Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort"

Transkript

1 Textuell: FederPendel yste FederPendel Dreh- Magnet Feder c Masse l Däpfer d lf ld ollwertgeber Regler Winkelsensor Regelungstechnische Begriffe: PT-Glied it Verstärkung Kp, Däpfung D, Zeitkonstante T DGL: als prungantwort T ϕ + DT ϕ + ϕ K W Beschreibung als Übertragungsfunktion als Frequenzgang

2 Das Blockschaltbild des FederPendel lautete: M ag Magnet W Regler U ag M ag Magnet Moentenbilanz ϕ U ag Regler Winkelsensor ϕ ess Man kann das Übertragungsverhalten zwischen Ausgang ϕ und Eingang W auch durch grafische Blockzusaenfassung finden. w? ϕ

3 Die gefundenen linearen Beziehungen lauten:. Regler: U ag K pr ( W ϕess). Magnet: Mag K ϕ + KU Uag ϕ 3. ensor: ϕ ϕ ess K ess Aber in die Blöcke können keine Gleichungen eingesetzt werden! Bilde daher die Verstärkungen! 3

4 Dafür uss in Ausgangs-/Eingangsdarstellung ugeschrieben werden: Ausgang Verstärkung Eingang > Ausgang Eingang Verstärkung Xe K p Xa 4

5 Ausgangs-/Eingangsdarstellung. Regler: U ag K pr ( W ϕess). für w: U U ag ag ( t) ( t) W ( t) K K pr W ( t) W pr K pr U ag. für ϕ: U U ϕ ag ag ess ( t) ( t) ( t) K K pr pr ϕ ess ϕ ess ( t) -K pr U ag 5

6 Ausgangs-/Eingangsdarstellung. Magnet: Mag K ϕ + KU Uag ϕ. Mag( t) K ϕ ϕ( t) Mag( t) ϕ( t) K ϕ ϕ Kϕ M ag. Mag( t) K U Uag( t) Mag( t) Uag( t) K U Uag K U M ag 6

7 Ausgangs-/Eingangsdarstellung 3. ensor: ϕ ess ( t ) K ϕ ( t ) ess ϕess( t) ϕ( t) K ess ϕ (t) K ess ϕ ess(t) 7

8 in die Blöcke eingesetzt folgt: Mag( t) K ϕ( t) ϕ M ag K ϕ W U ag K PR ( t) K W ( t) pr U ag M Mag( t) K Uag( t) ag U K U ϕ ess M ag c l f? + ϕ + d l ϕ l ϕ d ϕ U ag -K PR K Mess U ag ( t) K ϕ ( t) pr ess ϕ ess ( t ) K ϕ ( t ) ess 8

9 Die Differentialgleichung läßt sich nicht in Ausgangs- /Eingangsdarstellung schreiben: Bilanz: M ag c l f + ϕ + d l ϕ l ϕ d Da die zeitliche Ableitung ein Operator ist, läßt sich ϕ nicht faktorisieren! M ag ϕ( t) [? ] > ϕ( t) M ag [? ] 9

10 Abhilfe schafft die Laplace-Transforation der Differentialgleichung! 0

11 Laplace-Transforation einer Zeitfunktion f(t): F st ( ) f ( t) e dt 0 ist dabei eine koplexe Zahl δ+i, die sogenannte Bildvariable. Grossschreibung Bildfunktion F(), Kleinschreibung Zeitfunktion f(t) Rechenvorteile durch Transforation der Zeitfunktion bzw der ganzen Differentialgleichung in den Bildbereich Kurzschreibung: f ( t) o F( )

12 Rechenvorteile durch logarithieren (60er Jahre it Logarithentabellen) Y (.374 Taschenrechner ) o _ Tabelle _ lny ln( ) ln ln _ Tabelle _ 0.37 o Y e.374

13 Beispiele für die Laplace-Transforation einer Zeitfunktion f(t): f(t) F() / t / e αt /(s-α) te αt /(s-α) sint /(s - ) x(t) X() allgeeine For 3

14 Rechenvorteile durch Anwendung der Laplace-Transforation auf eine Zeitfunktion f(t): f f Die Differentiationsregel ( t) F( ) f ( + 0) ( t) dt F( ) f ( + 0) Die Ableitung wird i Bildbereich durch eine Multiplikation it der Bildvariable ersetzt, die Integration durch eine Division durch die Bildvariable! 4

15 5 Vorlesung 6 Die Differentialgleichung läßt sich dait in Ausgangs- /Eingangsdarstellung schreiben, wenn sie Laplacetransforiert wird. Ablauf:. Die Lapacetransforation wird für jeden Ter in der Gleichung einzeln angewendet (Linearität). 0 ) ( ) ( ) ( ) ( ) ( t l t l d t l c t M t f d f ag ϕ ϕ ϕ 0 ) ( ) ( ) ( ) ( ) ( l dl cl M F d f ag ϕ ϕ ϕ. DGL in Funktion f(t)0 wandeln: + + ϕ ϕ ϕ d f ag l l d l c M Bilanz Pendel:

16 Ausgangs-/Eingangsdarstellung : M ag ϕ( ) [ ] cl + dl + l M ( ) Ugefort für die Ausgangsgrösse: ϕ( ) > ( ) cl ϕ( ) M ( ) f M ag f ϕ( ) dl ag d ( ) ag [ ] cl + dl + l [ ] cl + dl + l f d ϕ( ) l f d d ϕ( ) 0 ϕ() [ cl + dl l ] f d + () M ag Gesuchte Blockdarstellung 6

17 in die Blöcke eingesetzt folgt: M ag () K ϕ ϕ() W() K PR U ag () K U M ag () [ cl + dl l ] f d + ϕ() U ag () ϕ ess () -K PR K Mess ϕ() Ergebnis: Jeder Block hat jetzt einen Verstärkungsfaktor. Da aber alle Variablen als Bildfunktionen betrachtet werden üssen, heissen die Verstärkungsfaktoren nun Übertragungsfunktion! 7

18 Der Begriff der Übertragungsfunktion G(): Wird die ein lineares yste beschreibende algebraische Gleichung oder Differentialgleichung eleentweise Laplacetransforiert und bildet an den Ter Ausgangsvariable zu Eingangsvariable, so erhält an die Übertragungsfunktion G() des ystes: o faktorisieren: Aus-/Eingang: 3 sec X ( t) X ( t).5v a + a X e( t) 3 sec X [ 3 + ].5V X ( ) ( ) sec a X X ( ) ( ).5V 3 sec a e X a ( ) + X a ( ).5 + G( ) V e X e ( ) Übertragungs -funktion 8

19 Beziehungen der Übertragungsfunktion G(): Bildungsgesetz: X X e ( ) ( ) a G( ) Blockbeziehung: Lineare Ein-/Ausgangszuordnung: Inverse Zuordnung: X X G() X e () ( ) G( ) X ( ) a ( ) X a ( ) G( ) e e X a () 9

20 Lösen von Diffentialgleichungen ittels Übertragungsfunktion G() und Laplace-Tabellen (Beispiel):. G ( ) X e ( ) X a ( ) prungsignal: X e ( t) σ ( t) o X ( ) e 0

21 Lösen von Diffentialgleichungen ittels Übertragungsfunktion G() und Laplace-Tabellen:. G ( ) X e ( ) X a ( ) PT-yste: 3sec X ( t) + X ( t).5v a a.5 G( ) + 3 X e ( t)

22 Lösen von Diffentialgleichungen ittels Übertragungsfunktion G() und Laplace-Tabellen: 3. G ( ) X e ( ) X a ( ) Ausgangssignal: Berechnung über Korrespondenz- Tabelle:.5 X ( ) G( ) a ( + 3) _ Tabelle 3 o X ( t).5( e t ) a

23 Lineare Regelkreisglieder P Xa () t Kp Xe() t () s Kp Xe() s Xa () s () s Xa G () s Xe Kp 3

24 Lineare Regelkreisglieder PT T X a() t + Xa() t Kp Xe() t () s + Xa() s Kp Xe() s T Xa G () s Kp + T 4

25 Lineare Regelkreisglieder PT T X a() t + DT X a() t + Xa( t) Kp Xe() t ( T + DT + ) Xa() s Kp Xe() s G Kp + DT + T () s 5

26 Lineare Regelkreisglieder I T () () n X a t Xe t X a ( t) K I X e( t) dt Tn Xa() s Xe() s Xa( s) K I Xe( s) G () s T n K I 6

27 Lineare Regelkreisglieder DT Tv X a() t + Xa() t TD Xe( t) () s + Xa() s T Xe() s Tv Xa D G () s TD + Tv 7

28 Lineare Regelkreisglieder PDT Tv X a() t + Xa() t Kp ( TD X e() t + Xe()) t () s + Xa() s Kp ( T Xe() s Xe()) Tv Xa D + s G () s + TD Kp + Tv 8

29 Lineare Regelkreisglieder PDT Tv X a() t + DvTv X a() t + Xa() t Kp ( T X e T v X a D () t + D T X e() t + Xe()) t () s + D T X a() s + Xa() s v v D D Kp ( T D X e () s + D T X e() s + Xe()) s D D G + D T + D Tv + T + T D D D () s Kp v v 9

30 P G () s Kp 30

31 PT G () s Kp + T 3

32 PT G Kp () s + DT + T 3

33 I G () s K I 33

34 DT Vorlesung 6 G () s T D + Tv 34

35 PDT Vorlesung 6 G () s Kp + TD + Tv 35

36 PDT Vorlesung 6 G + () s Kp D D D + D T D Tv v + T + T v 36

37 Vorteile der Arbeit it der Übertragungsfunktion Beschreibung des ysteverhaltens ist it eine Ter öglich, ob nun rein statisch durch Verstärkung oder durch DGL it gegebener Eingangssignalfunktion Xe(s) kann der Ausgangsgrößenverlauf berechnet werden Xa(s) Xa(t) tabilitätsuntersuchung it verschiedenen Verfahren ist öglich (Hurwitz, Nyquist) Der Frequenzgang kann durch i direkt berechnet werden. Regelkreise können aus der Gesatübertragungsfunktion berechnet X ( ) U ( ) werden. Aus der Vorgabe folgt für den W ( ) X d ( ) Regler! 37

38 38 Beispiel für Frequenzgang von PT-Übertragungsfunktion () T s G + ( ) ( ) ( ) ( ) i T i T i T i T i F + + ( ) T T i T i F + + ( ) ( ) Re T i F + ( ) ( ) I T T i F + )) ( ( I )) ( ( Re ) ( T i F i F i F A + + ) arctan( )) ( Re( )) ( I( arctan ) ( ) ( T i F i F i F α Vorlesung 6

39 Beispiel für Frequenzgang von PT-Übertragungsfunktion G() s + 5 A F( i) + 5 α( ) F( i) arctan( 5) 39

40 D Übung: Übertragungsfunktionen in Blockschaltbild eintragen ϕ W k ϕ chraube w K K W + 3 Hebel U 4 K dt Verstärker Hebel u Ventil Ventil K P P. Federbalg K Pe + K U p Pe + ϑ K 5 T ϑ Ofen Theroeter P Kϑ ϑ U ϑ 40

41 Übung: Lösung Ventil ϕ w chraube Hebel k + K 3 Verstärker K 4 Hebel K u K Pe Ventil K U. Federbalg K P p K5 Ofen + T Theroeter K ϑ ϑ 4

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Mathias Hinkel, WS 2010/11

Mathias Hinkel, WS 2010/11 Mathias Hinkel, WS 2010/11 1. Motivation und Einführungsbeispiel 2. Mathematische Beschreibung des Ofenprozesses 3. Lösungsansätze für Differentialgleichung 4. Einführung der Laplace-Transformation 5.

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

13.1 Die Laplace-Transformation

13.1 Die Laplace-Transformation 13.1 Die Laplace-ranformation 565 13.1 Die Laplace-ranformation Die Laplace-ranformation it eine Integraltranformation, die jeder Zeitfunktion f(t), t, eine Bildfunktion F () gemäß 13.1 F () = f (t) e

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Regelungstechnik 1. Oldenbourg Verlag München Wien

Regelungstechnik 1. Oldenbourg Verlag München Wien Regelungstechnik 1 Lineare und Nichtlineare Regelung, Rechnergestützter Reglerentwurf von Prof. Dr. Gerd Schulz 3., überarbeitete und erweiterte Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Umdruck RT: Grundlagen der Regelungstechnik. 1 Grundbegriffe der Steuerungs- und Regelungstechnik. 1.2 Regelung

Umdruck RT: Grundlagen der Regelungstechnik. 1 Grundbegriffe der Steuerungs- und Regelungstechnik. 1.2 Regelung Universität Stuttgart Institut für Leistungselektronik und lektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow.2 Regelung ÜBUG ZU LKRISCH RGICHIK II Umdruck R: Grundlagen der Regelungstechnik Grundbegriffe

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Musterlösung zur Klausur. Grundlagen der Mechatronik und Systemtechnik

Musterlösung zur Klausur. Grundlagen der Mechatronik und Systemtechnik 23.08.2012 Musterlösung zur Klausur Grundlagen der Mechatronik und Systemtechnik Name: Matrikel-Nr.: Hinweise zur Bearbeitung: Die Klausur besteht aus 4 Aufgaben. Es sind alle Aufgaben zu bearbeiten. Die

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Zustandsraum: Historische Einordnung

Zustandsraum: Historische Einordnung Zustandsraum: Historische Einordnung Die Grundlagen der Zustandsraummethoden wurden im Zeitraum 1955 1965 von Kalman und seinen Kollegen in dem Research Institute for Advanced Studies in Baltimore entwickelt.

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

Lineare Differenzengleichungen und Polynome. Franz Pauer

Lineare Differenzengleichungen und Polynome. Franz Pauer Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim ÖMG-LehrerInnenfortbildungstag

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung HS oblenz FB ngenieurwesen Prof. Dr. röber Seite von 7 Versuch 4: Hydraulische Positionsregelung. Versuchsaufbau.. mfang des Versuches m Versuch werden folgende Themenkreise behandelt: - Aufbau eines Prüfstandes

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Theorie der Regelungstechnik

Theorie der Regelungstechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. H. Gassmann Theorie der Regelungstechnik Eine Einführung Verlag Harri

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung 6.8.8 Regelungstechnik II (5-59-) Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterschiedlich gewichtet, total 6 Punkte) Um die

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

Klausur. Grundlagen der Mechatronik und Systemtechnik

Klausur. Grundlagen der Mechatronik und Systemtechnik 23.08.2012 Klausur Grundlagen der Mechatronik und Systemtechnik Name: Matrikel-Nr.: Hinweise zur Bearbeitung: Die Klausur besteht aus 4 Aufgaben. Es sind alle Aufgaben zu bearbeiten. Die Bearbeitungszeit

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),

Mehr

Frequenzgang der Verstäkung von OPV-Schaltungen

Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Spannungsverstärkung eines OPV Eigenschaten des OPV (ohne Gegenkopplung: NF-Verstärkung V u 4 Transitrequenz T 2. 6. Hz T Knickrequenz =

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Einführung Regelungstechnik: Lehre von der gezielten Beeinflussung dynamischer

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Versuchsanleitung MV_5_1

Versuchsanleitung MV_5_1 Modellbildung und Simulation Versuchsanleitung MV_5_1 FB 2 Stand August 2011 Prof. Dr.-Ing. Hartenstein Seite 1 von 11 1. Versuchsgegenstand Versuchsziel Ziel des Versuches ist es, die im Lehrfach Mechatronische

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

KLP Klasse 7. Kap. I. Prozentrechnung. Arg/Komm Problemlösen. Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen

KLP Klasse 7. Kap. I. Prozentrechnung. Arg/Komm Problemlösen. Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen Kap. I Arithmetik Prozentrechnung Umwandlung von Brüchen Dezimalbrüchen Prozentzahlen Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen Berechnen von Prozentwert Prozentsatz

Mehr

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27 Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 Elektrische Ladung... 5 Aufbau eines Atom... 6 Ein kurzer Abstecher in die Quantenmechanik... 6 Elektrischer Strom... 7 Elektrische Spannung... 9 Widerstand...

Mehr

Ersatzschaltbild eines Operationsverstärkers für den Betrieb bei niederen Frequenzen

Ersatzschaltbild eines Operationsverstärkers für den Betrieb bei niederen Frequenzen Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Ersatzschaltbild eines Operationsverstärkers für den Betrieb bei niederen Frequenzen Unterlagen zur Vorlesung Regelungstechnik

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte) Prof. L. Guzzella Prof. R. D Andrea BSc - Sessionsprüfung 5.8.8 Regelungstechnik I (151-591-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 1 Minuten 9 (unterschiedlich

Mehr

Musterlösung zur Klausur. Grundlagen der Mechatronik

Musterlösung zur Klausur. Grundlagen der Mechatronik 26.3.212 Musterlösung zur Klausur Grundlagen der Mechatronik Name: Matrikel-Nr.: Hinweise zur Bearbeitung: Die Klausur besteht aus 4 Aufgaben. Es sind alle Aufgaben zu bearbeiten. Die Bearbeitungszeit

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist.

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist. und Experimentelle Mechani Technische Mechani III aer, ee ZÜ 8. Aufgabe 8. B ω Bei einer Wirbelstrombremse wird das chwungrad Masse m, adius r durch einen Bremsmagnet B verzögert. Das hierbei wirende Bremsmoment

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

OPV-Schaltungen. Aufgaben

OPV-Schaltungen. Aufgaben OPVSchaltungen Aufgaben 2 1. Skizzieren Sie die vier für die Meßtechnik wichtigsten Grundschaltungen gegengekoppelter Meßverstärker und charakterisieren Sie diese kurz bezüglich des Eingangs und Ausgangssignals!

Mehr

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme -

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme - Einführung in die Regelungstechnik II - - Torsten Kröger Technische Universität - 1/64 - Braunschweig - 2/64 - Wiederholung - Einführung in die Regelungstechnik I Blockschema eines Regelkreises Kontinuierliche

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Regelungstechnik Universität Ulm Meß-, Regel- und Mikrotechnik Prof. Dr. Eberhard P. Hofer Institutsdirektor i.r. Institut für Mess, Regel und Mikrotechnik Fakultät für

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Regelungstechnik. Steuerungs- und Reglungstechnik. Created with novapdf Printer (www.novapdf.com). Please register to remove this message.

Regelungstechnik. Steuerungs- und Reglungstechnik. Created with novapdf Printer (www.novapdf.com). Please register to remove this message. Regelungstechnik 336 Definition Steuerung Das Steuern, die Steuerung, ist der Vorgang in einem System, bei dem eine oder mehrere Größen als Eingangsgröße andere Größen als Ausgangsgrößen aufgrund der dem

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Automatisierungstechnik 1

Automatisierungstechnik 1 Automatisierungstechnik Hinweise zum Laborversuch Motor-Generator. Modellierung U a R Last Gleichstrommotor Gleichstromgenerator R L R L M M G G I U a U em = U eg = U G R Last Abbildung : Motor-Generator

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal Apl. Prof. Dr.. Herbort, Prof. Dr. M. Heilmann 28.8.212 Bergische Universität Wuppertal Modul: Mathematik 1b für Ingenieure, Bachelor Sicherheitstechnik (PO 211 Aufgabe 1 (2 Punkte a Berechnen Sie das

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Vordiplomprüfung Grundlagen der Elektrotechnik III

Vordiplomprüfung Grundlagen der Elektrotechnik III Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

LTAM FELJC jean-claude.feltes@education.lu 1 T2EE. Regelungstechnik ASSERVISSEMENTS

LTAM FELJC jean-claude.feltes@education.lu 1 T2EE. Regelungstechnik ASSERVISSEMENTS LTAM FELJC jean-claude.feltes@education.lu 1 T2EE Regelungstechnik ASSERVISSEMENTS Z W E R Y S X LTAM FELJC jean-claude.feltes@education.lu 2 1. Grundlagen 1.1. Steuerung Beispiel 1: Drehzahlsteuerung

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr