Finanzmarktökonometrie: Zeitreihenanalyse Sommersemester 2010 Dr. Martin Becker

Größe: px
Ab Seite anzeigen:

Download "Finanzmarktökonometrie: Zeitreihenanalyse Sommersemester 2010 Dr. Martin Becker"

Transkript

1 Wirtscaftswissenscaftlices Prüfungssekretariat Diplomprüfung Finanzmarktökonometrie: Zeitreienanalyse Sommersemester 2010 Dr. Martin Becker Name, Vorname: Matrikelnummer: B i t t e b e a c t e n S i e F o l g e n d e s: 1. Kleben Sie bitte Ir Namensscild auf die dafür vorgeseene Markierung auf dem Deckblatt des Klausurefts! 2. Screiben Sie Iren Namen und Ire Matrikelnummer an den dafür vorgeseenen Stellen auf das Deckblatt der Aufgabensammlung (diese Seite)! 3. Legen Sie einen Lictbildausweis an Irem Platz aus. 4. Die Klausur bestet aus 6 Aufgaben mit insgesamt 120 = Punkten. Prüfen Sie die Vollständigkeit Ires Exemplares nac; spätere Reklamationen können nict berücksictigt werden. 5. Die Reienfolge der Bearbeitung der Aufgaben kann beliebig gewält werden. 6. Beginnen Sie für jede Aufgabe eine neue Seite. 7. Die Benutzung von zwei beidseitig bescriebenen bzw. vier einseitig bescriebenen DIN A4-Blättern sowie Tascenrecnern ist erlaubt. 8. Aufgabe 1 ist in der Aufgabensammlung zu bearbeiten. Die Aufgabensammlung ist daer zusammen mit dem Klausureft abzugeben! 1

2 Aufgabe 1 (21 Punkte) Markieren Sie jeweils mit einem Kreuz pro Aussage im betreffenden Kästcen, ob die unten steenden Aussagen war oder falsc sind. Rictige Antworten geben +3 Punkte, falsce Antworten 1 Punkt, nict bearbeitete Aussagen 0 Punkte. Die Aufgabe wird insgesamt mit mindestens 0 Punkten bewertet! war falsc 1. Die ACF eines AR(1)-Prozesses X t = φx t 1 + ε t (φ 0) klingt exponentiell ab und ist für negative Koeffizienten φ alternierend. 2. Die ACF zum Lag 1 eines MA(1)-Prozesses X t = θε t 1 + ε t nimmt für θ = 1 ir Maximum und für θ = 1 ir Minimum an. 3. Jeder AR(p)-Prozess ist mittelwertergodisc. 4. Jeder AR(1)-Prozess ist ein Martingal. 5. Bei q-korrelierten Prozessen ist die PACF ab dem Lag q + 1 gleic Ein Random Walk mit Startwert x und Drift α ist ein ARIMA(0, 1, 0)- Prozess. 7. Es sei X = (X t ) t Z ein nict deterministiscer scwac stationärer Prozess. Der Woldsce Zerlegungssatz liefert eine Zerlegung von X in eine rein nict-deterministisce Komponente U und eine deterministisce Komponente V mit X t = U t + V t und Cov(U s, V t ) 0 s, t Z. 2

3 Aufgabe 2 ( = 20 Punkte) a) Es sei ein MA-Prozess gegeben, dessen ACVF γ X () in Abängigkeit von folgende Werte annimmt: γ X (1) = 2 γ X (2) = 1 γ X (3) = 1 γ X () = 0 4 i) Welce Ordnung at der bescriebene MA-Prozess? (Begründung!) ii) Nemen Sie an, dass σε 2 = 2 gilt. Geben Sie die Parametervektoren zu den beiden möglicen MA-Prozessen an, die (für σε 2 = 2) zu der oben angegebenen ACVF-Struktur füren. b) Ist der folgende ARMA(2,2)-Prozess kausal bezieungsweise invertierbar bezüglic ε? X t = 2X t 1 + X t 2 + ε t ε t ε t 2 3

4 Aufgabe 3 ( = 17 Punkte) a) Wie lässt sic die Ordnung reiner AR(p)- und MA(q)-Prozesse mit Hilfe der ACF bezieungsweise PACF bestimmen? Wie veralten sic ACF und PACF bei einem ARMA(p, q)- Prozess? b) Im Folgenden sind zu Pfaden von zwei stocastiscen Prozessen jeweils die empirisce ACF sowie PACF dargestellt. Um welcen Prozess könnte es sic jeweils andeln und wie könnte die zugeörige Ordnung lauten? Prozess 1 ACF PACF ρ^x() Emp. ACF α^x() Emp. PACF Prozess 2 ACF PACF ρ^x() Emp. ACF α^x() Emp. PACF c) Für einen beobacteten Pfad der Länge n = 300 eines stocastiscen Prozesses X liegen folgende Werte für die Autokorrelationskoeffizienten bis zum Lag 4 vor: ρ X ()

5 Füren sie einen Ljung-Box-Test zum maximalen Lag m = 4 und zum Signifikanzniveau α = 0.05 durc. Was testet der Ljung-Box-Test und zu welcer Entsceidung kommt er in diesem Fall? Worin besteen die Untersciede zum Box-Pierce- bzw. McLeod-Li-Test? Hinweis: Für die Entsceidung steen Inen die folgenden 95%-Quantile der χ 2 (k)-verteilung zur Verfügung k χ 2 k;

6 Aufgabe 4 ( = 28 Punkte) a) Nennen Sie kurz möglicst viele Stylized Facts von Finanzmarktdaten. b) Aus den Sclusskursen der IBM-Aktie inneralb des Zeitraums bis (n=1006 Beobactungen) wurden die resultierenden Zeitreien der Log-Preise (IBMlogpr) sowie der Log-Renditen (IBMlogrend) berecnet. i) Welce Bezieung bestet zwiscen der Zeitreie der Log-Preise und der der Log- Renditen? ii) Die beiden folgenden Plots zeigen die empirisce ACF der Log-Preise bezieungsweise der Log-Renditen IBM Logpreise (IBMlogpr) IBM Logrenditen (IBMlogrend) ρ^x() Emp. ACF ρ^x() Emp. ACF Sollte man bei den Log-Preisen von einer integrierten Zeitreie ausgeen? Hierzu wurde zusätzlic mit R ein (Augmented) Dickey-Fuller-Test auf IBMlogpr durcgefürt: Augmented Dickey-Fuller Test data: IBMlogpr Dickey-Fuller = , Lag order = 10, p-value = alternative ypotesis: stationary Begründen Sie Ire Antwort mit Hilfe der Plots der empiriscen ACF und ergänzend mit dem Ergebnis des ADF-Tests. c) Zusätzlic wurde nun die Zeitreie der Beträge der Log-Renditen (absibmlogrend) berecnet. Mit Hilfe der Software R wurden Ljung-Box-Tests sowol für IBMlogrend als auc für absibmlogrend durcgefürt: Box-Ljung test data: IBMlogrend X-squared = , df = 1, p-value = Box-Ljung test data: absibmlogrend X-squared = , df = 1, p-value = 3.331e-16 6

7 Welce typiscen Eigenscaften von Finanzzeitreien werden durc diese Ergebnisse bekräftigt? d) Weiter wurde ein Ljung-Box-Test für die Zeitreie der quadrierten Log-Renditen (qibmlogrend) durcgefürt. Box-Ljung test data: qibmlogrend X-squared = , df = 1, p-value = 6.393e-10 Kann auf Grundlage des Testergebnisses davon ausgegangen werden, dass ARCH-Effekte in der Zeitreie der Log-Renditen vorliegen? (Begründung!) e) Scließlic wurde mit R ein GARCH-Modell an IBMlogrend angepasst: Call: garc(x = IBMlogrend, order = c(1, 1), trace = FALSE) Model: GARCH(1,1) Residuals: Min 1Q Median 3Q Max Coefficient(s): Estimate Std. Error t value Pr(> t ) a e e e-05 *** a e e e-10 *** b e e < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Diagnostic Tests: Box-Ljung test data: Squared.Residuals X-squared = , df = 1, p-value = i) Welce Ordnung at das gescätzte Modell? ii) Geben Sie das gescätzte Modell an. Ist die Varianz endlic? (Begründung!) iii) Nemen Sie kurz Stellung zu dem Ergebnis des Ljung-Box-Tests im Output. 7

8 Aufgabe 5 ( = 18 Punkte) Es sei der Prozess Z t gegeben durc Z t = x + at + t ε n + θ 1 ε t 1 + θ 2 ε t 2 (t 1), n=1 wobei ε t ein Weißes Rauscen und a, θ 1, θ 2 R ist mit a 0. a) Berecnen Sie die Differenzen Z t (für t 2) und 2 Z t (für t 3). (Hinweis: Z t := Z t Z t 1, 2 Z t := ( (Z t ))) b) Welce Prozesse Z t und 2 Z t entsteen durc die Differenzenbildung? c) Es sei nun θ 1 = θ 2 = 1. Berecnen Sie die Werte der ACVF und ACF von Z t bis zum Lag = 4. d) Sei nun θ 2 = 0. Für welce θ 1 > 0 ist dann die erste Differenz Z t von Z t invertierbar bzgl. ε? 8

9 Aufgabe 6 ( = 16 Punkte) Sind X und Y stocastisc unabängige ARMA(p X, q X )-bzw. ARMA(p Y, q Y )-Prozesse, so ist X + Y ein ARMA(p, q)-prozess mit p p X + p Y und q max(p X + q Y, p Y + q X ). a) Zeigen Sie mit Hilfe dieser Aussage, dass i) die Summe zweier MA-Prozesse MA(q 1 ) und MA(q 2 ) (q 1, q 2 0) wieder zu einem MA(q)-Prozess fürt. Welce Bedingung gilt für die Ordnung q des entsteenden Prozesses? ii) die Summe zweier AR-Prozesse AR(p 1 ) und AR(p 2 ) (p 1, p 2 0) zu einem ARMA(p, q)- Prozess fürt. Welce Bedingungen sind ier an die Ordnungen p und q gestellt? b) Es seien für φ < 1 die beiden AR(1)-Prozesse X t und Y t gegeben durc X t = φx t 1 + ε t, Y t = φy t 1 + ν t, wobei ε t und ν t voneinander unabängige Weiße Rauscen sind mit gleicer Varianz σ 2. Betracten Sie nun den Prozess Z t := X t + Y t. i) Zeigen Sie, dass Z t φ 2 Z t 2 = Q t gilt mit Q t := ε t + φε t 1 + ν t φν t 1. ii) Weisen Sie nac, dass es sic bei Q t um ein Weißes Rauscen andelt. iii) Können Sie die Aussage aus Aufgabenteil a) ii) am Beispiel von Z t verifizieren? Von welcem Typ ist der Prozess Z t genauer? 9

10 Bitte nict vergessen: ˆ Platzkarte auf das Klausureft kleben! ˆ Name, Vorname sowie die Matrikelnummer auf das Deckblatt dieser Aufgabensammlung screiben! ˆ Diese Aufgabensammlung mit dem Klausureft abgeben! 10

Stochastische Prozesse und Box-Jenkins Technik

Stochastische Prozesse und Box-Jenkins Technik Stochastische Prozesse und Box-Jenkins Technik Stichwörter: AR-, MA- und ARMA-Prozeß weißes Rauschen random walk Autokorrelations-Funktion Stationarität Invertierbarkeit Korrelogramm Box-Jenkins Technik

Mehr

Wirtschaftswissenschaftliches Prüfungsamt

Wirtschaftswissenschaftliches Prüfungsamt Wirtschaftswissenschaftliches Prüfungsamt Master of Economics, Finance and Philosophy Diplomprüfung Econometric Methods and Applications Wintersemester 2011/12 22. Februar 2012 Prof. Dr. Ralph Friedmann

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

6 Nichtstationarität und Kointegration

6 Nichtstationarität und Kointegration 6 Nichtstationarität und Kointegration 6.1 Kapitelübersicht, Problematik Die Analyse nichtstationärer Zeitreihen wird folgende Gesichtspunkte anschneiden: Definition von Nichtstationarität, von integrierten

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y 1.06 Druck an gekrümmten läcen f() p γ. (-) p p ds p 0 0 Es andelt sic um ein zweidimensionales Problem in der -- Ebene. ür die Ermittlung von Kräften muss auc die Dimension senkrect zur Tafelebene berücksictigt

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Zeitreihenanalyse. 1 Einleitung. 2 Autoregressive Prozesse, lineare Differenzengleichungen

Zeitreihenanalyse. 1 Einleitung. 2 Autoregressive Prozesse, lineare Differenzengleichungen Zeitreihenanalyse Enno MAMMEN Department of Economics, University of Mannheim L7, 3-5, 68131 Mannheim, Germany E mail: emammen@rumms.uni-mannheim.de February 22, 2006 1 Einleitung Klassisches Komponentenmodell,

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

Unterlagen zu endlichen Körpern. Erhard Aichinger

Unterlagen zu endlichen Körpern. Erhard Aichinger Unterlagen zu endlicen Körpern Erard Aicinger Linz, im November 2005 Alle Recte vorbealten 1 KAPITEL 1 Endlice Körper 1 Definition endlicer Körper DEFINITION 11 Ein Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

6. Statistische Schätzung von ARIMA Modellen

6. Statistische Schätzung von ARIMA Modellen 6. Statistische Schätzung von ARIMA Modellen Vorschau: ARIMA Modelle Modellidentifikation verschiedene Schätzverfahren Modelldiagnostik Fallstudien Zeitreihenanalyse 1 6.1 ARIMA Modelle Bisher: ARMA(p,q)-Modelle:

Mehr

Modul: Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung. Leseprobe

Modul: Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung. Leseprobe Prof. Dr. Hermann Singer Modul: 32681 Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung Kurs: 00889 Version vom 10/2004 Überarbeitet am 10/2015 Leseprobe Inhaltsverzeichnis 1 Überblick

Mehr

Modul Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung

Modul Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung Prof. Dr. Hermann Singer Modul 32681 Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung Kurs 00889 Version vom 10/2004 Überarbeitet am 10/2015 Leseprobe Fakultät für Wirtschaftswissenschaft

Mehr

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2015/16. Dr.

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2015/16. Dr. Aufgabenstellung und Ergebnisse zur Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 205/6 Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Die Klausur besteht

Mehr

4. Nichtstationarität und Kointegration

4. Nichtstationarität und Kointegration 4. Nichtstationarität und Kointegration 4.1 Einheitswurzeltests (Unit-Root-Tests) Spurious regression In einer Simulationsstudie haben Granger und Newbold (1974) aus zwei unabhängigen Random Walks (Unit-Root-Prozesse)

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.41 2018/05/08 15:50:54 k Exp $ 1 Analytisce Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung atten wir eine metrisce Form des Stralensatzes ergeleiten, gegeben

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik Grundkurs Pysik: Abiturprüfung 1997 Aufgabe 3 Atompysik 1. Der gesamte sictbare Bereic (00 nm λ 750 nm) des elektromagnetiscen Spektrums soll auf einem Scirm dargestellt werden. a) Begründen Sie, warum

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Kompaktskript zur Vorlesung Prognoseverfahren

Kompaktskript zur Vorlesung Prognoseverfahren Kompaktskript zur Vorlesung Prognoseverfahren Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P. Kischka Sommersemester

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2010

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2010 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 010 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Prüfung Statistik Winter 2013 Schriftliche Prüfung (2 Stunden) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten! Lesen Sie zuerst alle Aufgaben

Mehr

6. Schätzung stationärer ARMA-Modelle

6. Schätzung stationärer ARMA-Modelle 6. Schätzung stationärer ARMA-Modelle Problemstellung: Statistische Anpassung eines stationären ARMA(p, q)-prozesses an eine Stichprobe von t = 1,..., T Prozessbeobachtungen Es bezeichne x 1,..., x T die

Mehr

Aktienkurs der Wiener Börsekammer (Jänner 1968-Oktober 2004) Forecasts und Evaluation

Aktienkurs der Wiener Börsekammer (Jänner 1968-Oktober 2004) Forecasts und Evaluation Aktienkurs der Wiener Börsekammer (Jänner 1968-Oktober 24) Forecasts und Evaluation 1. Daten...2 2. Dynamische Forecasts...4 2.1 Exponential Smoothing...4 2.1.1 Double Exponential Smoothing...4 2.1.2 Holt-Winters...5

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

3. ARMA-Modelle. Jetzt: Wichtigste Modellklasse für stationäre Prozesse

3. ARMA-Modelle. Jetzt: Wichtigste Modellklasse für stationäre Prozesse 3. ARMA-Modelle Jetzt: Wichtigste Modellklasse für stationäre Prozesse Definition 3.1: (ARMA(p, q)-prozess) Gegeben sei das Weiße Rauschen {ɛ t } t Z WR(0, σ 2 ). Der Prozess {X t } t Z heißt AutoRegressiver-Moving-Average-Prozess

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

6.4 Kointegration Definition

6.4 Kointegration Definition 6.4 Kointegration 6.4.1 Definition Nach Engle und Granger (1987): Wenn zwei oder mehrere Variablen I(1) sind, eine Linearkombination davon jedoch I() ist, dann sind die Variablen kointegriert. Allgemein:

Mehr

1. Zulassungsklausur in "Technischer Thermodynamik 2" am im Sommersemester Teil

1. Zulassungsklausur in Technischer Thermodynamik 2 am im Sommersemester Teil Zulassungsklausur in "Tecniscer Termodynamik " am 6998 im Sommersemester 98 Teil Es sind keine Hilfsmittel zugelassen Rictige Antworten sind mit dokumentenectem Stift anzukreuzen Falsc beantwortete Aufgaben

Mehr

Definition und Beispiele. Lineare Prozesse. Kausalität und Invertierbarkeit. Berechnung der Autokovarianzfunktion. Prognosen in ARMA-Modellen

Definition und Beispiele. Lineare Prozesse. Kausalität und Invertierbarkeit. Berechnung der Autokovarianzfunktion. Prognosen in ARMA-Modellen Kap. 2: ARMA-Prozesse Definition und Beispiele Lineare Prozesse Kausalität und Invertierbarkeit Berechnung der Autokovarianzfunktion Prognosen in ARMA-Modellen Wold-Darstellung 2.1 Definition und Beispiele

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

Einleitung. Statistik. Bsp: Ertrag Weizen. 6.1 Einfache Varianzanalyse

Einleitung. Statistik. Bsp: Ertrag Weizen. 6.1 Einfache Varianzanalyse Einleitung Statistik Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Der Begriff Varianzanalyse (analysis of variance, ANOVA) taucht an vielen Stellen in der Statistik mit unterschiedlichen

Mehr

Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS)

Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS) Vorbereitungen Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS) Falls das R - Paket car noch nicht installiert wurde, kann dies mit der Funktion install.packages() erledigt werden. install.packages("car")

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

kleinsten mittleren Fehlerquadrats und die Maximum-a-posteriori-Schätzung. Die Bayes-Schätzung basiert auf dem Satz von Bayes:

kleinsten mittleren Fehlerquadrats und die Maximum-a-posteriori-Schätzung. Die Bayes-Schätzung basiert auf dem Satz von Bayes: 4 Bayes-Scätzung 4.1 Überblick Die Bayes-Scätzung geört zu den wictigsten Konzepten der Signalverarbeitung. Sie stellt die Verallgemeinerung und damit ein Ramenwerk für einen Großteil klassiscer und moderner

Mehr

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 28 Kointegration Kapitel 19 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 28 Inhalt I(d), Trends, Beispiele Spurious Regression Kointegration, common trends Fehlerkorrektur-Modell Test

Mehr

Logik und Mengenlehre. Mengenlehre Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen. Russelsche Antinomie Die freie Software R Quiz

Logik und Mengenlehre. Mengenlehre Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen. Russelsche Antinomie Die freie Software R Quiz Logik und Mengenlere Mengenlere Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen Russelsce Antinomie Die freie Software R Qui Mengenlere 1 Am Anfang war das Nicts Die leere Menge 2 entält

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Facbereic atematik Prof. Dr. R. Farwig C. omo J. Prasiswa R. Sculz SS 29 6.7.29 2. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Jordan-essbarkeit Die enge R n sei Jordan-messbar. Zeigen Sie, dass

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 ***

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 *** Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt):

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt): Bestimmung von Azimut und Abstand: Stundenwinkel: t = Grt + λ + für E-Längen - für W-Längen Berecnete Höe (= Entfernung des gegißten Ortes vom Bildpunkt): sin = sin ϕ sin δ + cos ϕ cosδ cos t Bei der Verwendung

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I Ein weiterer Test ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich, eine (einzelne) Quelle der Heteroskedastizität anzugeben bzw. zu vermuten.

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n .. Lösung der Aufgabe. Neme an, wir ätten die Aufgabe, n Personen aus n n Personen auszuwälen. Dafür gibt es natürlic Möglickeiten. Wir können aber n auc wie folgt verfaren. Teilen wir die n Personen auf

Mehr

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013 Veranstaltung Logistik und Materialfluss (Lagerlogistik), Sommersemester 203 Übung 4: Tema: Statisce Losgröße Andler Modell Los (lot) : Menge eines Produktes, die one Unterbrecung gefertigt wird. Losgröße(lotsize):

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Elastizitätsmodul. 1. Aufgabenstellung

Elastizitätsmodul. 1. Aufgabenstellung M Elastizitätsmodul 1. Aufgabenstellung 1.1 Bestimmen Sie den Elastizitätsmodul E versciedener Metalle aus der Biegung von Stäben. 1. Stellen Sie den Biegepfeil s in Abängigkeit von der Belastung grafisc

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Ich bestätige, dass ich obige Hinweise zur Kenntnis genommen habe und sie befolgen werde.

Ich bestätige, dass ich obige Hinweise zur Kenntnis genommen habe und sie befolgen werde. 60-minütige Klausur zur Vorlesung Statistik II für Studierende der Wirtschaftswissenschaften aus dem Sommersemester 2017 Prof. Dr. Helmut Küchenhoff Ludwig-Maximilians-Universität München, Institut für

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

VAR- und VEC-Modelle. Kapitel 22. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

VAR- und VEC-Modelle. Kapitel 22. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 42 VAR- und VEC-Modelle Kapitel 22 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 42 Inhalt VAR-Modelle, vector autoregressions VARX in Standardform und Strukturform VAR: Schätzung in

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zeitreihenanalyse Peter Frentrup Humboldt-Universität zu Berlin 19. Dezember 2017 (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember 2017 1 / 13 Übersicht 1 Zeitreihen

Mehr

Hauptseminar zum Thema:

Hauptseminar zum Thema: Fakultät Informatik Institut für angewandte Informatik Professur Technische Informationssysteme Hauptseminar zum Thema: Vergleich ARCH- und GARCH- Modelle bei der Analyse von Zeitreihen mit veränderlichen

Mehr

Modulklausur Multivariate Verfahren. Datum Punkte Note. Termin: 26. September 2008, Uhr Prüfer: Univ.-Prof. Dr. H.

Modulklausur Multivariate Verfahren. Datum Punkte Note. Termin: 26. September 2008, Uhr Prüfer: Univ.-Prof. Dr. H. Name, Vorname Matrikelnummer Modulklausur 31821 Multivariate Verfahren Datum Punkte Note Termin: 26. September 2008, 9.00-11.00 Uhr Prüfer: Univ.-Prof. Dr. H. Singer Hinweise zur Bearbeitung der Modulklausur

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

6.Wechselwirkung mit einem Flüssigkeitsfilm auf der kalten Thermode

6.Wechselwirkung mit einem Flüssigkeitsfilm auf der kalten Thermode 6. WECHSELWIRKUNG MIT FLÜSSIGKEITSFILM AUF KALTER THEMODE 153 6.Wecselwirkung mit einem Flüssigkeitsfilm auf der kalten Termode Die an der kalten Termode angebracte Benetzungssperre verindert im allgemeinen

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirschafsforschung Prof. Dr. Bernd Süßmuh Universiä Leipzig Insiu für Empirische Wirschafsforschung Volkswirschafslehre, insbesondere Ökonomerie 9.6. Zeireihen und Zeireihenmodelle Prinzipielle

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Matematik für Informatiker 1 Grundlagen der Matematik für Informatiker 2 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion : A n A eine n-äre algebraisce

Mehr

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Schließende Statistik Wintersemester 2017/18. Dr. Martin Becker

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Schließende Statistik Wintersemester 2017/18. Dr. Martin Becker Aufgabenstellung und Ergebnisse zur Bachelor-Prüfung Schließende Statistik Wintersemester 2017/18 Dr. Martin Becker Hinweise für die Klausurteilnehmer Die Klausur besteht aus insgesamt 9 Aufgaben. Prüfen

Mehr

Realschulabschluss Physik (Sachsen) Aufgaben im Stil der Abschlussprüfung: Mechanik

Realschulabschluss Physik (Sachsen) Aufgaben im Stil der Abschlussprüfung: Mechanik Realsculabscluss Pysik (Sacsen) Aufgaben im Stil der Absclussprüfung: Mecanik Kraftumformende Einrictung 1 Ein PKW kommt beim Bremsen ins Scleudern und rutsct eine Böscung inab. Ein Abscleppfarzeug ziet

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Explizite, eingebettete und implizite RK-Verfahren

Explizite, eingebettete und implizite RK-Verfahren Kutta-Teorie: Explizite, eingebettete und implizite RK-Verfaren Lukas Klic Kutta-Teorie: : Explizite, eingebettete und implizite RK- Verfaren Lukas Klic Seite: Gliederung -Verfaren - Explizite Verfaren

Mehr

Weitere Anwendungen von ganzrationalen Funktionen

Weitere Anwendungen von ganzrationalen Funktionen Weitere Anwendungen von ganzrationalen Funktionen 1.0 Um Obstkisten aus Pappe erzustellen, werden aus recteckigen Kartonplatten (Länge 16 dm, Breite 1 dm) an den vier Ecken jeweils Quadrate abgescnitten.

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

2 Stationarität. Strikte Stationarität

2 Stationarität. Strikte Stationarität 2 Stationarität. Strikte Stationarität Die in 1 benutzten Begriffe sind noch zu präzisieren : Definition 2.1. a) Ein stochastischer Prozess {X t } t T heißt strikt stationär, falls für je endlich viele

Mehr

Lösung - Übungsblatt 10

Lösung - Übungsblatt 10 Lösung - Übungsblatt 10 Aufgabe 2: Siehe Outputfile Aufgabe 2 a) Regressionsgleichung - Equation 1: price = β 1 + β 2 lotsize + β 3 sqrft + β 4 bdrms + u i Fit: price = β 1 + β 2 lotsize + β 3 sqrft +

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Ausgewählte Probleme der Ökonometrie

Ausgewählte Probleme der Ökonometrie Ausgewählte Probleme der Ökonometrie Bernd Süßmuth IEW Institute für Empirische Wirtschaftsforschung Universität Leipzig November 28, 2011 Bernd Süßmuth (Universität Leipzig) APÖ November 28, 2011 1 /

Mehr

Physik in der Praxis: Fortgeschrittenen-Praktikum

Physik in der Praxis: Fortgeschrittenen-Praktikum MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Pysik in der Praxis: Fortgescrittenen-Praktikum 1. Versuc: Quantisierter Leitwert von Punktkontakten Durcfürung 19.04.2011 Abgabe am Übungsleiter

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min.

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min. Facbereic Wirtscaftswissescaft PO 95 D I P L O M P R Ü F U N G Prüfugstermi: Sommersemester 2002 Studiescwerpukt: - - - Prüfugsfac: Walfac Steuerlere Puktzal: 100 Prüfer: Prof. Dr. Volker Breitecker Bearbeitugszeit:

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Übungsblatt 03. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS4100 Grkurs IV (Pysik, Wirtscaftspysik, Pysik Leramt Otmar Marti, (otmar.marti@pysik.uni-ulm.de 28. 4. 2005 oder 29. 4. 2005 1 Aufgaben 1. Nemen Sie an, dass eine Kugel mit dem Radius

Mehr

Lösung parabolischer Differentialgleichungen mit zufälligen Randbedingungen mittels FEM

Lösung parabolischer Differentialgleichungen mit zufälligen Randbedingungen mittels FEM Lösung paraboliscer Differentialgleicungen mit zufälligen Randbedingungen mittels FEM A. Kandler, J. vom Sceidt, R. Unger Tecnisce Universität Cemnitz, Fakultät für Matematik, 917 Cemnitz, Germany Zusammenfassung

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

Vergleichsarbeiten 2004 Realschule Klasse 8

Vergleichsarbeiten 2004 Realschule Klasse 8 Vergleicsarbeien 2004 Realscule Klasse 8 Maemaik Dein Name: Deine Scülernummer: Beginn deiner Arbeiszei: Ur Ende deiner Arbeiszei: Ur Liebe Scülerin, lieber Scüler! Die vor dir liegende Vergleicsarbei

Mehr