25. Flüsse in Netzen. Motivation. Fluss. Flussnetzwerk

Größe: px
Ab Seite anzeigen:

Download "25. Flüsse in Netzen. Motivation. Fluss. Flussnetzwerk"

Transkript

1 Moivaion 25. Flüe in Nezen Flunezwerk, Maximaler Flu, Schni, Renezwerk, Max-flow Min-cu, Ford-Fulkeron Mehode, Edmond-Karp Algorihmu, Maximale Biparie Maching [Oman/Widmayer, Kap. 9.7, 9.8.1], [Cormen e al, Kap ] Modelliere Flu von Flüigkeien, Baueile auf Fliebändern, Srom in elekrichen Newerken oder Informaion in Kommunikaionnezwerken Flunezwerk Flu Flunezwerk G = (V, E, c): gericheer Graph mi Kapaziäen Aniparallele Kanen verboen: (u, v) E (v, u) E. Fehlen einer Kane (u, v) auch modellier durch c(u, v) = 0. Quelle und Senke : pezielle Knoen. Jeder Knoen v lieg auf einem Pfad zwichen und : v Ein Flu f : V V R erfüll folgende Bedingungen: Kapaziäbechränkung: Für alle u, v V : 0 f(u, v) c(u, v). Fluerhalung: Für alle u V \ {, }: f(v, u) f(u, v) = 0. 1/10 7/6 20/1 Wer w de Flue: w(f) = f(, v) f(v, ). Hier w(f) =

2 Wie gro kann ein Flu ein? Wie gro kann ein Flu ein? E gil für jeden Flu und jeden Schni, da f(s, T ) = w(f): Begrenzende Fakoren: Schnie von rennender Schni: Pariionierung von V in S und T mi S, T. Kapaziä eine Schnie: c(s, T ) = v S,v T c(v, v ) Minimaler Schni: Schni mi minimaler Kapaziä. Flu über Schni: f(s, T ) = v S,v T f(v, v ) v S,v T f(v, v) f(s, T ) = f(v, v ) f(v, v) v S,v T v S,v T = f(v, v ) f(v, v ) v S,v V v S,v S = f(, v ) f(v, ) v V v V Zweie Gleichhei: Ergänzung, leze Gleichhei: Fluerhalung. v S,v V f(v, v) + 20/1 v S,v S f(v, v) 7/ /10 72 Maximaler Flu? Maximaler Flu? E gil inbeondere für alle Schnie (S, T ) von V. f(s, T ) c(v, v ) = c(s, T ) Naive Vorgehen: 20/1 20/15 v S,v T Werden ehen, da Gleichei gil für min S,T c(s, T ). 7/6 13/11 1/10 7/7 1/ /17 7/7 9/2 16/10 /2 7/7 9/0 20/ /13 1/11 13/13 1/ Folgerung: Greedy Fluerhöhung lö da Problem nich. c =

3 Die Ford-Fulkeron Mehode Fluerhöhung, negaiv Sare mi f(u, v) = 0 für alle u, v V Beimme Renezwerk* G f und Erweierungpfad in G f Erhöhe Flu über den Erweierungpfad* Wiederholung bi kein Erweierungpfad mehr vorhanden. *Wird nun erklär Sei ein Flu f im Nezwerk gegeben. Erkennni: Fluerhöhung in Richung einer Kane möglich, wenn Flu enlang der Kane erhöh werden kann, alo wenn f(u, v) < c(u, v). Rekapaziä c f (u, v) = c(u, v) f(u, v). Fluerhöhung engegen der Kanenrichung möglich, wenn Flu enlang der Kane verringer werden kann, alo wenn f(u, v) > 0. Rekapaziä c f (v, u) = f(u, v) Renezwerk Renezwerk G f gegeben durch alle Kanen mi Rekapaziä: 1/10 7/6 20/ Beobachung Sei G = (V, E, c) ein Flunezwerk mi Quelle und Senke und f ein Flu in G. Sei G f da dazugehörige Renezwerk und ei f ein Flu in G f. Dann definier f f einen Flu in G mi Wer w(f) + w(f ). { (f f f(u, v) + f (u, v) f (v, u) (u, v) E )(u, v) = 0 (u, v) E. Renezwerke haben dieelben Eigenchafen wie Flunezwerke, auer da aniparallele Kanen zugelaen ind

4 Bewei Kapaziäbechränkung: (f f )(u, v) = f(u, v) + f (u, v) f (v, u) f(u, v) + f (u, v) f(u, v) = f (u, v) 0 (f f )(u, v) = f(u, v) + f (u, v) f (v, u) f(u, v) + f (u, v) f(u, v) + c f (u, v) = f(u, v) + c(u, v) f(u, v) = c(u, v). Bewei Fluerhalung u V (f f )(u, v) = u V (Fluerhalung von f und f ) = u V f(u, v) + u V f(v, u) + u V = u V (f f )(v, u) f (u, v) u V f (v, u) u V f (v, u) f (u, v) Bewei Wer von f f (im Folgenden N + := N + (), N := N ()): w(f f ) = (f f )(, v) (f f )(v, ) v N + v N = f(, v) + f (, v) f (v, ) f(v, ) + f (v, ) f (, v) v N + v N = f(, v) f(v, ) + f (, v) + f (v, ) v N + v N v N + N v N + N = f(, v) f(v, ) + f (, v) + f (v, ) = w(f) + w(f ). 733 Flu in G f Erweierungpfad p: Pfad von nach im Renezwerk G f. Rekapaziä c f (p) = min{c f (u, v) : (u, v) Kane in p} Die Funkion f p : V V R, { c f (p) wenn (u, v) Kane in p f p (u, v) = 0 on i ein Flu in G f mi dem Wer w(f p ) = c f (p) > 0. [Bewei: Übung] 73

5 Folgerung Max-Flow Min-Cu Sraegie für den Algorihmu: Mi einem Erweierungpfad p in G f definier f f p einen neuen Flu mi Wer w(f f p ) = w(f) + w(f p ) > w(f) Wenn f ein Flu in einem Flunezwerk G = (V, E, c) mi Quelle und Senke i, dann ind folgende Auagen äquivalen: 1 f i ein maximaler Flu in G 2 Da Renezwerk G f enhäl keine Erweierungpfade 3 E gil w(f) = c(s, T ) für einen Schni (S, T ) von G Bewei Bewei (2) (3) (3) (1): E gil w(f) c(s, T ) für alle Schnie S, T. Au w(f) = c(s, T ) folg alo w(f) maximal. (1) (2): f maximaler Flu in G. Annahme: G f habe einen Erweierungfad. Dann gil w(f f p ) = w(f) + w(f p ) > w(f). Widerpruch. 737 Annahme: G f habe keinen Erweierungfad. Definiere S = {v V : e exiier Pfad v in G f }. (S, T ) := (S, V \ S) i ein Schni: S, S. Sei u S und v T. Wenn (u, v) E, dann f(u, v) = c(u, v), on wäre (u, v) E f. Wenn (v, u) E, dann f(v, u) = 0, on wäre c f (u, v) = f(v, u) > 0 und (u, v) E f Wenn (u, v) E und (v, u) E, dann f(u, v) = f(v, u) = 0. Alo w(f) = f(s, T ) = f(u, v) f(v, u) u S v T v T u = c(u, v) 0 = c(u, v) = c(s, T ). u S v T v T u u S v T 738

6 Algorihmu Ford-Fulkeron(G,, ) Analye Inpu : Flunezwerk G = (V, E, c) Oupu : Maximaler Flu f. for (u, v) E do f(u, v) 0 while Exiier Pfad p : im Renezwerk G f do c f (p) min{c f (u, v) : (u, v) p} foreach (u, v) p do if (u, v) E hen f(u, v) f(u, v) + c f (p) ele f(v, u) f(u, v) c f (p) Der Ford-Fulkeron Algorihmu mu für irraionale Kapaziäen nich einmal erminieren! Für ganze oder raionale Zahlen erminier der Algorihmu. Für ganzzahligen Flu benöig der Algorihmu maximal w(f max ) Durchläufe der While-Schleife. Suche einzelner zunehmender Weg (z.b. mi Tiefenuche oder Breienuche O( E )). Alo O(f max E ). 1 u v Bei chlech gewähler Sraegie benöig der Algorihmu hier bi zu 2000 Ieraionen Edmond-Karp Algorihmu Edmond-Karp Algorihmu Wähle in der Ford-Fulkeron-Mehode zum Finden eine Pfade in G f jeweil einen Erweierungpfad kürzeer Länge (z.b. durch Breienuche). Wenn der Edmond-Karp Algorihmu auf ein ganzzahlige Flunezwerk G = (V, E) mi Quelle und Senke angewende wird, dann i die Geamanzahl der durch den Algorihmu angewendee Fluerhöhungen in O( V E ) [Ohne Bewei] 71 72

7 Anwendung: Maximale biparie Maching Gegeben: biparier ungericheer Graph G = (V, E). Maching M: M E o da {m M : v m} 1 für alle v V. Maximale Maching M: Maching M, o da M M für jede Maching M. Korrepondierende Flunezwerk Konruiere zur einer Pariion L, R eine biparien Graphen ein korrepondierende Flunezwerk mi Quelle und Senke, mi gericheen Kanen von nach L, von L nach R und von R nach. Jede Kane bekomm Kapaziä 1. L R L R 73 7 Ganzzahligkeiheorem Wenn die Kapaziäen eine Flunezwerk nur ganzzahlige Were anehmen, dann ha der durch Ford-Fulkeron erzeuge maximale Flu die Eigenchaf, da der Wer von f(u, v) für alle u, v V eine ganze Zahl i. [ohne Bewei] Folgerung: Ford Fulkeron erzeug beim zum biparien Graph gehörenden Flunezwerk ein maximale Maching M = {(u, v) : f(u, v) = 1}. 75

Netzwerke Beispielnetzwerk N

Netzwerke Beispielnetzwerk N Nezwerke Kapiel Flüe in Nezwerken Sromnez Telefonnez Warenflu zwichen Herellern und Konumenen Verkehr (Sraßen, Züge, Flugzeuge,...) Of wollen wir Güer von einem Punk zu einem anderen chicken Ziel So viel/effizien/illig

Mehr

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6.

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6. .6 Graphen.6. Definition und Dartellung.6. Aupähen von Graphen.6.3 Minimal pannende Bäume.6.4 Kürzete Pfade.6.5 Maximaler Flu .6.5 Maximaler Flu.6.5. Flunetzwerke.6.5. Ford-Fulkeron-Methode.6.5.3 Algorithmu

Mehr

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten 6. Flüe un Zuornungen Fluß In ieem Kapiel weren Bewerungen von Kanen al maximale Kapaziäen inerpreier, ie üer iee Kane pro Zeieinhei ranporier weren können. Wir können un einen Graphen al Verorgungnezwerk

Mehr

6. Primal-duale Algorithmen

6. Primal-duale Algorithmen 6. Einführung... 6. Der primal-duale Algorihmu... 6 6. Bemerkungen zum primal-dualen Algorihmu... 7 6. Ein primal-dualer Algorihmu für da Kürzee-Wege-Problem... 8... 9 6.6 Ein primal-dualer Algorihmu für

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüe, Schnie, iprie Grphen Michel Eicher 06. Juni 0 Michel Eicher Flüe, Schnie, iprie Grphen 06. Juni 0 / 48 Deniionen Nezwerk Flu Üerich Mximler Flu Ford-Fulkeron Minimler Schni Edmond-Krp 3 Redukionen

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

Minimal spannende Bäume

Minimal spannende Bäume Minimal pannende Bäume Geuch: : ein minimal pannender Baum u G,, d.h. eine minimale Teilmenge E min E der Kanen, o da G min = (V,E( min,d) uammenhängend ngend und die Summe der Kanengewiche minimal i.

Mehr

Induktionsgesetz. a = 4,0cm. m = 50g

Induktionsgesetz. a = 4,0cm. m = 50g 1. Die neenehende Aildung (Blick von vorn) zeig eine Spule mi 5 Windungen von quadraichem uerchni mi Seienlänge a = 4,cm zum Zeipunk. DieSpuleeweg ich mider Gechwindigkei v vom Berag v = 2, cm nachrech.

Mehr

1 Fluss in Graphen. 1.1 Das Residuennetzwerk 10/20 10/30 10/30 10/15 20/20 20/40 20/30. Praktikum Algorithmen-Entwurf (Teil 4)

1 Fluss in Graphen. 1.1 Das Residuennetzwerk 10/20 10/30 10/30 10/15 20/20 20/40 20/30. Praktikum Algorithmen-Entwurf (Teil 4) Prkikum Algorihmen-Enwurf (Teil 4) 1.11.211 1 1 Flu in Grphen E ei ein gericheer Grph G = (V,E) gegeen. Jeder Kne e de Grphen ei eine Kpziä c(e) N zugeordne. Weier eien zwei Knoen de Grphen ugezeichne:

Mehr

8 Kürzeste Wege KÜRZESTE WEGE. Hier sind alle Graphen gerichtet und gewichtet, d.h. wir haben eine Kostenfunktion K : E R dabei.

8 Kürzeste Wege KÜRZESTE WEGE. Hier sind alle Graphen gerichtet und gewichtet, d.h. wir haben eine Kostenfunktion K : E R dabei. 04 8 KÜRZESTE WEGE 8 Kürzee Wege Hier ind alle Graphen geriche nd geiche, d.h. ir haben eine Koenfnkion K : E R dabei. Alo ea: 5 7 0 4 K(, ) = 5,K(, ) =,K(, ) = 7,K(, 4) = 0 I W = ( 0,,..., k ) irgendein

Mehr

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz Gruppe A: Bernhard Stader, Georg Ziegler, Andreas Zugaj 10. November 2004 Inhaltsverzeichnis

Mehr

Kürzere reguläre Ausdrücke aus deterministischen endlichen Automaten

Kürzere reguläre Ausdrücke aus deterministischen endlichen Automaten Kürzere reguläre Audrücke au deerminiichen endlichen Auomaen by Hermann Gruber Iniu für Informaik, Juu-Liebig-Univeriä Gieen, Arndrae 2, D-35392 Gieen. Februar 2009 gemeinam mi Marku Holzer (JLU Gieen).

Mehr

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung --- Meung der Ladung Wie kann man Ladungen meen? -/Kapiel.. Formeln auf S.: Elekriche Ladung Zur Ladungmeung können wir einen au der Mielufe bekannen Zuammenhang zwichen der Ladung Q und der Sromärke I

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Maximaler Fluss = minimaler Schnitt

Maximaler Fluss = minimaler Schnitt Maximaler Flu = minimaler Schnitt Oliver Junge Fakultät für Mathematik Techniche Univerität München Flüe in Netzwerken Mathematiche Abtraktion Kapazität 3 2 Quelle 5 Senke 1 2 Netzwerk gerichteter Graph

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten

Mehr

3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson

3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson 3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson Definition 3.4.1 Die Aufgabe, zu jedem Netzwerk N = (s, t, V, E, c o ) mit n = V Knoten und m = E Kanten den Fluß f IR m mit maximalem Wert zu

Mehr

Kürzeste Wege. 1 Einleitung. Wie kommt man am schnellsten von München nach Stuttgart?

Kürzeste Wege. 1 Einleitung. Wie kommt man am schnellsten von München nach Stuttgart? Kürzee Wege Wie komm man am chnellen von München nach Sugar? Melanie Herzog Wolfgang Ferdinand Riedl Lehruhl M für Angewande Geomerie und Dikree Mahemaik Techniche Univeriä München Vorauezungen: Grundlagen:

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2 NIVESITÄT LEIPZIG Iniu für Informaik Prüfungaufgaben Klauur zur Vorleung WS 2/2 und SS 2 b. Techniche Informaik Prof. Dr. do Kebchull Dr. Paul Herrmann Dr. Han-Joachim Lieke Daum:. Juli 2 hrzei: 8-3 Or:

Mehr

Transport. Explizite und implizite Verfahren

Transport. Explizite und implizite Verfahren p. 1/9 Tranpor Explizie und implizie Verfahren home/lehre/vl-mhs-1/inhalt/folien/vorlesung/10_transport_verf/decbla.ex Seie 1 von 9 p. /9 Inhalverzeichni 1. Explizie Verfahren Inabile Verfahren Lax Verfahren

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Beschreibung paralleler Abläufe mit Petri-Netzen

Beschreibung paralleler Abläufe mit Petri-Netzen Bechreibung paralleler Abläufe mi Peri-Nezen Grundlagen und Beipiele für den Unerrich Peri-Neze ind ein graphiche Miel zur Bechreibung, Modellierung, Analye und Simulaion von dynamichen Syemen, die eine

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Effiziente Algorithmen und Datenstrukturen II

Effiziente Algorithmen und Datenstrukturen II Effiziente Algorithmen und Datenstrukturen II Prof. Dr. Christian Scheideler Technische Universität München, 25. April 2006 1 Algorithmen für maximale Flüsse 1.1 Flüsse Ein Flussnetzwerk G = (V, E) ist

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet Analyiche Geomeie Übungaufgaben geame Soffgebie Pflicheil (ohne GTR und ohne Fomelammlung): P: Zeichne die folgenden Ebenen mi Hilfe ihe Spugeaden in ein kaeiche Koodinaenyem ein: a) E: b) E: 8 c) E: P:

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

KAPITEL 4 FLÜSSE IN NETZWERKEN

KAPITEL 4 FLÜSSE IN NETZWERKEN KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine

Mehr

Preflow-Push Algorithmen

Preflow-Push Algorithmen Preflow-Puh Algorihmen Nicoli Hähnle 11. April 2006 Inhlverzeichni 1 Einführung 1 2 Formle Prolemechreiung 2 3 Re-Nezwerke 4 4 Preflow und die Höhenfunkion 5 5 Der generiche Preflow-Puh Algorihmu 7 6 Lufzeinlye

Mehr

College International Vorbereitungsjahr 2016/17

College International Vorbereitungsjahr 2016/17 College Inernaional Vorbereiungjahr 6/7 Phyik Dr. Ferenc Tölgyei olgyei.ferenc@med.emmelwei.hu Vorleungkripe zum Herumerladen: hp//:nighowl.oe.hu/olgyei Themaik (bi zu Weihnachen) Daum Thema 3. und 5.

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Versuchsprotokoll. Datum:

Versuchsprotokoll. Datum: Laborveruch Elekroechnik I eruch 2: Ozillokop und Funkiong. Hochchule Bremerhaven Prof. Dr. Oliver Zielinki / Han Sro eruchprookoll Teilnehmer: Name: 1. 2. 3. 4. Tea Daum: Marikelnummer: 2. Ozillokop und

Mehr

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit Gruppenarbei: Anwendungen de Inegral Gruppe A: Weg und Gechwindigkei Die ere Ableiung der Zei-Or-Funkion x() der Bewegung eine Körper ergib bekannlich die Zei- Gechwindigkei-Funkion v(), deren ere Ableiung

Mehr

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt. Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

Amateurfunkkurs. Themen Übersicht. Leistung. Erstellt: Landesverband Wien im ÖVSV. 1 Was ist Leistung? 2 Anpassung. 3 Fragen.

Amateurfunkkurs. Themen Übersicht. Leistung. Erstellt: Landesverband Wien im ÖVSV. 1 Was ist Leistung? 2 Anpassung. 3 Fragen. Was is? Amaeurfunkkurs Landesverband Wien im ÖVSV Ersell: 010-011 Leze Bearbeiung: 4. März 016 Themen Was is? 1 Was is? 3 Energie und Was is? Definiion Wechselsrom is der Energieumsaz pro benöiger Zei.

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Ermittlung von Leistungsgrenzen verschiedener Lagerstrategien unter Berücksichtigung zentraler Einflussgrößen

Ermittlung von Leistungsgrenzen verschiedener Lagerstrategien unter Berücksichtigung zentraler Einflussgrößen Ermilung von Leiunggrenzen verchiedener Lagerraegien uner Berücichigung zenraler Einflugrößen Dipl.-Wir.-Ing. (FH) Anne Piepenburg, Prof. Dr.-Ing. Rainer Brun Helmu-Schmid-Univeriä, Hamburg Lehruhl für

Mehr

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung :

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung : Mechaniche chwingungen F r Rück Gleichgewichlage r F Rück F r Rück F r Rück Gleichgewichlage Größen zur quaniaiven Bechreibung : chwingungdauer oder Periode T, Einhei: Frequenz υ /T, Einhei: / oder Hz

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Software Engineering - Georg Kuschk Mitschrift06 --- 02.12.2005 ---

Software Engineering - Georg Kuschk Mitschrift06 --- 02.12.2005 --- Sofware Engineering - Georg Kuschk Mischrif6 ---..5 --- 5..c) Berag Preis Fahrkare null *keine Fahrkare gewünsch* T *in sekunen* while (rue) { if (gerücke Tase Kurzsrecke) hen Fahrkare Kurzsrecke Preis

Mehr

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb Freiwillie Aufaen zur Vorleun WS /3, la 1 1) 3 () 1 4 8 1 () a Fahrzeu a und Fahrzeu fahren auf der leichen eradlinien Sraße. Sellen Sie anhand neenehenden Diara ihre We-Zei- Funkionen auf und erechnen

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man Aufaben zu freien Fall 8. Au welcher Höhe üen Fallchirpriner zu Übunzwecken frei herab prinen, u i derelben Gechwindikei (7 - ) anzukoen wie bei Abprun i Fallchir au roßer Höhe? 0. Von der Spize eine Ture

Mehr

8 Der Reiterationssatz

8 Der Reiterationssatz 53 8 Der Reieraionaz Definiion 8. Seien {A,A } ein Inerpolaionpaar,E ein Banachraum mi A A E A +A, und θ. i E gehör zur Klae Kθ;A,A, fall ein c > exiier, o da für alle a E und alle, <

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach B? B A Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach

Mehr

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig Coulomb Gesez Elekrische Ladung Q: Teilchen können eine posiive () oder negaive () Ladung Q aufweisen nur ganzzahlige Vielfache der Elemenarladung e sind möglich e = 1,6 10 19 C [Q] = 1 As = 1 C = 1 Coulomb

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s. Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Preisniveau und Staatsverschuldung

Preisniveau und Staatsverschuldung Annahme: Preisniveau und Saasverschuldung Privae Wirschafssubjeke berücksichigen bei ihren Enscheidungen die Budgeresrikion des Saaes. Wenn sich der Saa in der Gegenwar sark verschulde, dann muss der zusäzliche

Mehr

Bedingte Unabhängigkeit, Definition

Bedingte Unabhängigkeit, Definition Bedinge Unabhängigkei, Deiniion Zwei Ereignisse a, b sind beding unabhängig, gegeben c, gdw.: P(a,b c) = P(a c) P(b c) Zwei Variable A, B sind beding unabhängig, gegeben C, gdw.: P(A, B C) = P(A C) P(B

Mehr

Gleichförmige Bewegung

Gleichförmige Bewegung Gleichförmige Bewegung 1. Grundwien (a) Ein PKW fähr mi der konanen Gechwindigkei v = 16 km auf der Auobahn. Wie lange brauch da Auo für eine 00m lange h Srecke? (b) Wird ein geeiche 50 g-sück an eine

Mehr

3. Partielle Differentialgleichungen

3. Partielle Differentialgleichungen 3.. Grundlagen und Klassifikaion Welche Ordnung haben diese Gleichungen?? 3.4.1 Lineare parielle Differenialgleichungen. Ordnung Analogie: Klassifikaion Kegelschnie 1 3.4.3 Korrek geselle Probleme Anfangs-

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

10. Äquivalenzen zur Riemannschen Vermutung

10. Äquivalenzen zur Riemannschen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ 0, (ii θ( = + O( θ+ε für alle ε > 0,

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München

erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Grundwien Phyik Klae 9 erell a Finerwalder-Gynaiu Roenhei auf Bai eine Grundwienkaalog de Klenze-Gynaiu München Elekrik Magneiche Feld In der Ugebung eine Daueragneen oder eine rodurchfloen Leier exiier

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions Themen der Übung Rekurion CoMa-Übung X TU Berlin.0.0 Themen heute Evaluation Aertion Einleen von Dateien Queue und Breitenuche Rekurion Wegrekontruktion Tiefenuche Backtracking Evaluation Diee Woche bekommt

Mehr

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d)

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d) Digialechnik 2 Grundschalungen der Digialechnik BFH-I-Biel/Bienne (Version v.d) oland Schäfer Inhalsverzeichnis Kombinaorische Schalungen. Muliplexer/Demuliplexer................... Muliplexer (Muliplexers).............

Mehr

Die Rolle des generellen X-Faktors in der Anreizregulierung

Die Rolle des generellen X-Faktors in der Anreizregulierung Die Rolle des generellen X-Fakors in der Anreizregulierung Workshop des Forschungsinsius für Regulierungsökonomie der WU Wien Wien, 10. November 2015 Dr. Sephan Schmi 0 WIK und WIK-Consul Unabhängiges

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

m t 2 1 A n 2 n A n m DA d t 1...erklärt das - Zeichen (wenn D eine positive Zahl sein

m t 2 1 A n 2 n A n m DA d t 1...erklärt das - Zeichen (wenn D eine positive Zahl sein 6.5 Diffuion, Omoe und Dampfdruck: Z7/vo/mewae/Kap6_5DiffomDampfdr_4_06_01_17 Diffuion: Eindrinen eine Soffe in einen anderen auf Grund der Wärmebeweun. Experimen: ruhende, verchieden efärbe Flüikeien

Mehr