Statisches Gleichgewicht des starren Körpers (Statik)

Größe: px
Ab Seite anzeigen:

Download "Statisches Gleichgewicht des starren Körpers (Statik)"

Transkript

1 Us Wyde CH Basel Statsches Glechgewcht des staen Köpes (Statk) Glechgewchtsbedngungen En Köpe befndet sch n Ruhe (ode bewegt sch mt konstante Geschwndgket), wenn de Summe de Käfte und de Momente, de auf hn wken, glech Null st: Summe de Käfte: uuv uuv uuv uu F + F + F +... = F = 0 (I.) 2 3 Summe de Dehmomente: M + M + M +... = M = 0 (II.) 2 3 Spezalfall: Alle Käfte gefen n enem enzgen Punkt an Gefen sämtlche Käfte n enem enzgen Punkt an, so können kene Dehmomente entstehen. In desem Fall entfällt de zwete Bedngung (II.) und es echt, wenn de Summe de Käfte glech Null st. Gefen de Käfte ncht n enem enzgen Punkt an, so kann en Köpe beschleungt weden, selbst wenn de Summe de Käfte glech Null st: In desem Bespel st de vektoelle Summe de Käfte glech Null. Totzdem wkt auf den schebenfömgen Köpe en Moment de Gösse M = 2F, welches ene Rotatons- beschleungung bewkt.

2 Stables, lables und nstables Glechgewcht En Glechgewcht kann stabl, labl (ndffeent) ode nstabl sen. Addton von Käften, Käftepaallelogamm Käfte snd vektoelle Gössen. Se haben enen Betag und ene Rchtung. Gefen zwe Käfte n enem Punkt an, so können dese duch ene enzge Kaft, de Resulteenden, esetzt weden. De esulteende Kaft st de vektoelle Summe de beden enzelnen Käfte. Geometsch ehält man de Resulteende mttels Konstukton des Käftepaallelogamms. Symmetsche Anodnung de Käfte Snd de Betäge de beden Käfte glech, so wd aus dem Paallelogamm en Rhombus mt ve glech langen Seten. De beden Dagonalen stehen senkecht zuenande und halbeen sch. De Resulteende lässt sch mt dem Cosnussatz fü echtwnklge Deecke beechnen: FRes α cos 2 α = FRes = 2Fcos 2 F 2 2

3 Asymmetsche Anodnung de Käfte (allgemene Fall de Käfteaddton) De beden Käfte F und F 2 snd betagsmässg ncht glech goss. Fü de Beechnung de Resulteenden Kaft muss de allgemene Cosnussatz vewendet weden. De Wnkel zwschen den beden Käften st α. Somt betägt de andee Wnkel des Paallelo- uuu gamms 80 α. Wete glt, dass CB = F2 st. Damt lässt sch m Deeck ABC de Resulteende Kaft mt dem Cosnussatz beechnen. 2 2 Res 2 2 F = F + F 2FF cos 80 α Anwendung: schefe Ebene (Rampe) Fü de auf den Köpe de Masse m wkende Kaft glt: FG = m g. Dese Kaft wd n ene bezüglch de Rampe senkechten Kaft F (Auflagekaft) sowe ene paallelen Kaft FP (Hangab- tebskaft) aufgetelt. Es glt: F = F G cosα = mgcosα F = F snα = mgsnα P G 3

4 Expement: bestmmen des Haftebungskoeffzenten μ En Gegenstand wd auf de Rampe gelegt. De Negunswnkel wd kontnuelch ehöht, bs de Gegenstand abzuutschen begnnt. In desem Augenblck glt de Glechgewchtsbedngung F Hangabteb F P = F = µ F Rebung mg snα = mgµ cosα snα = µ tanα = µ cosα Intepetaton: De Zusammenhang zwschen dem Stegungswnkel und dem Rebungskoeffzenten ennet an de Defnton de Stegung n de Mathematk: Δy y2 y Geadenglechung: y = mx+ q (ode y = ax+ b) mt tanα = m= = Δx x x 2 De Rebungskoeffzent μ st also nchts andees als dejenge Stegung, be welche en Gegenstand auf ene Rampe de Haftung velet und abgletet. We füht man mt desem Wssen en Expement zu Bestmmung des Rebungskoeffzenten μ am besten duch? Welche Gössen wüdest du messen? Schwepunkt (enfache Fälle) Ene 2 Mete lange (gewchtslose) Stange tägt an hen Enden ene Masse von 0 kg esp. 30 kg: De Schwepunkt st dejenge Punkt, n welchem de Summe de Momente glech Null st. Im obgen Bespel glt also: x 30kg = l x 0kg x 30kg+ x 0kg = l 0kg x= l 4 De Schwepunkt befndet sch be enem Vetel de Stange. Das hesst, de Schwepunkt telt de Stange m Vehältns :3. 4

5 Schwepunkt m Koodnatensystem De Lage de Massenpunkte m, m2, m3,... m wd duch de Otsvektoen, 3, 3,... bescheben. Gesucht st de Lage des Schwepunktes M, welche duch den Otsvekto bescheben wd. Das System aus meheen Massen kann dann esetzt weden duch de Summe alle Massen, de sch m Punkt M befndet. = 0 (Summe de Dehmomente st Null) M = F, F = m a, also glt: M = F = m a = 0 m a m a = 0, M M m a = a m m = M m a = a = m m m m M = M Bespel: Im Punkt P(0,0) befndet sch ene Masse von 2 kg, m Punkt Q(,0) befndet sch ene Masse von 0 kg und m Punkt R(0,) befndet sch ene Masse von 6 kg = m = + + = + + = M

6 Aufgaben. De Rhenfähen weden fü de Übefaht schäg zu Stömung gestellt. De Wnkel betage 20, was ene Kaft von 000 N n Stömungschtung bewkt. Beechne de Kaft, welche das Boot setlch übe den Rhen dückt (also de Kaft, de senkecht zum Ufe steht). 2. Stassenlampe: Übe ene 0 Mete bete Stasse wd en Dahtsel gespannt, an welchem n de Mtte ene 20 kg schwee Lampe hängt. We goss st de auf de Sele wkende Zugkaft, wenn de Duchhang des Seles n de Mtte 20 cm betägt? We vel, wenn e bloss 0 ode 5 cm betagen wüde? Opton: Stelle den Velauf de Zugkaft n Abhänggket des Duchhanges gaphsch da. 3. En.88 Mete gosse Mensch legt hozontal auf enem (gewchtslosen) Bett. Das Bett legt mt den beden Enden auf je ene Waage. Am Kopfende zegt de Waage 445 N und am Fussende 400 N an. Auf welche Höhe befndet sch de Schwepunkt des Menschen? 4. Wtshausschld: En Schld mt de Masse 20 kg hängt am Ende ene 2 Mete langen und 4 kg schween Stange. En Dahtsel, welches Mete obehalb de Stange n de Hauswand veanket st und mt dem Ende de Stange vebunden st, hält de Stange und das Schld. We goss st de Zugkaft, welche auf das Sel wkt? Mt welche Kaft wd de Stange gegen de Hauswand gedückt? 5. Im Punkt A(,) befndet sch ene Masse von 0 kg, m Punkt B(4,3) ene Masse von 6 kg und m Punkt C(.5, 0.5) ene Masse von 4 kg. Beechne de Lage des Schwepunktes. 6. Ene 5 m lange Lete mt homogene Massenvetelung und ene Gewchtskaft von 60 N lehne an ene glatten, vetkalen Wand, de kenele Rebung ausübt. Das untee Ende de Lete st 3 m von de Wand entfent. We goss muss de Haftebungszahl de Rebung zwschen Boden und Lete mndestens betagen, damt de Lete ncht abutscht? 6

Einführung in die Physik I. Mechanik der starren Körper

Einführung in die Physik I. Mechanik der starren Körper Enfühung n de Physk I Mechank de staen Köpe O. von de Lühe und U. Landgaf Bslang wuden nu Massen als Punktmassen dealset behandelt, ene ausgedehnte etelung de Masse spelte ene unwesentlche Rolle Defnton

Mehr

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments)

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments) 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Tommelstock Dehstuhl mt Kesel (Ehaltung

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

7.Vorlesung. Überblick

7.Vorlesung. Überblick 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Ganolle Tommelstock Dehstuhl mt

Mehr

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls 5 Rotaton des staen Köpes 5 Dehungen und Dehmomente 5 Rotatonsenege und Dehmpuls um was geht es? Beschebung von Bewegungen (pmä Dehungen) des staen Köpes Analoge zu Kap. und 3: Kaft Dehmoment Impuls Dehmpuls

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment 7 Stae Köpe 7. Beschebung des staen Köpes 7. Käfte a staen Köpe- Dehoent 7.3 Rotatonsenenege und Täghetsoent 7.4 Dehoent und Wnkelbeschleungung 7.5 Dehpuls 7.6 Beechnung von Täghetsoenten 7.7 Päzesson

Mehr

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen:

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen: Zu nneung tchwote aus de 9. Volesung: ntelung von tößen: kn, kn kn,, kn, Q Q = 0 elastsche töße de umme de nneen nege de Telchen (chwngung und Rotaton) blebt unveändet, Q > 0 unelastsche töße knetsche

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder Physk II T Dotmund SS8 Götz hg Shaukat Khan Kaptel Maxwellsche Glechungen Bshe: Elektostatk m Vakuum (kene Felde n Matee), kene Magnetfelde dffeenzelle Fom ntegale Fom ( ) Gauß E E da dv V E Stokes E d

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen achbeech Physk - Jahn-Gymnasum alzwedel CHRITLICH ABITURPRÜUNG 000PHYIK (LITUNGKUR) Thema : Gundgesetze de klassschen Physk - Anwendung und Genzen atelltenbewegung De Bewegung von atellten efolgt m Allgemenen

Mehr

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung.

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung. De Kaftstoß Efahng: Geschwndgketsändeng de Kge st popotona z de Kaft nd de Zetdae t he Enwkng. Kaftstoß: t Enhet: s a t t t p t. Zwetes ewtonsches Ao: p t Wenn af enen Köpe t de Masse de Kaft wkt, so bewkt

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

5. Dynamik starrer ausgedehnter Körper

5. Dynamik starrer ausgedehnter Körper nnhmen: 5. Dnmk ste usgedehnte Köpe bstände m Köpe fest: ncht defomeb, d.h. fü lle ssepunkte, j glt: j ( t) ( t) const j olumen: sse: m m echnsche Dchte: 3 d mt: d d dm kg/ m sse: Homogene sse: dm d dm

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

02, kg (Vollzylinder) 55, m liegen bleibt. Der Neigungswinkel der

02, kg (Vollzylinder) 55, m liegen bleibt. Der Neigungswinkel der Hochschule Hnnove vogezogene Wedeholungsklusu m SS.0.0 kultät II - Abtelung Mschnenbu et: 90 mn Dozenten: Güneme, Hussmnn, Pndus, Schewe Hlfsmttel: Elubte omelsmmlungen und Tschenechne Hnwes: Ds Beteben

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen Bvaable/bvaate Vetelungen Tabellen Gafken Maßzahlen 153 Ulste: Wetepaae x/y ode x 1 /x x = Flügellänge [mm], y = Gewcht [g] 3,8; 0,8 3,6; 0,7 4,3; 1,3 3,5; 0,7 4,1; 1,1 4,4; 1,3 4,5; 1,6 3,6; 0,75 3,8;

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

Physik A VL12 ( )

Physik A VL12 ( ) Physk A VL1 (06.11.01) Dynak de otatonsbewegung II Wedeholung/Zusaenfassung: Beschebung von Dehbewegungen ollbewegungen Enege de otatons- und ollbewegung Dehpuls Dehpulsehaltung Wedeholung/Zusaenfassung:

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Lehstuhl fü Fludnmk und Stömungstechnk Pof. D.-Ing. W. Fnk Lösungen zu dem Aufgbenbltt 11 Aufgbe 1 Gegeben:,, u, L,, dp/dx Gesucht: ) de Geschwndgketsvetelung u() m Medum b) Göße und Rchtung de Kft F,

Mehr

r r Kraftrichtung Wegrichtung Arbeit: negativ

r r Kraftrichtung Wegrichtung Arbeit: negativ De Abet Abet wd vechtet, wenn ene Kaft entlang ene ege wkt. De Kaft e kontant: coα Kaftchtung Kaftchtung Kaftchtung α egchtung α egchtung α egchtung Abet: potv Abet: negatv Abet: Null 0 α < 90 bzw.: co

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

4. Energie, Arbeit, Leistung

4. Energie, Arbeit, Leistung 4 43 4. Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

4. Mechanik des starren Körpers 4.1. Model starrer Körper

4. Mechanik des starren Körpers 4.1. Model starrer Körper 4. echank des staen Köpes 4.. odel stae Köpe z k j k j odell: - aufgebaut aus asseneleenten t Voluen V und t festen Abständen unteenande const - asseneleente können we Punktassen behandelt weden j y -

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

1.11 Beispielaufgaben

1.11 Beispielaufgaben . Bespelaufgaben Darstellung komplexer Zahlen Aufgabe. Man stelle de komplexe Zahl z = +e 5f n algebrascher Form, also als x + y dar. Damt man de Formel für de Dvson anwenden kann, muss zunächst der Nenner

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Symbol Grösse Einheit. Gravitationskonstante Naturkonstante. Abstand zwischen den Massenmittelpunkten. Federverlängerung m.

Symbol Grösse Einheit. Gravitationskonstante Naturkonstante. Abstand zwischen den Massenmittelpunkten. Federverlängerung m. Kräfte Das ravtatonsgesetz m m r ewchtskraft m g Symbol rösse nhet ravtatonskraft ravtatonskonstante aturkonstante m, m Masse kg r Abstand zwschen den Massenmttelpunkten m kg m Zwschen zwe Körpern wrkt

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Anwendung der Raketengleichung: Saturn-V-Rakete v r = 4000 m/s t = 100 s pro Stufe. Erste Stufe: Startmasse kg; Endmasse kg

Anwendung der Raketengleichung: Saturn-V-Rakete v r = 4000 m/s t = 100 s pro Stufe. Erste Stufe: Startmasse kg; Endmasse kg Physk I TU Dotund WS7/8 Gudun Hlle Shaukat Khan Kaptel Anwendung de Raketenglechung: Satun-V-Rakete v = 4 /s t = s po Stufe v( t) v v ln g t ( t) Este Stufe: Statasse 3 6 ; Endasse 6 Zwete Stufe: Statasse

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle:

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle: 4.3 Ado vo Käfte Gefe a ee Masse ehee Käfte a, so gbt es zwe öglche älle: We de vektoelle Sue de Käfte ull st, da vehat de Masse Ruhe ode gadlg glechföge Bewegug. 4 0 3 4 Wchtges Pzp de Statk 3 Veblebt

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

Montageanleitung Schrank. Heidi Stefan Astrid Lukas Patrizia 2-teilig und 3-teilig

Montageanleitung Schrank. Heidi Stefan Astrid Lukas Patrizia 2-teilig und 3-teilig Montageanletung Schrank Hed Stefan strd Lukas Patrza -telg und -telg Besser schlafen Gesünder wohnen Schrank -telg Schrankhöhe 05 cm Im Leferumfang enthalten: B 80 x D x E 8 x F x G Jeder Tel st mt ener

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Montageanleitung Schwebetürenschrank. 2-türig und 3-türig

Montageanleitung Schwebetürenschrank. 2-türig und 3-türig Montageanletung Schwebetürenschrank -türg und -türg Traumhaft schlafen Natürlch wohnen Schwebetürenschrank -türg Jeder Tel st mt ener rückstandsfre ablösbaren Etkette beklebt. Dese Etketten erlechtern

Mehr

Lückentext (Mathematik I) zum Sommersemester 2013

Lückentext (Mathematik I) zum Sommersemester 2013 osten Schee.. Lückentet Mthemtk I um Sommesemeste Nme: Mtkel-N.: Mt desem Lückentet können Se s u mml möglche Zustpunkte elngen. Fü jedes chtg engetgene Wot egt sch somt en Bonuspunkt. Um mehee Mengen

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt:

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt: Aufgabe 4. Phyk und Uwelt I Löungen de Übungen. 4 t de etche nege de Zuge zu beechnen, de be Anfahen wede aufgebacht weden u. De Mae de geaten Zuge t: 5 kg. ene echwndgket betägt: 44 k/h 4 /. ü de etche

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

I) Mechanik 1.Kinematik (Bewegung)

I) Mechanik 1.Kinematik (Bewegung) I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeentalphyk I (Kp WS 009) Inhalt de Voleung Expeentalphyk I Tel : Mechank 5. Enege und Abet 6. Bewegte Bezugytee 7. Maepunktytee und Stöße 7. Stae Köpe; Schwepunkt 7. Schwepunktyte, Relatkoodnaten &

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

Denavit-Hartenberg-Notation

Denavit-Hartenberg-Notation DENAVIT und HARTENBERG haben ene Methode engeführt, de es erlaubt für alle knematsche Ketten de Lagen der Gleder zuenander enhetlch auszudrücken. De Gelenke, de de Gleder mtenander verbnden, dürfen dabe

Mehr

3. Erhaltungssätze der Mechanik

3. Erhaltungssätze der Mechanik 3. haltungssätze de Mechank 3.. negeehaltung 3... Abet und Lestung Abet: PM wd duch Kaft F u Weg eschoben F echtet Abet W an PM Abet wd e gegen ene Syste ohandene Kaft (z. Bsp. Schwekaft, Fedekaft) echtet

Mehr

Lösung Aufgabe NuS I-1: Nutzleistung und Wirkungsgrad

Lösung Aufgabe NuS I-1: Nutzleistung und Wirkungsgrad Schnelltest HS 008 Musterlösung Aufgabe Nr. Thema Punkte max. Punkte Vsum Vsum NuS I- Nutzlestung und Wrkungsgrad 0 ösung Aufgabe NuS I-: Nutzlestung und Wrkungsgrad Fg..: Netzwerk mt Stromquelle a) De

Mehr

2 Mechanik. 1. Kinematik: Die Beschreibung von Bewegungen

2 Mechanik. 1. Kinematik: Die Beschreibung von Bewegungen Mechank. Knematk: De Beschebung von Bewegungen Idealsee ausgedehnte Köpe zu Massenpunkten, ndem Masse m Schwepunkt (s. späte) veent angenommen wd. Beschebe de Bewegung des Massenpunktes n katesschen Koodnaten

Mehr

Kapitel 5 Systeme von Massenpunkten, Stöße

Kapitel 5 Systeme von Massenpunkten, Stöße Katel 5 ystee von Massenunkten, töße Drehoente und Drehuls enes Telchensystes O t : z r r r F x r F F F y F F t (acto = reacto) : F t äußeren Kräften F und F und nneren Kräften F = -F Drehoente : D D r

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

EXPERIMENTALPHYSIK I - 2. Übungsblatt

EXPERIMENTALPHYSIK I - 2. Übungsblatt EXPERIMETLPHYSIK I -. Übungsblatt III. Käfte als Usache de Bewegung - Dynak lle Pblee de klassschen Mechank lassen sch t Hlfe vn de enfachen esetzen, den ewtnschen esetzen, bescheben. De ewtnschen xe vebnden

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

=, grad Z(s) = m n = grad N(s).

=, grad Z(s) = m n = grad N(s). 4 7... Stabltätsprüfung anhand der Übertragungsfunkton (.9) leferte den Zusammenhang zwschen der Gewchtsfunkton g(t) und der Übertragungsfunkton G(s) enes lnearen zetnvaranten Systems G (s) { g ( t)}.

Mehr

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ Pof. D. Mac Gütle SS 05 Klausu zu Vetefung Fnanzwtschaft Telbeech Empsche Fnanzwtschaft Alle folgenden zwe Aufgaben snd zu beabeten. Behauptungen snd zu begünden, Rechnungen snd zu eläuten! Runden Se btte

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

2.6.5 Drehimpuls. (2.285) i. m h

2.6.5 Drehimpuls. (2.285) i. m h .6 Dynamk des staen Köpes, Dehbewegungen 5 kann somt be flachen Köpen lecht den Schwepunkt emtteln: Man untestützt den Köpe so lange an unteschedlchen Stellen, bs man den Punkt gefunden hat, an dem de

Mehr

Capital Asset Pricing Model (CAPM)

Capital Asset Pricing Model (CAPM) Captal Asset Pcng odel (CAP) Aus de Denton des aktpotolos, als Tangentalpunkt von (0, ) au den zulässgen Beech, lässt sch olgendes Vehältns heleten (sehe Luenbege S 178) = + σ 2 Des st de gundlegende CAP-Bedngung,

Mehr

Bestimmung der Elementarladung nach Millikan. 1. Theorie zum Versuchs. F R = 6 $ $ $ r $ v. $ g. F s = 4 3 $ $ r 3 $ Öl.

Bestimmung der Elementarladung nach Millikan. 1. Theorie zum Versuchs. F R = 6 $ $ $ r $ v. $ g. F s = 4 3 $ $ r 3 $ Öl. Versuch Nr. 5: Bestmmung der Elementarladung nach Mllkan. Theore zum Versuchs Be der Öltröpfchenmethode nach Mllkan wrd Öl mttels enes Zerstäubers n wnzge Tropfen aufgetelt. De Öltröpfchen werden durch

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr

Mehr