Binäre.Rechenoperationen Prof. Dr. Gies.ecke

Größe: px
Ab Seite anzeigen:

Download "Binäre.Rechenoperationen Prof. Dr. Gies.ecke"

Transkript

1 INHALTSVERZEICHNIS fnhaltsverzefchi\/ts Binäre.Rechenoperationen Prof. Dr. Gies.ecke Inhaltsverzeichnis Einleitung 1.1 ZahJcndarstel1ung im Stellenwertsystem. 1.2 Umwandlung vo[\ Nachkommastel1en. 1.3 Zahlen mit gart2zahjigem und gebrochenem Anteil 1.4 Oktalsystcm 1.5 Hexadezimalsystem Dualsystem 2.1 Wertebereich und Quantisierung 2.2 NachkommastelIen bei Wandl ung von Dezimnlwerten 2.3 e rforderliche VorkommastelIen 3 Addition im Dualsystem 3.1 Halbaddierer Logik. 3.2 Volladdierer Logik. 33 Addierer mit paralleler Ubertragslogik Schaltbild mit "GeneraleN und "Propagate" parallele ÜbertragSlogik. 3.4 Multioperandcnaddition. 3. <1.1 Kettenstruktur Baumstruktur Carry-save Addition bit Wallace-tree 3.5 Inkrementierer (lncrementer) mit Volladierern schneller Inkrementierer mit paralleler Obertragslogik Anwendung des Inkremenentierers Negative Zahlen 4.1 Definition negativer Zahlen 4.2 Nachteile der Vor7.eichcnBclragsdarstellung 4.3 Modulo zur Subtraktion Bei piel : Dualzahlenformal n=2 m= Zweierkomplement-DarsteUung Formatumwandlung. Möglichkeit Formatwnwandlung - Möglichkeit Stellenerweiterung Stellenverkürzung 4.5 Offsetbinäre Darstellung. 4.6 Negation von Werten in ZK-Darstellung. 4.7 umsch.altbaren Addierer ISubtrahierer. 4.8 Me rfachaddition/ -subtraktion Bsp. Integrator Bsp. Uberlaufskennline 4.9 Überlaufserkermung 4.\0 Sittigungskennlinie. 5 Multiplizierer \

2 Ci) EINLEITUNG 1.2 Umwandlung von NachkommastelIen '" EfNLF.TTUNC 1 Einleitung analoges Signlll _ N-Bit SljN- 1 A/D- Wandler Zeitdiskret --Abtast-Takt BilN_2 BiJ1 SilO digitales Signal 1.2 Umwandlung von NachkommastelIen Umwandlung der Nachkommaslellen zu den NachkommaSleilen der neuen Basis fortlaufende Multiplikation mit dem Wert der Basis des neuen Stellenwertsystems auftretende Überträge (;;Vorkornmastellen der Multiplikationsergebnisse) stellen in der Reihenfolge der Stellenwerte von,-i beginnend bis,-m I die Ziffcmwerte des neuen Siellenwertsystcms dllr fo rtlau fende Multiplikation wird immer ohne die evl!. auftretenden Überträge ausgeführt Abbruch der fortlaufenden Multiplikation bei einem Multiplikationsergebnis, bei dem NachkommastelIen Null sind oder bei ausreichender Stellenzahl (ausreichender Genauigkeit) Off.'id -Binär-:s-Fonnat Typische Ausgabe eines A/D-Wandlers. Ergibt mit Hille von Negation das Zweier Komplement. "" 101) Abbildung 1: Offset BinlIres Format Beispiel: (0,375)10 =.0 (x)2 'II = 10 0, ,75 2 0,5 2 J/J/J 0,750 1,5 1 J J J o. o 1.1 Zahlen darstellung im Stellenwertsystem Zilfernwerte{Digits) (im allg. ganzzahlig) z: Zi ffernj nzjhl dargestellter Wert Z (represented value) typ.: dezimal I Stellenwertsystem (Positional Number System) I ganzzahlige Stellenzahl (Numher of Digits) I gan 7.7. h!iger Steilenindex i mit / " - ' X, additiver Beitrag einer Stelle X, "" x,,' n: MSD m: LSD Stellenwertigkeiten (Weighting Factors),J (Potenz der Basis) r: positive g<lnz7.. 1hlige 1 'sis(r,)d i x) mit r 2: z ].3 Zahlen mit ganzzahjigem und gebrochenem Anteil Zahlen mit ganzzahligem und gebrochenem Anteil getrennt wandeln. Bsp. (38,375)10"" (.rh (100110)2 + (, Ol1h = { ,0lIh J (38\0... loqiioh {O,375)HI 1.4 Oktalsystem PN-Sequenz-G ner<ltor2 J (,Ol l h Diagramm: siehe Mitschrift Basis r = 8,Ziffern: Oj E (0, 1,2,..7)... rtichtredundantcs Stt'llenwertsystem,-, Wert Z = L Oj j: g<lnu..,hlig J"' - '" ' m: Anzahl der NMhl:ommatcll..... d... ""'''''' Sldle,,,... nsystems 'I'N: I'..,,,do Noi

3 1.5 Hexitd:limalsys!em 2 DUALSYSTEM 2.2 Nllc"kvmmstellen bei Wandlung von Dezima/wertcn 2 DUALSYSTEM Eine Oktalziffer ersetzt 3 benachbarte Dualziffem. Beispiel geg: Dualsystem Oktalsystem '" Z " OC d nun' D I-Ok t, I Z'ff! ern d)'i.2 d ' +l d.1i+n 0, t 0 2 t t t 7 Rsp.: positives Dualfonnat 8' 8" ( 1110,0Ih = (X)8 rii = 2rn ru = 8 --( 1 ges: a) Z....- (Dczimalangabe) b) Quantisierungstufenhöhe q (Dezimalangabe) Ergebnis: a) Z"'H "" 63,875 blq=o, Nachkommastellen bei Wandlung von Dezimalwerten Bestimmung der erforderl ichen AnzahlC:von Nachkommastellen m bei Wandlung von Dezimatwerten... GenaUigkeit sol! nicht verringert werden q =2 '" Dualsystem: nl ' mnadrhj."'ijl,tdl.n Dezimalsystem: : 1.5 Hexadezimalsystem Basis 16 hj E (0, 1.2,..,9, A,.., F) Dualsystem!-fe)(dezi mi\ lsys tem Bsp.: pos. Dualza hlfonnat 2 Dualsystem 2.1 Wertebereich und Quantisierung.-, WertZ = L Iz j 16i j=_rrl d) dl d 1 do. d _ t d_1 d _ J d _4 " J / " V",komm"ld l n m No\(hk"mma<I" H. n Wertebereich: Minimum: Z""n = 0 Maximum: Z",u = 2 n - 2-' Quantisierung:: Quantisierungsstufenhöhe '" q '" 2- '" :: llsb maximaler Quantisierungsfehler bei einer durchgeführten Rund ung ± LSB::±2-"'-1 20/10/09 Gcnnuigkeit: I. 10-' = Bedingung zum Erhalt der Gen<luigkeit: Qu;:mtisicrungsstufenhöhe im Dualsystem Genauigkeit im Dezimalsystem 2-'" s: 1O- l llog 2 - m log11o-'i ( - 1) _ logg x 111 2: - log 2 10-z _ In x _ logto x 1o&, x - log. b log2 X - In m > _ log lo 10-' =_ ----=-=--- - IOSt02 log10 2 nl > -'- "'3,322 ; - loglo 2,m,,- cd/rot;,.." ceil(3,322 2 ccilillg(ceü): Aufrunden auf nächste g'ulze Zahl. wenn keine ganze Zahl sich schon ergab. naujgkejt im Dezimalsyslt:m Anzahl NachkommastellO-l len im Duals stern _ 1 (ganzzahlig 1 inleger) = 0, = 0, = 0, Quantisierungtufenhöhe im Duals stem 2- "' = q 2 = 1 (ganzzahlig / integer) 2-4 = 0, :::: 0, =

4 2.3 erforderliche Vorkommastellen 3 ADDITIOl\' IM DUALSYSTEM 3.2 Volladdierer 3 ADDITION IM DUALSYSTEM 2.3 erforderliche VorkommastelI en Bestimmung d er Anzahl der zur Wertedarstellung erforderlichen Vorkommastellen -> bestimm! den gnnz7..ahligenanteii 2"-12" ":-.!;\Chl:"",,,,,,,,t.. ll,,,, max. darstellbarer Wert = 2" - 1 dezimaler \"krt ::: n ur der Wert der VorkommastelIen der De7jma lzahl 13o?dingung: Beispil'l: geg: ( ,21345)10 2" - 1 ;:: Wert 2" ;:: Wert + l ild In >ld(wert +l) ::::= ceil n = ai/ I Wert + 1) ;:::: r.eil(3, (Wert + 1) log l0 2 ges: a) Erforderliche Anzahl Vorkommastcllcn 11 b) Erforderliche Anzahl Nnchkommastcllen m Ergebnis: a) 11 = 24 b)m:z 17 3 Addition im Dualsystem wichtigste Rechenoperatlon fast ilue Rcchenoperation werden in Addition überfuhrt (Schlebeoperation nicht) AdditioIlSregeln einer einzelnen Stelle i - 1. Summand ";, 2. Summand b" SlUnmenstellesj - Ausgangsübertragsstdle(Carry) c - aj,b;,ci+ ], Si E O,l 3.1 Hajbaddieter 2' 2' " 2' J ld: log logik SummensteIle EXOR Ausgangsilbertragsstelle UND 3.2 Volladdierer " _-W_ 5i b j U Stelle n mit Eingangsübertrag Cj c, " b, " C; J J J J J J 1 J J 1 Eingänge Ausgä.ng Logik Symbol der Volladdierenelle Q; b; ==:L..2J- n B =1 _s,=(a,ebj)fficj " C... l = (ai EI> b;). Ci + 11, b; -.,[""- L Eingänge AlIsg;inge 7 8

5 3.3 Addierer mit paralleler UbertT<lö slogik 3 ADDITION IM DUALSYSTEM 3.J Addierer mit paralleler Übertr,1gsJogik 3 ADDiTION IM DUALSYSTEM Bei spiel, 4bit Volladdierer po }" Bedeutung der Signale: "Gener.lte" g'+ I: kennzeichnet einen d urch die heiden SUmmanden der Stelle bei kombination yon 111 = 1 und b l = 1 ert.cugt Übertrag. NPropolgoltC"" PI+I: (;Weiterleiten) kennzeichnet einen VOll einer niederwcrtigen Stelle weiterzuleitenden Übertrag. im Falle dass dieser /l ichi an der aktuellen Stelle gerade kompensiert werden kann Übertragu11gsg1cichung CI,.\ == (ai e bi) 'Ci + ai' bj Schaltbild mit "Generate" und "Propagate" -Pi " -Si+1 }U } parallele Übertragslogik Eingangsübertrag; CO = beliebig Stelle 2 : ' I = gl + CO' PI... Logik hat 3 Eingange Stelle 2 t : '2= gz+ci'p2 ==> C2 = g2+8\'p2+co'pi'1'2... Logik hat 5 Eingänge Slelle2 1 : CJ = g3+ C2'P3 =) c3 == gj+g2'p ", + gl 'I' P:' \-;O' PI'/'2 ' Pj... Logik hai 7 Eingänge Jedes Logikele rncnt hat eine Verzögerung von 10.. Verzögerung "" + + ==36+U n LS/dl.,i/U.",SI.II." I.W,SI,II, 16: Norm verwge =g Stelle 2 1 : (4 = 84 + C3' P ==> c = ' p + 82' Pl ' P P2 ' P3' P4 + co PI' PZ' P1' P4 -. Logik hal9 Eingänge Pfade Verzögerung = Verzögerung "- Stcl!cnzahl aj,b "... s,' j,bj -- '1!o '/... 5; _ 16 Cj ci+\ _ Ripple Carry Adder (Addierer mit seridlcr Übertraglogik) 27/10/ Addierer mit paralleler Übertragslogik eng!.: "Carry-Look-Ahcad-Adder" 46 Laufzeit Ilnnbhängig von der Bitbreite Verwendung der internen Signale "Gl!rrll!ra te" gi+! und "Propagate" Pjl des Vollad Prinzip: dierers. 9 10

6 3A Mulriopcrandenaddition 3 ADDITION 1M DUALSYSTEM 3.4 Mulfioperanderwddition 3 A DDlTION 1M DUALSYSTEM M SB Grundelement Volladd ierer: -.. <'_. - L "!: " - " L g,,+1+ 1 (3- Erzcugun "-- E;j" n <. Erzeugun - - g 1,,1 g. " "- Erzeugun "-- '0 1 3_' Multioperandenad d ition,-sb einfache Schaltung:.. b +< + d... parallele Addition von mehr als 2 Operand en zur gleichen Zeit mit rein kombinatorischer Logik Anwendung 03/11/09 Mischung von Signalen (z.b. Überblenden von Bewegtbild ern) Realisicnmg einer sch ndlen Multi plikation mit konstantem Faktor Array-Multiplizierer (par.lile Multiplikation m it reiner Kombinatorik) Beispiel pilrallele Add ition von 4 Operanden mit 4 Dualstellen O perand I: 0) ao Operand 2: b) b 1 l.'fl Operand 3: '3 '2 Cl Co Operand 4: d Sunune: 53 S2 Sj So Kellenstruktur, b "'./ G j 11 12

7 3.4 Mu/t;operandenaddition 3 ADDmON TM DUAlSYSTEM 3.4 Mullioperandenaddition ] ADDtT/ON TM DUAlSYSTEM Schaltbild MSB.J.,J.11 J,,,I D c+ s D -, D (+ S D._1> D c + s J j,_. "J n, j,_.,., D c+ s Üper>lnuenanuhl p Bi/brei/e 11 OperQIldel!ridrlulIg 2 Oper... nden 26. letzter Operand 26 m.ittlere (p - 3)Operanden 26 Bitbreiten richtung LSB Übertragsausgang 16 MSBcj -- s;= 16 m.ittlere (11-2) Bits 26 Summt im ßcispie l:.,j., I D c+ s.-. "j D ", "J.-. D,., ::= (p - 3) 2.6 -= p == p = (11-2) 26 = 26 + n = n = P ' = (p+ n) = (p - 1) 26 + (1'1-1) 26 == l26 LSB Saoumstruktur Schaltbild MSB.11 F9 r",11 F9 j,_. F9 ohn E' C LA: 106 mitcla: Carry.save Addition,, d / / G.1.,1 F9 r" olj F9 "J j,_. F9 / G J G.,1., I F9 r",,l,,i F9,-. "J F9 Darstellung der Zwischenergebnisse in der "Stored-carry-Oarstellung" (kur...: SC-Darstt>llung) Kennzeichen der SC-Darstellung: L5ß Basis r = 2 ZiffemwertesF E (0;1;2) Ziffemanzahl:> Basis... redundate ZahlendaNteIlung 13 14

8 3.4 Multiopt'randenaddition 3 ADDmON 1M DUALSYSTEM 3.4 Multiopcrandenaddition 3 ADDlTION 1M DUALSYSTEM binäre Codierung der Ziffemwerte mit 2 leitungen pro Stelle Ziffer binlire Codierung, E (0;1;2) s E (0; 1) E (0; I Bits dcr Storect-Carry-Darstellung hf.'reits vorhallden MSB Stelle i Stored carry D<lrstellung RR W j/ _SI', j j sf sf StelJei I- 15B 4 Operanden (a, b, c, d) Schaltbild MSB 'l,:. d G Carry". \.I j r"o" \,J... I,.u, G "Stored Carry"- j j _PMm" G normaler Adder (sinn voll CLA) LSB Rilckwandlung eines "stored carry" Wertes durch gewölmlkhe Addition, bei der ein eventueller Übertrag der MSB Slli'lle ignoriert wird.jj.j.1u R R R.1U R U SC - Adder S_ l... si 56 + S;_1... sf s& S_l... SI 50 Bsp.: [0101[5C = [ c = [122115c ;:: [21011sc = [2011 [5C = [SIlO [1 221 hc = " I.c +...JU.lJl (Übertrag ignoriert) [ "li/spricht [5110 Bsp.: 4-Opcranden-Addition mit SC-Addition oberste Stufe: Übertr:lgs<'ingang kann mit als Summcndngang genutzt werden.,,1 '-:/.,,I j._:/. "j '-:/.,,I Co R R R R J j._. /j j._. / j j._. /. R R R U ") ") ") "I "j SC - Adder op/impf CUl -!lilder ls 16

9 3A MuJtioperandenaddition 3 ADDITION 1M DUALSYSTEM JA MuJrioperandenaddition 3 ADDmON IM DUALSYSTEM Schaltbild Baums truktur MSß D 0+, D I- ' oj D ", j._. ", D ",,.I j._. D 0+, D Operandenanzahl p Bi/breite n OperQ/ldenrich/ ung 2 Operanden 2 letzter Operand 26 mittlere (p - 3)Operanden 26.,.J j._. c+ S.ll D 0+, J j._. D 0+, "J j._. D 0+, = (p - 3) 26 "" 46 + p = p LSB Schaltbild MSB.11 M r",.1,.1 M.,J j._., b d / / G G / G I LSB ßilbrei/enrichlung LSB Ubertragsausgal'8 16 MSBcj... Sj= 16 mittlere (11-2) Bits 2A Summe = (11-2) 26 ::: 26+n ,. n 2ö -26 M ohne CLA: 106 mitcla: 86 "J M im Beispiel: = p 26-2+n = (p + n) = (p-i) 26 + (11-1) 26 = Carry..\Ve Addition Darstellung der Zwischenergebnisse in der nstored.carry Darstellung n (kurz: SC-Darstt>\Iung) Kennzeichen der SC-Darstellung: Ba.sisr::::2 Zjffernwerte sfc E (0; 1; 2) Ziffernanzahl > Basis -. rcdundatc ZahlendarsteIlung 13 14

10 3.4 Mul!iuEfandenaddition J ADomON IM DUALSYSTEM 3.5 Inkrementierer (Incremen/er) 3 ADDrTlON 1M DUALSYSTEM Pfade durch das Netzwerk: bit-Wallace-tree Opera!\den a... g SteIleiH / \ / mi/ ela Stelle; Stelle ;-1 10/ 11/ 09 Symbol eines Grundeleme ntes j, Is:"': j J j si Format der kaskadierten "Stored-carry" D<lrste!Jung Basis r = 2 Ziffern E (0,1,2.3) -> redundantes Zahlcnformat. Verschallung von 3 benachbarten Stellen Stelle i+2 Stelle i+1 Stelle i 7" i+3 i-2 i-1 s n-bit CLA. Addierer s s Si sr Si+2 Si+1 Si -- längster Pfad 2+3+2=7.6. Verzögerung 7t:. + 3t:. + 4t:. = 14t:. (uffilbhängig von Stellenanzahl) 3.5 Inkrementierer (lncrementer) Rückblick: Vol!addicrer Verzögerung o.b ',b 'i ' i Sj 28 Ci+! 36 Si 16 Ci+! 28 Funktion: AllwendUl1g: Addition des Wertes von einer Stelle (im Allg. LSB) bei ganzzahlig ErhöhWlg um 1 in Kombination mit Register in der Rückführung als Zähler Rundung von Ergebnissen in der Stellen zahl 17 18

11 3.5 Inkrementierer (Incremen/er) 3 ADDmON IM DUALSYSTEM 3.5 Inkrementierer (lncrcmenter) 3 ADDlTlON 1M DUALSYSTEM mi t Voll.. dierem.,j,) J.,),j 0).LU.J,) L, U <+, U c+, U <+, U j"" j" j" r r j" '; (ai (l) b;) tjj Ci Ci+! {lij $ bi)'c;+lii. b i b, 0 -, VCffilzjachung '; a i ID Ci Ci l l lii' l j schneller InkrementiereT mit paralleler Übertragslogik (Carry- Look-Ahe.. d -Incrcmen ler ) c+, j" r Signal "Generale" gi+ l: existiert beim Halbaddierer nicht. weil ein Operand keinen Übertrag generieren kann Signal "Propagate" pi+l: Übertragsweiterleitl.lng, Weiterleitung dann, wenn Operand 11; = 1 ist -0 PH. I Schaltung fur eine Stelle mit "Propagate": " +' " cr 8]--- " Schaltbarer Incre menter 4 Stellen Übertragserzel.lgl.lng, Stelte 2 : f 0 kein Inkrement Stelle 2 Co = \1 Inkl'('nwnt { CI = CO'P I "",o ao Ste]Je2 1 Stelle 2 2 {C2 = C\ ' P2 "" '1 ' 11 1 "" '0'110 IIj {'3 = Cl ' P = (2'(/2 = CI> 110'(/1 ' (/2 " 17/ 11 / Anwendung des lnkremencnticrers I s steuerbarer und vorladbarer ZJhler 1I_ I-Zählen n-bit Inkrcmcntic- / O-nicht - cer Zählen.. So Ladewert ----:.,,----'---;;--, I-Laden/ 0- nicht Laden _ """-- Takt "! Zählerstand Modl.llo-Funktion Divisionsrest-Funktion für ganzzahligen Quotienten Verhl\l ten bei Überschreitung der erforderlichen Stc!lenzllhl des Ergebniswertes, Modulo Operation. "Umschlagen" des Ergebniswertes tritt auf (engl. "Wrap around") z.b. Zahlerüberlauf oder Wertebreichsübcrlauf bei Add- bzw. Subtraktion... Modulo-Funktion Modulo-Funktion für positive Operanden x;y;k: positive reelle Zahlenwerte, Modulus k als reelle positive Zahl frei wählbar Funktion hrf();integer part.. Vorkommi'lsiellen,. des Quotienten r,immer Ganzzahlig Funktion / fqco=fractional part = Nachkommastellen, des Quotienten,immer < 1 Definition und Bildung des Modn!o-Ergebniswcrtcs y = x nrod k=k /rac(i) Wertebereich des Modulo-Ergebniswertes do /roc{f) < 1 ist, folgt für k /rqc( ) < k Modulo Ergebnis wert y ist inrmtr kleiner als der Modulus k. Insgesamt gilt für den Wcrtebereich von y OS y<k Quotient f bestehend aus Vorkommastellen und Nllchkommastel1en zusarnmen5etzbar als k, /rac("i:) -. Ersetzung in der Modl.llo-Fnrmel y == x k y =.r /II{NI k 20 int(i) + /rac(i) x., "k - mt("k}

12 03.5 Inkrementierer (fnc;rt'menter) 3 ADDITiON IM DUALSYSTEM 35 Inkrementierer (Tncrementer) J ADDITION fm DUAL5y-rI::M Bsp.: 10 mod 4 10 Übung: 4-Bit-Adder Addition ganzzahliger Operanden (Angabe als Dezimalwerle) geg.: "l a=7 bl u::=9 'l CI "" 13 dl a = 15 8,5mod lo x 8,5 y 11 mod 11 33modl l für positive Operanden kleiner als Modulus -- keine Verändenmg 10 o o O:S: x < k y-' Modulus k im Dualsystem (1=2) bei Ausnutzung des vollständigen Ergebniswertebereichs Ergebnisformat (Ergebnis Zähler oder Addierer) MSB LSB g" : Summe s a ls Dezimalwert Lg. : b= 8 b=7 b=5 s = 15 5= Summenkennlinie eines 3-Bil Addierers Addition v()n 2 gan7.zah ligcn Operanden s=(u +b)lilud16 s = s::::(ii+b)mods n s ::= (a+ b) mud8 5 "" b"" 15 resultierender Modulus k LI k 2_ 2_ c(cw_,_,_tigek_'_i _' d_'_'_m_s_b._s_',_,_"cl_---' sbrrd:!... u = = M Zähler mit m NachkommastelIen Zähler mit n Vorkommilstellen keine Nachkommastellen m "" 0 Modulus hier k = 1 2 MSB""22-1 ;-"P,,,,! y(i) bl.w. y(i + 1) [y(i -l)+i1mud2 n [y(i)+ IJ mod2 n 01/12/09 s m, 3 2 (hierldam=o) 2 = 2 = a, m 2-2 '" Addierer milli Vorkommllstellen Su mmct"lwcrt der Addition: s = [u + b[ mud 2" Multiopcrandenaddilion (a, b,c,d,... ) mit Addierer mit TI Vorkommastellcn s = [u + b + c + d mod 2 n o L-r-r-r-r-r-r-r-t-t-t-t $..,... I,

13 DE[ii:'iml'tionJ 3.5 lnkrt>mentiert!r (Incremen/er) 3 ADDmON 1M DUALSYSTEM 4 NEGATTVEZAHLEN Daraus folgt für den größten möglichen Summenwert ISmu - 2 (Wertigkeit der MSB-Stelle) (Wertigkeit der 15B-Stel1e) I Prinzipieller Aufba u NeO btw. De o digitales Steuerwort Anwendung der Modulo-Operation saldierender Modulo-Addierer I Mod ujo-akkumulator I Modulo-Integrien>r Anwendung J: gesteuerte Dezimation empfangener digitaler Datenströme analoges :xa n gss i - - "'''''''''' - 01 fester Abtasltakt """"" saldo aufaddieren EntscheideT l:i:::j --- Bits >0 <0 I Phasendelektor I Modulo Integrator Startwert d. Registers (Start Phase) Startwert CLK I Filter j analogt's Sinussign,1 Funklionsweise des Modulo-lntegralors als steuerbarer Takttciler digitales Steuerworl,Addi,re, I j b::::;::j--;---> ----;;- R'g"'" ----,,---- Adresse Abtasttakt I n+m Bit Hegister Startwert laden Wahl Abtastzeitpunkte '" Ausgangstakt Steuerwort... SleuffIVorl mittlerer Ausgangstakt (Ubertragstakt) = TOIktfrequenz ModuJus AIlWl"IlduIlg 2: Numerisch gesteuerter Oszillator bzw. NCO (engl. Numcrically ControlIed üscijiator) oder Bezeichnung DCO (engl. Digital Contmllcd C>scillalor)... digitales Gegenstück zum Bauteil dc5 spannungsgesteuerten Oszillators bzw. VCO einstellbarer Frequenzbereich; Sleuerworl Sin usfrequenz = Taktfrequenz Modulus Sil1usperiode Modl/lus "" Tak/periode $Jrucrwor l Taktfrequenz o :s Sinusfrequenz < 2 1(I,"g,"Ablo.I/!o("onm 08/12/09 4 Negative Zahlen 4.1 Definition negativer Zahlen - Minuszeichen (Dezimal) Negation aller Stellenwertigkeitcn... Vorzeichen ßcotragsdartellung 23 24

14 4.2 Nachteile der Vorzeich",n-Betr.lgsJarstdlr.mg 4 NEGATrvE ZAHLEN 43 Modu/o zur Subtraktion 4 NEGATIVE ZAHLEN Duah:anlen: Bsp. Format V Dez. o o o + 1 o o 1-1 o Kennzeichen: - doppelte Null (-0;+0) 1 Bit zustzlich fur Minuszeichen - Spiegel ung der ßetragsstellen an der doppdlen Null 4.2 Nachteile der Vorzeichen-Betragsdarstellung seperate Auswertu\\g des Vorzeichens zur Erkennung einer evtj. erforderlichen Subtraktion seperate Auswertung des VO(7.cicheos bei Multiplikation und Division zusätzlich. zum Addiererrechenwcrk (Übertraglogik) ist noch ein Subtrahiererrechenwerk (mit Entleihungslogik) erforderlich (1;ust:dicher Hardwareaufwand) doppelte Null 4.3 Modulo zur Subtraktio n Ausnutzung des Modulus zur Ausführung von Subtraktionen mit einem Add iererrechnewerk Ausga ngspunkt Ergebnisformat von I! + m Stellen bilder ei nen Ring entsprechend dem Modulus k = 2 n bzw. 2 (Wertigkei t MSB Stelle) Ergebnis kann nur innerhalb des Ringes des Ergebnisforrnates liegen Beis piel: Dualzahlenformal n ==2 m=:l Modulus = 2 MSB = 2" = 4 alle Ergebniswerle werden im Bsp. mit Modu- 104 bewertet r:ür Mod ulus gilt: y x mod k :=: (x + k). mod k y mit x y y miti y (x+i k)modk, -b (01 - b)mod k (a - b+i k)lilodk 1 (a - b + k)nrod k = (a + ( k -b))mod k - normale Subtraktion 1.' - 1,0 =0,5 01,1-01,0 = 00,1 mit 11 = 2 und nr = 1 _ Modulus von 2 n = { - Subtraktion durch Addition und Mod ulus [1,5 + (Madulus - 1l1 mod Modillus = [1,5+(4-1)1mod 4 = 4,5mod4 =0,5 dual: zu addierender Wert für eine Subtraktioe Wert = Modullls - Subtrahend 4-1 = 3 = [11,012 01,1 11, \1,0 [-l ho = 00, 1 10,5110 n. 1" \0. \ ( ) '" ''I Abbildung 2: Darstellung des Ringes Fur SubtrJktion musste ModulllS - Subtrahend -> Wert = (Modlllus - Subtfall/m d) kann als neg. Zahl mit dem Betrag des Subtrahenden betrachtet werden I: ganzzah Hg 25 "

15 4.3 Modulo zur Subtraktion 4 NEGATIVE ZAHLEN 4.4 Zweierkomplement-Darstellullg 4 NEGATIVE ZAHLEN Bsp: n = 2 m = 1 Modulus = 2" =4 1 Subtrahtmd = Addition von (-0,5)10 zu addieren ist 4-0,5 = 3,5 Stl!lIl!nwcrtigkeiten Bsp.: n=2 m=] positive Werte und Null--o wie gchabt 100, 14,Oho - 000,1 [0,5ho := 011, 1 [- 0, Subtrahend := 1,0 --+ Addition von (- J, 0)10 zu addieren ist4 - I = 3 negative Werte... MSB-Stelle fliest als negative Wertigkeit ein 4.4 Zweierkomplement-Darstellung Ziffern d i E 0,1 _ 2 1 = ,0-001,0 = 011,0 3 Subtrahend = 1,5 -> Addition von (- 1.5)10 zu addieren ist 4-1,5 = 2,5 S, (- 1,5) 11.0 (-1) 11.1 (-0.5) 100,0-001,1 =010, (-2)..,,,,", w_,, popivft w., ",ndnul MSB.:: I -, NtgaliverWert MSB '" PositiutrWerl Zweicrko mplemt'ntdarslellung --+ eigt'ntlich Modulo r-komplemt'nt Vorteile (0) 011 1,5) 00.1 (0,5) Subtrllktion du((:h ADddition des komple-mentierten Wertes (kein Subtrahiererrcchnewerk erforderlich, lediglich ein Kompleme-ntbilder) kt'int' scpcrlltc Vorzeichenauswerlung bei Addition/Subtr.. ktion und Multipliklltion erforderlich nur I D<lTStcllung der Null Add Wertebereich - minimal: Z",;n = _ 2 n - 1 (negative Wertigkeit der MSB-Stelle) - maximal: 2 m "" = 2 n '" (positive Wertigkeit J er MSB-Stelle-Wertigkeil der 158- Stelle) Wert der 2weierkomplcmentdarstclltUlg mit n Vorkomma- und m Nachkommastellen.-, Z=d n _l,(- 2,, - 1)+ L d; 2' Formiltwandlung Dezim<ll n<lch Zweicrkomplementdarslellung positive Werte: Wie gchabt, mit Ergänzung einer föhrende n Null negative Werte: Möglichkeit I Fonnatumwandlung - Möglichkeit 1 Erfordemis: d.h. mit der Ceiling-Funktion negative Wertigkeit der MSB-SteUc ncgiltivcr Wert _ 2 n - 1 :s lieg. Wert / (- 1) 2-1 ;::: n - 1 ;::: 11 ;::: pos. Werl = IWa /1 IOg21 We log2 1Wal i IOSiOX In X = log}02 = M 1 Jll JWatl + 11 = cei/(l IWertl) 11/2 MSB 2,,- 1 ;::: negaliwrwerl 27 28

16 4.4 Zweierkomplement-Darstellung 4 NEGATIVE ZAHLEN 4.5 Offserbinare Darstellung 4 NEGATfVE ZAHLEN Differenz zw ischen neg. Werl und ZK-Wert 6 = lieg. Wert - (_2"- 1 1 ;:: 0 I b = lliegali!jer WUI I Aufgabe: Wand lung der We rte in ZK-Darsle ll ung ges. 11 = 1 a) - 53,25 11) - 35,3 cl - 2M d) ) - 0, Fonnatumwandlung - Möglicbkeil 2 Umwandlu ng des Betrages des Wertes.. Ergän.zung e iner führenden Nu ll b itweise Negation jeder Stelle Addition einer logischen I zur LSB-SteHe Stellen erweilerun g 4'-".4 Stellcn"'crkürzung Stellenverkürzung bei Zwcierkomplementdarstellung ohne VerilnderWlg des Wertes. rechts: alle NI/lien von rechts bcgiiulcnd bis zur ersten 1 können weggelassen werden - Fall!: von links begifulend können ben.achbarte Nullen bis auf eine verbleibende Null tj. =? DI/GI =? weggelassen werden - Fa1l2: von links beginnend können benachbarte Einsen bis auf eine verbleibende Eins weggelassen werden Lsg. : a)n =7;6= 10,75; ,11 b)n= 7;tJ. = 28,7; IOlllOO,lOlI c)n = 6;b = 6,2; ,0011 d)i1= - 1;b = 0,75; 1, 11 e)n=1;b = 0, 2; 1,0011 SIelIenerweiterung bei ZweierkotnplementdarsteUung ohne Veränderung ds Wertes. Erweiterung rechts (niederwertige Stellen): mit Nullen Erweiterung Links (hüherwertige Stellen): m it d em logischen Pegel der MSB-Stelle (Vorzeichen richtige Erweiterung) Schiebeoperationen nach r«hls MSB-Stelle erhalten Beispiel Erweitenmg d e r Werte in Zweierkomplement auf 5 Vorkommastellcn und 4 NachkommasteIlen,) b) = (3,2.':; ) Q1.ll00 = ( - 2,25ho 15/U/U9 Beis piel 4.5 links: Bedeutung: Verkürmng auf die kleinstmögliche SIelIenzahl,) b) <) d) Offsetbinäre Darstellung U.Ul = (6, 25)111 llloli l.l BU = (-8,5ho = ( - I,25ho == ( - 8,0625}.0 S "" w"" 0000 Abbildung 3: Offset Binäres Format viele Analog-Digital und Digital-Analog-Wandler verwenden auf ihrer digitalen $eite diese Darstellung HilfsdarsteUungsformat zur Ermöglichung der ModeUierung des Oberlaufverhaltens von Zweierkomplemenlwerten durch Ausführung der Modulo-Operation m it positiven Argumen ten Kenn:teichnung: Charakteristik: (.. ')OB bzw. Wert ZOB besitzt nur pusitive Werle.. geht a us der Zweierkoll\plement-DarsteJlung d urch Addition des Betrages der Wertigkeit der IvtSB-SlcUc hervor negativster Wert im ZK wird auf 0 geschoben 29 JO

17 4_6 Negation von Werten in ZK-Darstellung 4 NEGATIVE ZAHLEN 4.7 umscnajlbaren Addierer/Subtrahierer 4 NEGATIVE ZAHLEN Wert (OB) = Wert (ZK) + I Wert (MSB-Stelle) I Zo8=ZU+ 1-2"- ]1 = ZZX+2,,- 1 Wert (ZK) = Wert (OB) - I Wert (MSB-Stelle) I Elementen. Zu = lob ] 2;... wie bei positiven Duab:ahlcn 4.6 Negation von Werten in ZK-Darstcllung Vorgehenswcise Schritt 1: logische Nega tion jeder einzelnen Stelle in ZK-Darstellung Schritt 2: Addition von eint.'r logischen 1 zu der LSB-Stelle Beispiele a) > = {4,75)1O bl = {- 5,5)lU cl = (0)10 d) (loo.oo = (0.25)10 el = (-3.75ho f) t = (-2ho... Overflowl g) 1(0) (0).00 = (- 8)10... Overflow! logischer Entwurf eines ein- lind ausschalt baren mathematischen Negators fllr den kompletten Zahlenbereich -t auch negatives Maximum wandelbar ---+ vorzeichenrichtige Erweiterung um eine Stelle erforderlich Aufgatx.>: entwerfen Sie einen schaltbaren milthemiltischen NegOltor für einen 3-stelligen ZK-Wert. Verwenden Sie zur Addition das HalbaddierErelement gemäß: die Umschaltung soll durch dols Signal NEG durchgeführt werden. Dabei soll tx.>i NEG",O keine Negation lind bei NEG=1 die Negation erfolgen. Achten Sie auf eine minimale Anzahl von 4.7 umschaltbaren Addierer/S ubtrahierer Erweiterung des Addierers auf einen umschaltbaren Addierer/Subtrahieret Subtraktionsprinzip: Addition des mathematisch negierten Operanden in Zweierkomplementdarstellung Aufgabe: Entwerfen Sie einen schal tbaren Addierer/Subtrahierer für die beiden 3-stelligcn Operanden Q und b in ZK-Darstellung. Zur Umschaltung ist das Signal SUB zu verwenden. Dabei soll bei SUB",O die Addition li+b-y und bei SUB=1 die Subtraktion a-b"y erfolgen. Eventuellen WerteberEkhsüberläufen ist durch die Verbreiterung des Ergebnisfomlates Rechnung zu tragen b, '" -' ) l-o---j ) +---j ) SU B EJ EJ EJ.) (,) Jo,,) j',..) j.. J= 1= 1= J '0 05/01/ Merfachadditionl-subtraklion Anzahl,u erweiternder Ergebnis5tellen bei M eh rfach-ad d i ti onl-su blra ktion 31 32

18 4.8,\ofcrfild1.1ddition/-subtraktion 4 NECATlVEZAHLEN 4.8 Mcrfachilddition/-sublraklion 4 NEGATIVE ZAHLEN Anzahl Operanden, Anzahl zu erweiternder glekhen Formats zur ErgebnissielIen Add./Sllbtr , l! m 2n.I_ , " Mo(hllus k "" 2 2 n - 1 = 2" hier k =2 3 "" In OperandenzllhJ Anzahl zusätzlicher Stellen = ce/i (lo&zopmmdenzllh/) := ln Hsp. In tegrator T." Werte- " folge -[! J--I Addiere - -/7- - Operandenanzahl: = Taktanzahl -t CQ Wertebereich a: fes tlegbar durch MinI max der Wertefolge Wertebereich b: hängt von Aufeinderfolge der Werte von a ab... nicht angebbar Mathematische Beschreibung der Kennlinie mit der Modlllo-Opcration Problem: Modulo-Opcration nur für positive Operanden definiert Abhilfe: Verwendung der Offsetbinilren Darstellung für den Ergebniswert... nach Modulo Bildutlg w ieder Rückwandluns in Zweierkomplement (... )u = {... lob - 2" -1 Umwandlung des korrekten Ergebniscs in die Offsetbinäre Darstellung ( so"t*,) ZX + 2" - 1 = (510",*,)08 bei Addition vieler stark negativer Operanden erreicht die Offsetbinäre Wandlung keine positiven Ergebnisse! --. Addition eines zusätzlichen Terms erforderlich, welcher d<ls Moduloergebnis nicht verändert Bsp. Überlaufskennline '1 = x modi: = (x + i k) modk Überlaufskennlinie eines 3Bit-AddiererslSubrrahiercrs für zwei ganzzahlise Operanden a'i" = - 4 a",u '" 3 b''';n = -4 b",ax = 3 5",;" = - 4 5",ax = 3 --> darsteubarer Ergebnisbereich S.,,.,..,.t m;n = - 8 s.<>m!kt ma = 7... erforderlicher Ergebnisbereich 2-1 : Wandlwlg OB ; 2" :i Modulu5 ; 0 Il.gauzzahlig 33 34

19 4.9 rlaufscrkcnnunß 4 NEGATIVE ZAHLEN 4.9 r1au(serkenn ung 4 NEGATIVE ZAHLEN Bedingung für Wandlung in ein positives Argwnent der Modulo- Operation allg. ÜberlauJskennlinenformel 5 Ergebnis der Addition (im ZK) p (_2"- 1)+2"-1 +; 2" O i 2 _2,,- 1 + p' (2"- 1) i>(p - l ).2 n - 1 SkOlnk1 richtiges Ergebnis (ZK ohne Begrenzung der Stellen anzahl) p Anzahl der Operanden n Anzahl der VorkommastelIen Bsp.: n = 3 jj = 2 S= [( St"".u+2,. '("frl ('-I) -,- + 2 '_') s=[(a+b +12) mod8]-4 Aufgabe: Addition von zwei 8-Bit breiten ganzzahligcn Operanden in ZK-Oarstcllung (Integer) mit einem 8-Bit Add ierersummenformat 4.9 Überlaufserkennung a) 11 =98 b = 103 b)a =- 117 b= -83 c)a ",- n b = - 79 Lsg.: 0)=-55 ') = 56 c) = 100 Möglichkeiten zur Übl'rlauft'Tkermung bei Addierern mit Zweierkomplementwerten 2" 12/01/10 1. Methode: Vergleich der MS8-Bits des anliegenden Operanden und des MSB-Bits des Summenwertes (Vorraussetzung: alle MSB-Bits haben gleiche Stellenwertigkeit) Operation: 11 + b = s mit IIMSB E 0,1 als MSB-Stelle von Operand 11 mit b MSB E 0,1 als MSB-Stelle von Operand b mit SM$B E 0, I als MSB-Stelle der Summe 5 Fall 1: unterschiedliche Polarität der Operanden I QMSB "F bmssismsb -;::: oder 1, je nach Ergebnis... Überlauf nicht möglich F/l1l2: leiche Polarität der Operanden und mit den Operanden gleiche Summenpolarit1it I7MSB - bmsb - smsb... kein Überlauf eingetreten FaU3: ne ative Pola rität heider Operanden und positi\le Polaritiit der Summe IIM$1i - bmsb - 1 und SMSIl _ 0 -+ negativer Überlauf eingetreten Fall 4: positive Polaritlit beider Vorteil IIM SB - bmsb = 0 luld sms8 :::: I leicht verständliches Prinzip randen und negative Polaritlit... positiver Überlauf eingetreten der Summe Nachteile Überprüfung von 3 logischen Signalen erforderlich fü r umschaltbaren Addierer/Subtrahierer muss bei Ausführung der Subtraktion auf das lugisch negierte MSB-Bil des Subtrahenden zurückgegriffen werden 2. Methode Vergleich des Übertragscingnngs lmd Übertragsausgangs der MSB-SteUe des Addierers Vorteile Überprüfung von lediglich 2 logischen Signalen erforderlich problem los auch für umschahbaren Addierer/Subtrahierer anwendbar Nachtei l Überlragseingang und Übertragsausgang der MSB-Stelle muss zugänglich sein (problematisch bei Hardmakro-Blöckcn, Spezial-Schaltkreisen und Subtraktionsausfiihrung über Software-Routinen oder verhaltensmäßiger Hardwarebeschreibungssprache ) Übertragseingang der MSB-5telle des Addicrers bzw. Add/Sub ci M S 8 E 0, I UbertI<lgsausgang des Add/Sub CDMSB E 0,1 Addierers bzw. Fall I: gleiche logische Pegel von ci und CD I COMSB _ cimsb I... kein Überlauf aufgetreten Fall 2: wenn gilt I CDMSB - und cims8 _ I)... positi\ler Überlauf aufgetreten Fall 3: wenn gilt I CDMSB I und dm$s 0 I... negativer Überlauf aufgetreten 3.Methode Verdopplung der MSB-SleUe beider Operanden mit dementsprechender Ergänzung einer weiteren MSB-Stelle des Addierers und Vergleich der ursprilnglkhen mit der erweiterten MSß..Summenstelh. Vorteile: Überprüfung von lediglich 2 logischen Signalen problemlos allch für umschallbre Add./Sub. nwendbar die zu \lergleichenden beiden Sununenslellen sind in jeder Art \Ion Implementierungen zugänglich Nachteil: Ergänzung einer weiteren MSB-Stelle erforderlich, der Add ierer braucht ein(' 7.usä lzliche Voll<lddierersteUe 35

20 4./0 SMtigungskennlinie 4 NECATIVEZA HLEN 4. /0 s.migungskennlinie.j NEGA17VEZAHLEN zusätzliche MSB-SurnrnensteUe des Add. lrsp rnngliche MSB-Sumrnenstelle des bzw. Add./Sub. Add. bzw. Add./Sub. SM 56+' E 0, I SMS/J E 0, 1 Erweiterung beideroperanden d urch Verdopplung ihrer MSB-Stelte mit: I amsb+! - amsb I undl b MSII+ 1 - blass I s positiver Säuiguogswert VOll n-l -m 2-2 n-l -m n-l 2-2.-;2'----L- FaUl: gleiche Pola rität der beiden MSB-S u mll1ente ll en l s M5B+1 SMS8 ]"'" kein Über1u f aufgetreten Fall 2: weun gilt I r S-M-,-,-,-, -_""""Ou- n- d 7 '-M-'-' -_---" 11_ posi ti ver Überlauf wurde eintreten, wenn die eiwp.i tcrle SteHe weggcl <lssen würde Fa U) : wenn gilt ISM$8+1 _ l undsms II _ 01- negati ver Überlauf wurde eintreten, wenn die erweitert<:: Stelle wegg e!ast:n würde 4.10 Sättigungs k e nnlin ie Entwurf von Addierem/Subtrahlerem mit SättigungskennJinic des Ergebniswertcs Grund: Kennlinie entspricht dem S.'ittigungsverhaiten wie bei analogen Bauteilen Fehler d urch Sättigung ist nicht so groß wie der Fehler, der durch Überlauf mit "Umschlagen" des Ergebniswertesentstehen würde ("wrap around") Wertebereiche der Oper.mden und der Summe nicht in j.cdem Fall vorbesti mmbar(7_b. rekursive Strukturen wie Integratoren und rekursive Filter) n -2 n-' -2 Bt.'reich für Add bzw. Sub von 2 Operanden Allgemeine Sältig ungskenn lin ie für sehr hohe A.uflö sung (In _ (3) Sättigungskennlinie eines 3-Bi l Addierersl Subtrahierers für "l;wei ga m;z.mlige Operanden Ergebnis(ormat: 1-2"! 12" 212" 1l..[I0..8 n VO<kommH td len Parameter: Operanden und Ergebnisformat; n = 3 11! =0 Eldremwerte von a,b und 5: Skorrtl:tmin:::: (-4) "" sko,,,ilmu:::: 3 - (-4) = Min = -, 3 } darstellbarer Bereich Mllx :::: - } erforderlicher Bereich bei a ± b 19/0l/1O S ig nalbe reits tellung zur Überlaufe rkennung Kennzeichnung S ig nal OVF(Overflow) Ergebniliüberlauf in positiver oder negativer Richtung Verinbarung: O VF;{) kein Überlauf aufgetreten OVF=l... Überlauf aufgetreten Sign31 MIN{Minimum): Kennzeichnung zum Setzen des minimalen (negativen) oder makimalen (positiven) Sättigungswertes im Falle e ino:!s aufgetretenen Überlaufs. Vereinbarung: 37 38

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12 FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

2. Zahlendarstellung und Rechenregeln in Digitalrechnern

2. Zahlendarstellung und Rechenregeln in Digitalrechnern Zahlendarstellung und Rechenregeln in Digitalrechnern Folie. Zahlendarstellung und Rechenregeln in Digitalrechnern. Zahlensysteme Dezimales Zahlensystem: Darstellung der Zahlen durch Ziffern 0,,,..., 9.

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Grundlagen der Betriebssysteme

Grundlagen der Betriebssysteme Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Zahlendarstellungen

Mehr

3 Zahlensysteme in der Digitaltechnik

3 Zahlensysteme in der Digitaltechnik 3 Zahlensysteme in der Digitaltechnik System Dezimal Hexadezimal Binär Oktal Basis, Radix 10 16 2 8 Zahlenwerte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 0 1 10 11 100

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Rechnenund. Systemtechnik

Rechnenund. Systemtechnik Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Alexander Halles. Zahlensysteme

Alexander Halles. Zahlensysteme Stand: 26.01.2004 - Inhalt - 1. Die verschiedenen und Umwandlungen zwischen diesen 3 1.1 Dezimalzahlensystem 3 1.2 Das Dualzahlensystem 4 1.2.1 Umwandlung einer Dezimalzahl in eine Dualzahl 4 1.2.2 Umwandlung

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

4. Digitale Datendarstellung

4. Digitale Datendarstellung 4 Digitale Datendarstellung Daten und Codierung Textcodierung Codierung natürlicher Zahlen - Stellenwertsysteme - Konvertierung - Elementare Rechenoperationen Codierung ganzer Zahlen - Komplementdarstellung

Mehr

Preisliste w a r e A u f t r a g 8. V e r t r b 8. P C K a s s e 8. _ D a t a n o r m 8. _ F I B U 8. O P O S 8. _ K a s s a b u c h 8. L o h n 8. L e t u n g 8. _ w a r e D n s t l e t u n g e n S c h

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,

Mehr

G u t fü r m ic h e in L e b e n la n g. M a rin a D ie in g 1 8.0 6.0 9 S e ite 1

G u t fü r m ic h e in L e b e n la n g. M a rin a D ie in g 1 8.0 6.0 9 S e ite 1 G u t fü r m ic h e in L e b e n la n g. S e ite 1 - G iro k o n to - S p a re n - K re d it - K fw -S tu d ie n k re d it - S ta a tlic h e F ö rd e ru n g - V e rs ic h e ru n g e n S e ite 2 G iro k

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Darstellung von Informationen

Darstellung von Informationen Darstellung von Informationen Bit, Byte, Speicherzelle und rbeitsspeicher Boolesche Operationen, Gatter, Schaltkreis Bit Speicher (Flipflop) Binär- Hexadezimal und Dezimalzahlensystem, Umrechnungen Zweierkomplement

Mehr

Binäre Multiplikations- und Divisionswerke

Binäre Multiplikations- und Divisionswerke Binäre Multiplikations- und Divisionswerke Herleitung, Entwurf und Optimierung 1. Juli 2008 Joscha Drechsler joscha_d@rbg.informatik.tu-darmstadt.de FB Informatik FG Rechnerarchitektur 1 Inhaltsverzeichnis

Mehr

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5 Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für

Mehr

1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll

1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll 1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll 1 0 0 0 Di n g e, a n di e z u d e n k e n ist, w e n n M i c r o s o f t O f f i c e S h a r e

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

Hochschule Fakultät Technologie und Management Informationsverarbeitung Ravensburg-Weingarten Vorlesung zur Datenverarbeitung 1 Zahlensysteme Inhalt

Hochschule Fakultät Technologie und Management Informationsverarbeitung Ravensburg-Weingarten Vorlesung zur Datenverarbeitung 1 Zahlensysteme Inhalt Inhalt 2 ZAHLENSYTEME...2-2 2.1 ZAHL...2-2 2.2 ZAHLENDARSTELLUNG...2-3 2.2.1 Zahlensysteme für die EDV...2-5 2.2.2 Umwandlung (Konvertierung)...2-6 2.2.2.1 Konvertierung von Dualzahlen in Oktal- bzw. Hexadezimalzahlen...2-7

Mehr

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Eine Einführung in Aufbau, Funktionsweise, Programmierung und Nutzen von Mikroprozessoren Teil II: Wat iss ene Bit, Byte un Word?

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Inhaltsverzeichnis. Inhalt. 1 Einleitung

Inhaltsverzeichnis. Inhalt. 1 Einleitung Inhalt 3 Inhaltsverzeichnis 1 Einleitung 1.1 Digitale und analoge Signale... 9 1.2 Digitale Darstellung... 12 1.3 Datenübertragung... 14 1.4 Aufgaben digitaler Schaltungen... 17 1.5 Geschichte der Digitalrechner...

Mehr

1 : Die Rechnungsarten

1 : Die Rechnungsarten 1 von 22 23.10.2006 14:08 0 : Inhalt von Kapitel DAT 1 : Die Rechnungsarten 2 : Die Worte 3 : Hilfsprozessoren 4 : Binäre Zahlendarstellung 5 : Interpretationen 6 : Division mit Rest 7 : Horner Schema

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

Prozess-rechner. auch im Büro. Automation und Prozessrechentechnik. Prozessrechner. Sommersemester 2011. Prozess I/O. zu und von anderen Rechnern

Prozess-rechner. auch im Büro. Automation und Prozessrechentechnik. Prozessrechner. Sommersemester 2011. Prozess I/O. zu und von anderen Rechnern Automation und Prozessrechentechnik Sommersemester 20 Prozess I/O Prozessrechner Selbstüberwachung zu und von anderen Rechnern Prozessrechner speziell Prozessrechner auch im Büro D A D A binäre I/O (Kontakte,

Mehr

EIN NEUES KAPITEL: SPEICHERUNG UND INTERPRETATION VON INFORMATION

EIN NEUES KAPITEL: SPEICHERUNG UND INTERPRETATION VON INFORMATION Auf diesem Computerschirm sieht man verschiedene Arten von Information dargestellt. Wie wird sie eigentlich im Computer abgespeichert. Was man sieht, ist nur eine Graphik! EIN NEUES KAPITEL EIN NEUES KAPITEL:

Mehr

Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes 29. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Einführung in die Signalverarbeitung

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

2. Aufgabenblatt mit Lösungen

2. Aufgabenblatt mit Lösungen Problem 1: (6*1 = 6) TI II 2. Aufgabenblatt mit Lösungen Geben Sie für jede der folgenden Zahlen deren Ziffernschreibweisen im Dezimal-, Dual-, Oktal- und Hexadezimal-System an. a) (2748) 10 b) (1010011011)

Mehr

Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen)

Übungsaufgaben für Grundlagen der Informationsverarbeitung (mit Lösungen) Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen). Erläutern Sie die Begriffe Bit, Byte und Wort bezogen auf einen 6 Bit Digitalrechner. Bit: Ein Bit ist die kleinste, atomare,

Mehr

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128)

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128) Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement

Mehr

Jetzt auch als E-Journal 5 / 2013. www.productivity-management.de. Besuchen Sie uns: glogistikprozesse. Logistiktrends.

Jetzt auch als E-Journal 5 / 2013. www.productivity-management.de. Besuchen Sie uns: glogistikprozesse. Logistiktrends. Jv J -J J J -J -J L L L L L 5 v- - v Nv - v v- IN 868-85 x OUCTIV % G - IN 868-85 L v JN868-85 I J 6 8-85 v- IN 8 -- IZ G T 5 ß G T 68-8 Fä ßvU 8V G T % IN G L ßv ß J T NLGTTGI 5 V IV Fx v v V I ö j L

Mehr

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze Schltnetze Aufu von Schltnetzen nhnd wichtiger Beipiele Inhltericht Codierer, Decodierer und Codekonverter Additionchltnetze Hlddierer Vollddierer Mehrtellige Addierer Multiplexer und Demultiplexer Techniche

Mehr

Die Umwandlung einer Dualzahl in eine Dezimalzahl ist ein sehr einfacher Vorgang.

Die Umwandlung einer Dualzahl in eine Dezimalzahl ist ein sehr einfacher Vorgang. 2. Zahlensysteme und Codes 2.1 Dualzahlen Bereits in den Anfängen der Datenverarbeitung hat es sich gezeigt, daß das im Alltagsleben verwendete Zahlensystem auf der Basis der Zahl 10 (Dezimalsystem) für

Mehr

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren: Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie

Mehr

Asynchrone Schaltungen

Asynchrone Schaltungen Asynchrone Schaltungen Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2013 Asynchrone Schaltungen 1/25 2013/07/18 Asynchrone Schaltungen

Mehr

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02 Chemische Bindung locker bleiben Wie halten Atome zusammen? positiv Welche Atome können sich verbinden? power keep smiling Chemische Bindung Die chemischen Reaktionen spielen sich zwischen den Hüllen der

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Hans Delfs Helmut Knebl Christian Schiedermeier Grundlagen der Informatik nhtw Nürnberger Hochschulskripten für Technik und Wirtschaft Prof. Dr. Hans Delfs Prof. Dr. Helmut Knebl Prof. Dr. Christian Schiedermeier

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Übung -- d001_7-segmentanzeige

Übung -- d001_7-segmentanzeige Übung -- d001_7-segmentanzeige Übersicht: Der Steuerungsablauf für die Anzeige der Ziffern 0 bis 9 mittels einer 7-Segmentanzeige soll mit einer speicherprogrammierbaren Steuerung realisiert werden. Lehrziele:

Mehr

Informatik II. Kodierung. Kodierung. Kodierung Kodierung. Rainer Schrader. 24. Oktober 2008. Ein Alphabet Σ ist eine endliche Menge.

Informatik II. Kodierung. Kodierung. Kodierung Kodierung. Rainer Schrader. 24. Oktober 2008. Ein Alphabet Σ ist eine endliche Menge. Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 24. Oktober 2008 1 / 1 2 / 1 Ein Alphabet Σ ist eine endliche Menge. hat mehrere Bedeutungen: (das Erstellen von Programmcode) die Darstellung

Mehr

Zahlensysteme und Logische Schaltungen

Zahlensysteme und Logische Schaltungen Zahlensysteme und Begleitmaterial für den Informatikunterricht Differenzierungskurs Informatik 2014 Dipl.-Inform. Klaus Milzner www.milzners.de Inhaltsverzeichnis Inhaltsverzeichnis 1 Zahlensysteme...

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43 Zahlenbereiche Jörn Loviscach Versionsstand: 20. Oktober 2009, 17:43 1 Natürliche, ganze und rationale Zahlen Zum Zählen benötigt man die positiven natürlichen Zahlen 1, 2, 3,... In der Informatik zählt

Mehr

Daten und Operationen

Daten und Operationen Daten und Operationen Bits, Bytes, Binärzahlen, Hex-Zahlen, Dezimalzahlen, Konversionen, cast, this, Würfel, Boolesche Werte, Zeichen, Unicode, Fonts Computer verstehen nur 0 und 1 Eine physikalische Speicherzelle

Mehr

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean 01.11.05 1 Noch für heute: 01.11.05 3 primitie Datentypen in JAVA Primitie Datentypen Pseudocode Name Speichergröße Wertgrenzen boolean 1 Byte false true char 2 Byte 0 65535 byte 1 Byte 128 127 short 2

Mehr

DIGITALTECHNIK 02 ZAHLENSYSTEME

DIGITALTECHNIK 02 ZAHLENSYSTEME Seite 1 von 15 DIGITALTECHNIK 02 ZAHLENSYSTEME Inhalt Seite 2 von 15 1 ALLGEMEINES ZU ZAHLENSYSTEMEN... 3 1.1 ZAHLENSYSTEME... 3 1.2 KENNZEICHEN VON ZAHLENSYSTEMEN... 4 1.3 BILDUNGSGESETZE... 4 1.4 STELLENWERTSYSTEM...

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Taschenbuch der Informatik

Taschenbuch der Informatik Taschenbuch der Informatik von Uwe Schneider 7., neu bearb. Aufl. Hanser München 01 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 4638 Zu Inhaltsverzeichnis schnell und portofrei erhältlich

Mehr

CAMAC-Binär-BCD-Umsetzer mit Dezimal-Anzeige Typ LEM-52/5.5.

CAMAC-Binär-BCD-Umsetzer mit Dezimal-Anzeige Typ LEM-52/5.5. Dezember 1972 KFK 1434 Labor für Elektronik und Meßtechnik CAMAC-Binär-BCD-Umsetzer mit Dezimal-Anzeige Typ LEM-52/5.5. P. Gruber, J. Ottes, V. Tentunian Als Manuskript vervielfältigt Für diesen Bericht

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine 24 ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine gerade Linie. Die (:~). Kurve (verg I. Fig. 5) ist ein Parabel. Wenn nun d gröszer als a wird. wird die Kurve wieder steigen. Die

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr