Generalisiertes Vektorraummodell (Generalized Vector Space Model, GSVM) Karin Haenelt

Größe: px
Ab Seite anzeigen:

Download "Generalisiertes Vektorraummodell (Generalized Vector Space Model, GSVM) Karin Haenelt"

Transkript

1 Genealsetes Vetoaummodell (Genealzed Veto Spae Model, GSVM) Kan Haenelt 5..04

2 Abüzungen n Anzahl de Doumente n de Doumentsammlung d Doument n de Doumentsammlung, n t Anzahl de Teme n ene Doumentsammlung Indextem, t Veto zu Indextem, t w, R, Gewht des Tem-Doumentpaaes [,d ] mn mntem, t g (mn ) Funton, de das Gewht {0,} des Indextems m mntem m lefet. v assozete Bass-Veto zu mntem, t Kan Haenelt, Genealsetes Vetoaummodell, 5..04

3 Vetoaummodell Annahme: Indexteme snd vonenande unabhängg Fomale Dastellung de Annahme de Unabhängget Dastellung de Teme duh Temvetoen (Dmensonen snd Teme) Kennzehnung de Abhänggeten: = = 0 falls Tem von Tem abhängg st andenfalls Annahme des Vetoaummodells: = = 0 ;... t = (,0,0,...,0) = (0,,0,...,0) = (0,0,0,...,) Kan Haenelt, Genealsetes Vetoaummodell,

4 Vetoaummodell Annahme: Indexteme snd vonenande unabhängg Defnton: Se en Veto zum Indextem. De Annahme de Unabhängget m Vetoaummodell mplzet, dass de Menge de Vetoen {, lnea unabhänggst und ene Bassfü den,..., n } betahteten Unteaum bldet. De Dmenson deses Raumes entspht de Anzahl t de Indexteme n de Doumentsammlung. Zumest Annahme de paawesen Othogonaltätzwshen Indextemen, so dass fü edes Paa und glt: = 0 Baeza-Yates/Rbeo-Neto, 999, 4 Kan Haenelt, Genealsetes Vetoaummodell,

5 Vetoaummodell Doument-Tem-Vetoen Doumentepäsentatonen snd Lneaombnatonen von Temvetoen se { } de Menge de Temvetoen, t t se nde Anzahl de Doumente n ene Kolleton, n se d en Doument de Kolleton dann gbt es fü edes d n de Kolleton ene Lneaombnaton von Temvetoen, de d epäsentet Bespel Lneaombnaton Tupel-Shebwese d 5 = t + 4 t + 3 t3 + 8 t d 5 = (,4,3,8) 4 Kan Haenelt, Genealsetes Vetoaummodell,

6 Vetoaummodell Bespel: Ranng-Egebns fü Bespeldoumente 3 sm(d,q)(cosnus) Rang d d d d d d d q 3 Kan Haenelt, Genealsetes Vetoaummodell,

7 Genealsetes Vetoaummodell S. K. M. Wong, WoehZao, Pat C. N. Wong(985). GenealzedVetoSpaesModel n Infomaton Reteval. In: SIGIR '85 Poeedngs of the 8th annual ntenatonal ACM SIGIR onfeene on Reseah and development n nfomaton eteval. S. 8-5 Indexteme önnen abhängg sen Kan Haenelt, Genealsetes Vetoaummodell,

8 Genealsetes Vetoaummodell Annahme: Indexteme snd vonenande abhängg Fomale Dastellung de Annahme de Abhängget Temvetoen snd ene othogonalen Vetoen blden nht de Bass des Vetoaumes snd aus leneen Komponenten zusammengesetzt, de ewels aus ene Kolleton hegeletet weden othonomale Bass des Genealseten Vetoaumes: Kan Haenelt, Genealsetes Vetoaummodell, Modelleung de Tem-Koouenzen duh Mnteme Enfühung ene Menge paawese othogonale Vetoen v, de den Mntemenzugeodnet weden de Menge dese paawese othogonalen Vetoen bldet de othonomalsetebass des Genealseten Vetoaumes Baeza-Yates/Rbeo-Neto, 999, 4 8

9 Genealsetes Vetoaummodell Modelleung von Tem-Koouenzmustenduh Mnteme mntem 3 mn mn 0 0 mn mn 4 0 mn mn 6 0 mn 7 0 mn 8 Doumente, de Tem und Tem enthalten Doumente, de alle Teme enthalten wenn n ene Doumentolleton Doumente enthalten snd, deen Temoouenzenem Mntemmn entspht, glt de Mntemmn als atv. Kan Haenelt, Genealsetes Vetoaummodell,

10 Genealsetes Vetoaummodell Mntemenmn, Vetoen v und Zuodnung de Vetoen v zu den Mntemenmn mntem 3 mn mn 0 0 mn mn 4 0 mn mn 6 0 mn 7 0 mn 8 Veto mn mn mn 3 mn 4 mn 5 mn 6 mn 7 mn 8 v v v v v v v v Mnteme modelleen Temoouenzmuste Vetoen v, othonomale Bass des Vetoaumes Kan Haenelt, Genealsetes Vetoaummodell,

11 Mntem Defnton Defnton:Se (B,+,,,0,) ene Booleshe Algeba. Seen x, x,, x n nvaablen. Ene Konunton (Podut) de Fom y y y n mt y = x ode x fü n heßt Mntemn nvaablen x, x,,x n. nvaablen ezeugen n Mnteme. Bespel fü de Vaablen Mnteme efüllen de folgenden Bedngungen mn mn = 0 fü n + mn = = x x x 3 mn mn 0 mn 3 0 mn mn 5 0 mn mn mn Mnteme modelleen Temoouenzmuste Kan Haenelt, Genealsetes Vetoaummodell, 5..04

12 Genealsetes Vetoaummodell Annahme: Indexteme snd vonenande abhängg {,..., } Defnton: Se, n de Menge de Indexteme ene Kolleton, se w, das enem Tem-Doumentpaa [,d ] zugeodnete Gewht. Wenn de Gewhte alle bnä snd, önnen alle möglhen Tem- Koouenz-Muste(nnehalb de Doumente) duh ene Menge von t Mntemenepäsentet weden mt mn = (0,0,,0), mn = (,0,,0),, mn t = (,,,). Se g (mn ) ene Funton, de das Gewht {0,} des Indextems m Mntemmn lefet. Baeza-Yates/Rbeo-Neto, 999, 4 Kan Haenelt, Genealsetes Vetoaummodell, 5..04

13 Genealsetes Vetoaummodell Annahme: Indexteme snd vonenande abhängg Defnton: st de folgende Menge von Vetoen v v v... = (,0,0,...,0) v = t = (0,,0,...,0) (0,0,0,...,) und ede Veto v st dem entspehenden Mntemmn zugeodnet. Es glt v v = 0 fü alle. De Vetoen snd paawese othogonal. De Menge de Vetoen v bldet de othonomalebass des Genealseten Vetoaummodells Baeza-Yates/Rbeo-Neto, 999, 4 Kan Haenelt, Genealsetes Vetoaummodell,

14 Genealsetes Vetoaummodell Beehnung des Temoouenzfatos l, = d g l ( d ) = g l w ( mn, ) fü alle l g l (dd g l ( ( d ) g l ( mn g ( mn g l l ) fü alle l ) ( d ) = ) fü alle l g l ( mn ) fü alle l Gewht {0,} von Tem ln Doument = Temouenzvon Tem ln Doument Temouenzmuste von Doument Gewht {0,} von Tem ln Mntemmn Temouenzmustevon Mntemmn Temouenzmuste von Doument entspht Mntemmn Kan Haenelt, Genealsetes Vetoaummodell,

15 Genealsetes Vetoaummodell Bestmmung des Temvetos zu Tem l =, g ( mn ) =,, g ( mn ) = v, Baeza-Yates/Rbeo-Neto, 999, 43 Kan Haenelt, Genealsetes Vetoaummodell,

16 Genealsetes Vetoaummodell Bespel 3 mntem d 0 mn 6 d 0 0 mn d mn 7 d mn d 5 4 mn 8 d 6 0 mn 4 d mn 3 q 3 mntem 3 mn mn 0 0 mn mn 4 0 mn mn 6 0 mn 7 0 mn 8 Wong, Zao, Wong, 985 V: 6 Kan Haenelt, Genealsetes Vetoaummodell,

17 Genealsetes Vetoaummodell Bespel Beehnung des Temoouenzfatos,, = d g ( d l ) = g l w ( mn, ) fü alle l 3 mntem d 0 mn 6 d 0 0 mn d mn 7 d mn d 5 4 mn 8 d 6 0 mn 4 d mn 3 q 3 mntem 3 mn mn 0 0 mn mn 4 0 mn mn 6 0 mn 7 0 mn 8 Tem, Temoouenzmuste = w Tem,Do + w,4 = + = 3 Tem, Temoouenzmuste4 = w,6 = Tem, Temoouenzmuste6 = w, = Tem, Temoouenzmuste6 = w,5 = Kan Haenelt, Genealsetes Vetoaummodell, Wong, Zao, Wong, 985 V: 6 7

18 Genealsetes Vetoaummodell Bespel: Beehnung des Temvetos zu Tem = =, v +,,4 + v 4,4 +,6 + 3 v + + v 4 + v v,6 v ,8,8 v 8 =, g ( mn ) =,, g ( mn ) = v, = 3v + v4 + v6 + v8 5 = 0, 3 5,0, 5,0, 5,0, 5 Wong, Zao, Wong, 985 V: 6 Kan Haenelt, Genealsetes Vetoaummodell,

19 Genealsetes Vetoaummodell Ranng ombnet de Gewhte des Standad-Vetoaummodells w, (Tem- Doument-Gewht) mt dem Temoelatonsfato, Umehnung de Vetoen des lassshen Vetoaummodells d = w, q = w, und q n Vetoen des Genealseten Vetoaummodells mt Fomel =, g ( mn ) =,, g ( mn ) = v, Anwendung de Ranngfuntonauf dese Vetoen mt Ähnlhetsfuntonen we m Standad-Vetoaummodell Baeza-Yates/Rbeo-Neto, 999, 43 Kan Haenelt, Genealsetes Vetoaummodell,

20 Genealsetes Vetoaummodell Bespel Umehnung de Doumentvetoen d = w, d + = w, + w, w 3, 3 =, g ( mn ) =,, g ( mn ) = v, d + = d = 0,,0,,0,,0, Kan Haenelt, Genealsetes Vetoaummodell,

21 Genealsetes Vetoaummodell Bedeutung unla, n welhen Fällen das Genealsete Vetoaummodell bessee Egebnsse lefet als das Standad-Vetomodell eheblh höhee Rehenaufwand als fü das Standad- Vetoaummodell Anzahl de atven Mntemeann popotonal zu Anzahl de Doumente n de Kolleton weden alle atvenmntememüssen be de Beehnung de - Vetoen beüshtgt weden (maxmale Anzahl = Anzahl de Doumente n de Kolleton) Enfühung ene Fomalseung, de theoetsh nteessant st Baeza-Yates/Rbeo-Neto, 999, 44 Kan Haenelt, Genealsetes Vetoaummodell, 5..04

22 Lteatu Wong, S. K. M., WoehZao, Pat C. N. Wong(985). GenealzedVetoSpaesModel n Infomaton Reteval. In: SIGIR '85 Poeedngs of the 8th annual ntenatonal ACM SIGIR onfeene on Reseah and development n nfomaton eteval. S. 8-5 Wong, S. K. M., WoehZao, Pat C. N. Wong(985V). GenealzedVetoSpaesModel n Infomaton Reteval. Votagsfolen SIGIR InfomatonRetevalandExtaton/Pesent_003F/003F_Genealzed%0Veto%0Spae%0Mo del%0in%0infomaton%0reteval_%e5%bc%b5%e5%bf%97%e8%b%aa.pdf Baeza-Yates, Rado; Rbeo-Neto, Bethe(Eds.) (00). Moden Infomaton Reteval. Essex: Addson Wesley Longman Lmted. Kan Haenelt, Genealsetes Vetoaummodell, 5..04

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I Ludwg Pohlmann PC III - Elektoheme SS 5 Elektolytlösungen, Letfähgket, Ionentanspot Tel I. Enfühende Übelegungen. Solvataton, Hydataton 3. Ionenbeweglhketen und Letfähgketen Lteatu: Wedle.6. -.6.7 Tel

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Vektoralgebra Rechenregeln für Vektoren. Addition und Subtraktion

Vektoralgebra Rechenregeln für Vektoren. Addition und Subtraktion D. Hempel Mthemtshe Gundlgen Vetolge 5 Vetolge Rehenegeln fü Vetoen Addton und Sutton geometsh: Vetoen weden geometsh ddet ndem mn de Vetoen mttels Pllelvesheung nennde fügt: Be de Summton weden de Pfele

Mehr

1 Lineare, affine und konvexe Kombinationen. für einen Punkt (Vektor) von IR d. IR heißt affin unabhängig, wenn für alle r IN, x1,, R S

1 Lineare, affine und konvexe Kombinationen. für einen Punkt (Vektor) von IR d. IR heißt affin unabhängig, wenn für alle r IN, x1,, R S U. BEHM: Konvexgeoete 1-1 1 Lneae, affne un konvexe Kobnatonen W abeten -enonalen euklchen au I un cheben x ( 1,, ) ( I, = 1,, ) fü enen Punkt (Vekto) von I. Da nnee Poukt auf I von Vektoen x un y (,,

Mehr

Lineare Optimierung Einführung

Lineare Optimierung Einführung Kaptel Lneare Optmerung Enführung B... (Dre klasssche Anwendungen) Im Folgenden führen wr de ersten dre klassschen (zvlen) Anwendungen der lnearen Optmerung an: BS... (Produktonsplanoptmerung) En Betreb

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1 U. BEHM: Konvexgeoete - Lneae, affne un konvexe Kobnatonen W abeten -enonalen euklchen au I un cheben x = ( x,, x ) ( ξ I, =,, ) fü enen Punkt (Vekto) von I. Da nnee Poukt auf I von Vektoen x un y = (

Mehr

Das Noether-Theorem. Ausarbeitung zum Vortrag von. Michael Hagemann. am im Rahmen des Proseminars. Gruppentheorie in der Quantenmechanik

Das Noether-Theorem. Ausarbeitung zum Vortrag von. Michael Hagemann. am im Rahmen des Proseminars. Gruppentheorie in der Quantenmechanik Das Nethe-Theem Ausabetung zum Vtag vn Mchael agemann am 202202 m Rahmen des Psemnas Guppenthee n de Quantenmechan vn Pf D Jan Lus und D Rbet Rchte an de nvestät ambug m Wntesemeste 202/203 Inhaltsvezechns

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen Bvaable/bvaate Vetelungen Tabellen Gafken Maßzahlen 153 Ulste: Wetepaae x/y ode x 1 /x x = Flügellänge [mm], y = Gewcht [g] 3,8; 0,8 3,6; 0,7 4,3; 1,3 3,5; 0,7 4,1; 1,1 4,4; 1,3 4,5; 1,6 3,6; 0,75 3,8;

Mehr

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan Lneare Algebra IIa - 04 orlesung - Pro Dr Danel Roggenkamp & Sen Balnojan 93 Untäre ektorräume hermtesche Form au enem C ektorraum sesqulnear (ant-lnear m ersten lnear m zweten Argument (, w (w, (, 2 R

Mehr

Übungsblatt 7 Lösungsvorschläge

Übungsblatt 7 Lösungsvorschläge Insttut für Theoretsche Informatk Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Lösungsvorschläge Vorlesung Algorthmentechnk m WS 09/10 Problem 1: Mnmale Schnttbass Approxmatonsalgos relatver Gütegarante

Mehr

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte Ökonomsche und ökonometrsche Evaluaton 90 Emprsche Analyse des Arbetsangebots Zele: Bestmmung von Arbetsangebotselastztäten als Test der theoretschen Modelle Smulaton oder Evaluaton der Wrkungen von Insttutonen

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Manhattan-Metrik anhand des Beispiels

Manhattan-Metrik anhand des Beispiels Bestmmung durch Manhattan-Metrk 3 Manhattan-Metrk anhand des Bespels Gesucht werden de zwe Standorte für zwe Ausleferungslager. De Standpunkte der Nachfrager () snd durch de Koordnaten ( x/y ) gegeben.

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie Prof. Dr. Jürgen Dassow Otto-von-Guercke-Unverstät Magdeburg Fakultät für Informatk Coderungstheore und Kryptographe Sommersemester 2005 1 2 Inhaltsverzechns 1 Defnton und Charakterserung von Codes 5 1.1

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 2016 A 1.1

Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 2016 A 1.1 Insttut für Technsche und Num. Mechan Technsche Mechan IV Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 16 A 1.1 Aufgabe 1: En mechansches Sstem wrd durch folgende lnearserte Bewegungsglechungen

Mehr

Transformation von Gleichungen n - ter Ordnung in ein Gleichungssystem 1.Ordnung bei linearen gewoehnlichen Differentialgleichungen

Transformation von Gleichungen n - ter Ordnung in ein Gleichungssystem 1.Ordnung bei linearen gewoehnlichen Differentialgleichungen Praesentatonstechn SS4 Transformaton von Glechungen n - ter Ordnung n en Glechungssstem Ordnung be lnearen gewoehnlchen Dfferentalglechungen verfasst von den Studenten fuer Technsche Mathemat an der JKepler

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Die orthogonale Projektion eines Vektors auf einen anderen. Parallelogramm-Regel. Wer keine Motivation mag, gehe gleich zu der Seite 7.

Die orthogonale Projektion eines Vektors auf einen anderen. Parallelogramm-Regel. Wer keine Motivation mag, gehe gleich zu der Seite 7. De othogonle Poeton enes Vetos uf enen ndeen Enfühendes Besel Pllelogmm-Regel We ene Motvton mg gehe gleh zu de Sete 7 Zwe Käfte gefen n enem Punt n We goß st de ulteende Kft de ngefen muss um de eden

Mehr

c) schwierige freiwillige Zusatzaufgabe (ohne Bonuspunkte): Leiten Sie die allgemeinen iterativen Formeln für S, D, D R und V her.

c) schwierige freiwillige Zusatzaufgabe (ohne Bonuspunkte): Leiten Sie die allgemeinen iterativen Formeln für S, D, D R und V her. Rechnerarchtetur Lösungsvorschlag. Bonusübung oerseester Fachgebet Rechnerarchtetur Prof. R. Hoffann Patrc Edger. Aufgabe: Maße für Barrel-hfter 7 + 7 Punte Gegeben st en Barrel hfter t n= Prozessoren

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastk, 11.5.13 Wr gehen stets von enem Maßraum (, A, µ) bzw. enem Wahrschenlchketsraum (,A,P) aus. De Borel σ-algebra auf R n wrd mt B n bezechnet, das Lebesgue Maß auf R n wrd mt

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Musterlösung Serie 4

Musterlösung Serie 4 D-MATH Lineae Algeba I HS 218 Pof Richad Pin Mustelösung Seie 4 Summen Podute und Matizen 1 Beweisen Sie: (a Fü jede ganze Zahl n gilt n ( n 2 n (b Fü alle ganzen Zahlen n gilt ( ( n n n (c Fü alle ganzen

Mehr

ω r 6.2 Trägheitsmoment und Rotationsenergie r E dm = = = ω r r r r = K 6.2 Versuch: Fallmaschine Ursprung in Bewegungsebene!

ω r 6.2 Trägheitsmoment und Rotationsenergie r E dm = = = ω r r r r = K 6.2 Versuch: Fallmaschine Ursprung in Bewegungsebene! 6. Täghetsmoment und Rottonsenege Täghetsmoment enes ssenpunktes Des glt fü sten Köpe nht meh! ellgemeneung fü sten Köpe: m Uspung n Bewegungseene! Dehhse E ot ( E ) v kn snα R R α snα E ot R Rottonsenege

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

Lösungen zu den Übungsaufgaben

Lösungen zu den Übungsaufgaben Lösungen zu den Übungsaufgaben Enfühung n de Statstk SS 004 D. H. Gunet Fanzstaße 49, 06406 Benbug Tel. 0347-66493, Fa 0347-66496 Emal: gunet @ mws-bbg.de D. H. Gunet Enfühung n de Statstk SS 004 II. Häufgketsvetelungen,

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Kursthemen 2. Sitzung. Tabellarische und graphische Darstellung diskreter Daten. Tabellarische und graphische Darstellung diskreter Daten

Kursthemen 2. Sitzung. Tabellarische und graphische Darstellung diskreter Daten. Tabellarische und graphische Darstellung diskreter Daten Kursthemen 2. Stzung Fole I - 2-1 Tabellarsche und graphsche Darstellung dskreter Daten Tabellarsche und graphsche Darstellung dskreter Daten A) Nomnalskalen (Fole 2 bs 7) A) Nomnalskalen (Fole 2 bs 7)

Mehr

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner Prosemnar Speltheore SS 2006 Ausarbetung zum Vortrag Allgemene Zwe-Personenspele am 06.07.2006 Vortragender: Floran Lener Der Vortrag basert auf dem entsprechenden Kaptel wo-person general-sum games aus

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

I) Mechanik 1.Kinematik (Bewegung)

I) Mechanik 1.Kinematik (Bewegung) I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Vorlesung Reaktionstechnik SS 09 Prof. M. Schönhoff/ PD Dr. Cramer

Vorlesung Reaktionstechnik SS 09 Prof. M. Schönhoff/ PD Dr. Cramer Vorlesung Reaktonstehnk SS 9 Prof. M. Shönhoff/ PD Dr. Cramer 2.7.29 Musterlösungen zu Übungsaufgaben 2 vorzurehnen am Mo, 2.7.9 Aufgabe 5.) En Rohrbündelreaktor soll für de Durhführung ener Gasreakton

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Arbeitszeit 60 Minuten Seite 1 von 5 HochschuleMünchen, FK 03 Bordnetze (Vorlesung) SS08. Name:... Vorname:... St. Grp...

Arbeitszeit 60 Minuten Seite 1 von 5 HochschuleMünchen, FK 03 Bordnetze (Vorlesung) SS08. Name:... Vorname:... St. Grp... betszet 60 Mnuten Sete von 5 HochschuleMünchen, FK 03 odnetze (Volesung) SS08 Nme:... Vonme:... St. Gp.... ufgbenstelle: Pof. D. Wemuth, betszet: 60 mn, Hlfsmttel: Tschenechne ufg. ufg. ufg. 3 ufg. 4 ufg.

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert.

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert. SS 2013 Prof. Dr. J. Schütze/ J. Puhl FB GW Ds. ZG 1 Zufallsgrößen An dem Ergebns enes Zufallsexperments nteressert oft nur ene spezelle Größe, mestens en Messwert. Bespel 1. Zufällge Auswahl enes Studenten,

Mehr

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9 WS 2016/17 Prof. Dr. Horst Peters 06.12.2016, Sete 1 von 9 Lehrveranstaltung Statstk m Modul Quanttatve Methoden des Studengangs Internatonal Management (Korrelaton, Regresson) 1. Überprüfen Se durch Bestmmung

Mehr

Automatische Klassifikation von Dokumenten. Kapitel 3: Automatische Klassifikation von Dokumenten. Klassifikationsproblem (Kategorisierung)

Automatische Klassifikation von Dokumenten. Kapitel 3: Automatische Klassifikation von Dokumenten. Klassifikationsproblem (Kategorisierung) Kaptel : Autoatsche Klassfaton von Douenten. Enfache Klassfatoen. Gunlagen aus e Wahschenlchetsechnung. Nave-Bayes-Klassfato.4 Featue-Seleton Autoatsche Klassfaton von Douenten Zel: Ogansaton von Douenten

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Lückentext (Mathematik I) zum Sommersemester 2013

Lückentext (Mathematik I) zum Sommersemester 2013 osten Schee.. Lückentet Mthemtk I um Sommesemeste Nme: Mtkel-N.: Mt desem Lückentet können Se s u mml möglche Zustpunkte elngen. Fü jedes chtg engetgene Wot egt sch somt en Bonuspunkt. Um mehee Mengen

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Statistische Methoden für Bauingenieure WS 13/14

Statistische Methoden für Bauingenieure WS 13/14 Statstsche Methoden ür Baungeneure WS 3/4 Enhet 3: Bvarate Zuallsvarablen Unv.Pro. Dr. Günter Blöschl Bezechnungen... Zuallsvarable... Realsaton konkrete Werte Momente Grundgesamthet Mttelwert,Varanz Stchprobe

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

r mit der sogenannten Einheitsmatrix:

r mit der sogenannten Einheitsmatrix: D. Hempel Mathematsche Gundlagen Tensoen -7- Maten / Tensoen - Tel als Tenso Bem Vesuch den Dehmpuls unte Zuhlfenahme des Täghetstensos daustellen egab sch fü das Täghetsmoment de folgende Zusammenhang:

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr