinrichsen, Dr. T. Michel Frage 1: Es ist stets nur eine Antwort

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) Physkalsh-heshes Praktku für Pharazeuten C. Nahberetungstel (NACH der Versuhsdurhführung lesen!) 4. Physkalshe Grundlagen 4.1 Starke und shwahe Elektrolyte Unter Elektrolyten versteht an solhe heshen Stoffe,

Mehr

TU Ilmenau Chemisches Praktikum Versuche Binäres Phasendiagramm. Schmelzdiagramm

TU Ilmenau Chemisches Praktikum Versuche Binäres Phasendiagramm. Schmelzdiagramm TU Ilmenau Chemisches Praktikum Versuche Binäres Phasendiagramm V4 Fachgebiet Chemie Schmelzdiagramm 1. Aufgabenstellungen A. Nehmen Sie die Abkühlungskurven verschiedener Gemische aus den Metallen Zinn

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

Versuch 17.2 Der Transistor

Versuch 17.2 Der Transistor Physikalisches A-Praktikum Versuch 17.2 Der Transistor Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 11.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007 Wirtschaftsstatistik Konzentrations- und Disparitätsmessung 16.10.2007 Begriffe Konzentration und Disparität Laut Oxford Advanced Learner s Dictionary by OUP, bzw. WordNet by Princeton University concentration:

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Betriebswirtschaftliche Blätter Fachzeitschrift

Betriebswirtschaftliche Blätter Fachzeitschrift Erwartungswert Auf richtige Interpretation kommt s an von Dr. Christian R. Sievi Der Erwartungswert spielt im Glücksspiel, etwa an Einarmigen Banditen, eine große Rolle. Für Sparkassen ist er wichtig bei

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Dissoziation, ph-wert und Puffer

Dissoziation, ph-wert und Puffer Dissoziation, ph-wert und Puffer Die Stoffmengenkonzentration (molare Konzentration) c einer Substanz wird in diesem Text in eckigen Klammern dargestellt, z. B. [CH 3 COOH] anstelle von c CH3COOH oder

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

ComStage ETF Commerzbank Commodity EW Index TR. Einführung

ComStage ETF Commerzbank Commodity EW Index TR. Einführung CoStage ETF Coerzbank Coodity EW Index TR Einführung Der Coerzbank Coodity EW Index TR (der Index ) ist ein Index, der die Wertentwicklung von 16 Rohstoffen nachvollzieht, die durch Terinkontrakte abgebildet

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Membran- und Donnanpotentiale. (Zusammenfassung)

Membran- und Donnanpotentiale. (Zusammenfassung) Membranund Donnanpotentiale (Zusammenfassung) Inhaltsverzeichnis 1. Elektrochemische Membranen...Seite 2 2. Diffusionspotentiale...Seite 2 3. Donnanpotentiale...Seite 3 4. Zusammenhang der dargestellten

Mehr

AC-Verhalten von Halbleiterbauelementen

AC-Verhalten von Halbleiterbauelementen Interdisziplinäres Laborpraktikum Master ET Versuch 76 AC-Verhalten von Halbleiterbauelementen Institut für Nanoelektronik Technische Universität Hamburg-Harburg Inhalt. Einleitung. Literatur. Der Transistor.

Mehr

Versuch 22. Luftfeuchtigkeit

Versuch 22. Luftfeuchtigkeit Versuch 22 Luftfeuchtigkeit 1 1 Grundlagen Infolge der Verdunstung an der freien Wasseroberfläche der Erde hat die Atmosphäre immer einen gewissen Feuchtigkeitsgehalt. Diese Feuchtigkeit wird gemessen

Mehr

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik . Einführung Die numerische Mathematik, kur Numerik genannt, beschäftigt sich als Teilgebiet der Mathematik mit der Konstruktion und Analyse von Algorithmen für technisch-naturwissenschaftliche Probleme..

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Demonstrationsversuche zur Lehrveranstaltung. Strukturaufklärung mit optischen Streuverfahren

Demonstrationsversuche zur Lehrveranstaltung. Strukturaufklärung mit optischen Streuverfahren Demonstrationsversuche zur Lehrveranstaltung 19.06.08 Schwerpunkte: (a) Vergleich der Schwingungsbanden des Sulfations (SO 2 4 ) - in kristallinem CaSO 4 2 H 2 O - in kristallinem CaSO 4 - in wäßriger

Mehr

lindab we simplify construction Lindab Solo - Einfach der natürliche Weg

lindab we simplify construction Lindab Solo - Einfach der natürliche Weg lindab we simplify construction Lindab Solo - Einfach der natürliche Weg Einfach der natürliche Weg Stellen Sie sich eine Temperatur steuernde Kühlbalkenlösung vor, bei der Kühlung und Heizung gleichsam

Mehr

Beteiligung der Beschäftigten an betrieblicher Weiterbildung. und Unternehmensgröße

Beteiligung der Beschäftigten an betrieblicher Weiterbildung. und Unternehmensgröße Beteiligung der Beschäftigten an betrieblicher Weiterbildung und Unternehmensgröße Befunde auf der Grundlage von CVTS3 Friederike Behringer, Gudrun Schönfeld Bonn, Februar 2011 1 Vorbemerkung Im Folgenden

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr