Multivariate Analysemethoden

Größe: px
Ab Seite anzeigen:

Download "Multivariate Analysemethoden"

Transkript

1 Multivariate Analysemethoden Günter Meinhardt Johannes Gutenberg Universität Mainz

2 Einführung Was sind multivariate Analysemethoden? Vorlesung Übung/Tut Prüfung Verfahrensdarstellung in Überblick Grundprinzip wichtigsten mathematischen Beziehungen Anwendungsbeispielen Durchführung mit Excel und Statistica Vermittlung von Hintergründen/Voraussetzungen Grundlagen der linearen Algebra Wiederholung / Durcharbeiten der Beispiele Excel Klausur zum Abschluss des Moduls gemeinsam mit Testtheorie

3 Einführung Was sind multivariate Analysemethoden? Literatur a) b) c) d)

4 Einführung Was sind multivariate Analysemethoden? Inhalte im SS 2013/14 Multivariate Methoden Vektoren / Matrizen Multivariate Distanz Faktorenanalyse Multidimensionale Skalierung Multivariates Testen Multivariate Klassifikation

5 Einführung Was sind multivariate Analysemethoden? Einteilung Multivariate Analysemethoden Latente Variable Faktorenanalyse Diskriminanzanalyse MDS Kanonische Korrelation LISREL Konkrete Variable Multiple/Logistische Regression T 2 / MANOVA Conjoint Measurement Kanonische Korrelation

6 Verfahren Latente Variable Latente Variable Multidimensionale Skalierung Problem: Positionierung von Messobjekten in einem latenten Raum (hier: Wahrnehmungsraum) Möglichkeiten: Faktorenanalyse Multidimensionale Skalierung

7 Einführung Was sind multivariate Analysemethoden? Latente Variable Faktor / MDS Demo - Beispiel mit Excel und Statistica

8 Einführung Was sind multivariate Analysemethoden? Multivariates Testen Grundüberlegungen zum Unterschied des Testens mit einer AV und mehreren AVs Grundprinzip und Beispiel anhand einer 2 Vars 2 Groups Diskriminanzanalyse

9 Mittelwertsprüfung bei mehreren Variablen Beispiel 10 Variablen Lebenszufriedenheit Arbeit X 1 : Gehalt X 2 : Entscheidungsfreiheit X 3 : Qualität der Kommunikation Person X 7 : Lebensansprüche X 8 : Sinnhaftigkeit Privatsphäre X 4 : Ehe X 5 : Freunde/Beziehungen X 6 : Sexualität Aktivität X 9 : Hobbies X 10 : Sport/Fitness x, x,, x Gruppen Gesunde Herzinfarktpatienten

10 Multivariate Mittelwertsvergleiche - Einzeltestungen Frage Teststrategie Probleme Ausweg Unterscheiden sich Gesunde und Patienten im Variablenkomplex Lebenszufriedenheit? Wir testen auf jeder der 10 Skalen den Gruppenunterschied mit einem t- Test. Wenn irgend einer der Tests signifikant wird, sehen wir die Gruppen als verschieden an. 1. Multiples Testen: Dieselbe Hypothese wird 10 mal geprüft. 2. Unterstellte Unabhängigkeit: Man behandelt die einzelnen Skalen als unabhängig voneinander. 3. Fehlendes Konstrukt: Lebenszufriendenheit wird nicht als Variablenkomplex mit Binnenstruktur behandelt. 4. Mangelnde Teststärke: Man nutzt nicht die Korrelationsstruktur der Variablen für einen leistungsfähigen Test. Verwendung eines multivariaten Tests, der die Information aller 10 Variablen und ihrer Korrelationsstruktur in eine statistische Prüfgrösse einfliessen lässt.

11 Multivariate Mittelwertsvergleiche - Verfahren Variablenkomplex x, x,, x Multivariates Testkonstrukt Multivariate Distanz (Mahalanobisdistanz) Optimale Linearkombination (Linear Discriminant Function) Multivariate Quadratsummen (SSCP-Matrizen-Zerlegung) Verfahren Hotelling s T 2 MANOVA Diskriminanz- Analyse Alle Verfahren entscheiden über den Gruppenunterschied im gesamten Variablenkomplex mit einem statistischen Test

12 Multivariates Testen - Diskriminanzanalyse Grundprinzip (2 Gruppen) Für die m Variablen x1, x2,, xm finde eine Linearkombination zu einer neuen Variable y b0 b1 x1 b2 x2 bmxm so dass diese die Gruppen c 1 und c 2 optimal trennt. Kriterium der Optimierung Das Optimierungskriterium für die Wahl der b j lautet QS QS Between Within erklärte Variation max nicht erklärte Variation Die der b j sind so zu wählen, dass auf der neuen Variable y die Streuung zwischen den Gruppen zu der Streuung innerhalb der Gruppen ein maximales Verhältnis hat.

13 2D Beispiel Diskriminanzanalyse 2D-Beispiel Man möchte trennen 2 Gruppen Stechmücken c 1 Blindmücken c 2 anhand von 2 Variablen Flügellänge Fühlerlänge x 1 x 2 Anforderung Maximale Gruppentrennung (Mittelwerte) Minimale Klassifikationsfehler (Fall-Klassifikation)

14 2D Beispiel Diskriminanzanalyse Variablenraum Blindmücke 1.40 Regression Stechmücke Stechmücke 1.20 Regression Blindmücke 1.00 x 2 (Flügelänge) x 1 (Fühlerlänge) Ausgangslage Klassifiziere anhand von Fühlerlänge (X 1 ) und Flügellänge (X 2 ) möglichst eindeutig in Stechmücke (c 1 ) und Blindmücke (c 2 ). In beiden Gruppen existiert eine Korrelation der Variablen Fühlerlänge (X 1 ) und Flügellänge (X 2 ).

15 2D Beispiel Diskriminanzanalyse Variablenraum x 2 Blindmücke Stechmücke Bestes Kriterium auf x 2 x 1 Bestes Kriterium auf x 1 Problem Klassifiziere anhand von Fühlerlänge (X 1 ) und Flügellänge (X 2 ) möglichst eindeutig in Stechmücke (c 1 ) und Blindmücke (c 2 ). Das geht mit einem Kriteriumswert auf jeder einzelnen Variable X 1 und X 2 offenbar nicht.

16 2D Beispiel Diskriminanzanalyse Variablenraum Blindmücke Stechmücke Kriteriumsfunktion 1.00 x 2 (Flügelänge) x 1 (Fühlerlänge) Lösung Eine lineare Kriteriumsfunktion teilt den Variablenraum in 2 Gebiete: Oberhalb Stechmücke (c 1 ), unterhalb Blindmücke (c 2 ). x b ax 2 1 Somit folgt die Klassifikationsfunktion g x, x 1 2 c1, wenn x2 ax1 b c2, wenn x2 ax1 b

17 2D Beispiel Diskriminanzanalyse Einfache Lösung Zuerst die Daten im Nullpunkt zentrieren und dann um den optimalen Winkel a drehen! x 2 x 2 Zentrierung & Rotation! a a x 1 x 1 Die Varianz zwischen den Gruppen wird auf der Achse x 1 maximiert, und x 2 steht senkrecht x 1. Eine Parallele zu x 2 liefert das optimale Trennkriterium.

18 2D Beispiel Diskriminanzanalyse z-standard standardisiert z z 1

19 2D Beispiel Diskriminanzanalyse z-standard Koordinaten rotiert um a = 46 (clockwise) z z 1 Diskriminanzfunktion Die neue x- Achse z 1 ist die Diskriminanzfunktion y. Auf ihr läßt sich ein Kriterium zur optimalen Trennung beider Gruppen finden. Da eine Drehoperation auf die Diskriminanzfunktion geführt hat, ist sie darstellbar als eine Linearkombination der alten Koordinaten: z b z b z

20 2D Beispiel Diskriminanzanalyse y: Linearkombination y (Diskriminanzfunktion) Kriterium y 0 cosa sina z1 z 1 sina cosa z z 2 2 z cosa z sina z z sina z cosa z Da y z 1 gilt y b z b z mit b1 cosa und b2 sina Koeffizienten von y Das Auffinden der Koeffizienten b 1 und b 2 ist also identisch mit dem Problem, den optimalen Drehwinkel a zu bestimmen. Hierfür braucht man ein Kriterium der gewünschten maximalen Trennung, und die Lösung des dahinter stehenden Maximierungsproblems. [Excel-Beispiel]

21 2D Beispiel Diskriminanzanalyse Rotation zur y - Funktion z 2 z 1 y (Diskriminanzfunktion) Kriterium y 0 y (Diskriminanzfunktion) Klassifikation Case-Classification durch einfachen Vergleich mit dem Kriterium y 0. Prüfung des Gruppenunterschieds mit einem einfachen t - Test auf y.

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Reression Zweck: Vorhersae Dimensionsreduktion Klassifizierun Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eienschaften: nicht-linear verteilunsfrei

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik Hans-Friedrich Eckey SS 2004 Skript zur Lehrveranstaltung Multivariate Statistik Vormerkungen I Vorbemerkungen Das Manuskript beinhaltet den gesamten Stoff, der Bestandteil der Lehrveranstaltung "Multivariate

Mehr

Faktorenanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007

Faktorenanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007 Faktorenanalyse Bacher, SoSe2007 1. Grundlegende Verfahren explorative FA (EXFA): Für eine Menge von Variablen/Items werden zugrunde liegende gemeinsame (latente) Dimensionen/Faktoren gesucht, die Faktorstruktur

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION 2. FS Master Rehabilitationspsychologie, SoSe 2012 Faktorenanalyse/ faktorielle Validität 2 Einleitung Allgemeines zu Faktorenanalysen (FA)

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

Angewandte multivariate Statistik mit R Landau 2007. Kaarina Foit und Ralf Schäfer

Angewandte multivariate Statistik mit R Landau 2007. Kaarina Foit und Ralf Schäfer Angewandte multivariate Statistik mit R Landau 2007 Kaarina Foit und Ralf Schäfer Die vorliegenden Folien sind der zweite Teil einer Vorlesung zum Thema multivariate Statistik mit R. Mehrere Einführungen

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Logistische Regression

Logistische Regression TU Chemnitz SoSe 2012 Seminar: Multivariate Analysemethoden 26.06.2012 Dozent: Dr. Thomas Schäfer Logistische Regression Ein Verfahren zum Schätzen von Wahrscheinlichkeiten Referentinnen: B. Sc. Psych.

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Dorothea E. Dette-Hagenmeyer Was sind dyadische Daten? Dyadische Daten sind Daten von zwei oder mehreren Personen, die etwas miteinander

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

2 Multivariate Statistik

2 Multivariate Statistik MS13 1 2 Multivariate Statistik 21 Grundbegriffe In diesem Abschnitt sollen die ersten wichtigen Grundbegriffe der Multivariaten Statistik eingeführt werden: Mehrdimensionale Variablen, Erwartungswerte,

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

Statistische Methoden: Tests, Regression und multivariate Verfahren

Statistische Methoden: Tests, Regression und multivariate Verfahren (CM)²-Nachwuchsring, Workshop Statistik, 25.Januar 2013 Statistische Methoden: Tests, Regression und multivariate Verfahren Ralf Korn ((CM)², TU Kaiserslautern, Fraunhofer ITWM) 0. Einige Probleme aus

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

COMMERCIAL BANKING Sommersemester 2002 Wahrenburg / Raupach Aufgabenblatt 1. Aufgabenblatt 1

COMMERCIAL BANKING Sommersemester 2002 Wahrenburg / Raupach Aufgabenblatt 1. Aufgabenblatt 1 COMMERCIAL BANKING Sommersemester 2002 Wahrenburg / Raupach Aufgabenblatt Aufgabenblatt. (Präsentation zum Kreditscoring) 2. Sie haben einen Kredit an eine börsennotierte Firma XY vergeben. Bestimmen Sie

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften

Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften Fehlende Daten in der Multivariaten Statistik SS 2011 Allgemeines Das Seminar richtet sich in erster Linie an Studierende

Mehr

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) R.Niketta Multiple Regressionsanalyse Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) Daten: Selbstdarstellung und Kontaktsuche in studi.vz (POK VIII, AG 3) Fragestellung:

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

IBM SPSS Categories 22

IBM SPSS Categories 22 IBM SPSS Categories 22 Hinweis Vor Verwendung dieser Informationen und des darin beschriebenen Produkts sollten die Informationen unter Bemerkungen auf Seite 57 gelesen werden. Produktinformation Diese

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

(2) Mittels welcher Methode ist es im ALM möglich kategoriale Variablen als Prädiktoren in eine Regressionsgleichung zu überführen?

(2) Mittels welcher Methode ist es im ALM möglich kategoriale Variablen als Prädiktoren in eine Regressionsgleichung zu überführen? Beispielaufgaben LÖSUNG (1) Grenzen Sie eine einfache lineare Regression von einem Random Intercept Modell mit nur einem Level1-Prädiktor ab! a. Worin unterscheiden sich die Voraussetzungen? - MLM braucht

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

LISREL/CFA: Modelltest

LISREL/CFA: Modelltest LISREL/CFA: Modelltest im Rahmen des Interdisziplinären Seminars Multivariate Statistik bei psychologischen Fragestellungen Martina Feilke, Martina Unterburger, Christoph Burkhardt Dozenten: Prof. Dr.

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Multivariate Statistik mit Mathematica und SPSS

Multivariate Statistik mit Mathematica und SPSS Multivariate Statistik mit Mathematica und SPSS von Dipl.-Math. Marco Schuchmann Dipl.-Math. Werner Sanns Seite 2 Varianzanalyse Die Informationen in diesem Buch entstammen langjähriger Erfahrung in Praxis

Mehr

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Ziel Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Einteilung (=Klassifikation) der Pixel eines multispektralen Datensatzes in eine endliche Anzahl von Klassen. Es sollen dabei versucht

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Diskriminanzanalyse 9.1 Problemstellung Ziel einer Diskriminanzanalyse: Bereits bekannte Objektgruppen (Klassen/Cluster) anhand ihrer Merkmale charakterisieren und unterscheiden sowie neue Objekte in

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Kapitel 3. Erste Schritte der Datenanalyse. 3.1 Einlesen und Überprüfen der Daten

Kapitel 3. Erste Schritte der Datenanalyse. 3.1 Einlesen und Überprüfen der Daten Kapitel 3 Erste Schritte der Datenanalyse 3.1 Einlesen und Überprüfen der Daten Nachdem die Daten erfasst worden sind, etwa mit Hilfe eines Fragebogens, ist die nächste Frage, wie ich sie in den Rechner

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Formelsammlung zu Multivariate Verfahren

Formelsammlung zu Multivariate Verfahren Institut für Statistik Gerhard Tutz, Moritz, Wolfgang Pößnecker Sommersemester 204 Formelsammlung zu Multivariate Verfahren Inhaltsverzeichnis Version 0804204 Diese Formelsammlung darf in der Klausur verwendet

Mehr

Seminarangebote zu Methodenkompetenzen

Seminarangebote zu Methodenkompetenzen Seminarangebote zu Methodenkompetenzen Contrastwerkstatt Fotolia.com Inhalt Inhalt... 2 Einführung in Diversity Management... Fehler! Textmarke nicht definiert. Evaluation und Qualitätssicherung in der

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

ALM. Allgemeines lineares Modell. Teil 1. Regressionsanalyse Varianzanalyse Kovarianzanalyse Diskriminanzanalyse. Kurt Holm

ALM. Allgemeines lineares Modell. Teil 1. Regressionsanalyse Varianzanalyse Kovarianzanalyse Diskriminanzanalyse. Kurt Holm ALM Allgemeines lineares Modell Teil 1 Regressionsanalyse Varianzanalyse Kovarianzanalyse Diskriminanzanalyse Kurt Holm Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Neuerungen in Minitab 16

Neuerungen in Minitab 16 Neuerungen in Minitab 16 minitab@additive-net.de - Telefon: 06172 / 5905-30 Willkommen zu Minitab 16! Die neueste Version der Minitab Statistical Software umfasst mehr als siebzig neue Funktionen und Verbesserungen,

Mehr

KOMPLEXE STATISTISCHE VERFAHREN

KOMPLEXE STATISTISCHE VERFAHREN 1 1. THEORETISCHES: KOMPLEXE STATISTISCHE VERFAHREN Wofür braucht man komplexe statistische Verfahren? um objektivere Antworten auf Fragen (z.b. Schadet Rauen?) geben zu können Im Alltag hier oft Heranziehung

Mehr

Einführung in die Cluster-Analyse mit SAS

Einführung in die Cluster-Analyse mit SAS Einführung in die Cluster-Analyse mit SAS Benutzertreffen am URZ Carina Ortseifen 4. Juli 2003 Inhalt 1. Clusteranalyse im allgemeinen Definition, Distanzmaße, Gruppierung, Kriterien 2. Clusteranalyse

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Kommentierte Formelsammlung multivariater statistischer Verfahren. Prof. Dr. Irene Rößler Prof. Dr. Albrecht Ungerer

Kommentierte Formelsammlung multivariater statistischer Verfahren. Prof. Dr. Irene Rößler Prof. Dr. Albrecht Ungerer Kommentierte Formelsammlung multivariater statistischer Verfahren Prof Dr Irene Rößler Prof Dr Albrecht Ungerer Inhaltsverzeichnis i Inhaltsverzeichnis Verfahren im Überblick Beispieldatensatz 1 1 Multiple

Mehr

Literaturhinweise zur quantitativen Datenanalyse

Literaturhinweise zur quantitativen Datenanalyse Fachbereich 05 Gesellschaftswissenschaften Methoden der empirischen Sozialforschung Prof. Dr. Volker Stocké Marc Graupner, M.A. Dipl.-Soz. Daniel Klein Dipl.-Soz. Ulrike Schwabe Dipl.-Soz. Lisa Währisch

Mehr

Conjoint Analyse. Ordnen Sie bitte die Objekte Ihren Präferenzen entsprechend in eine Rangreihe.

Conjoint Analyse. Ordnen Sie bitte die Objekte Ihren Präferenzen entsprechend in eine Rangreihe. Conjoint Analyse CONsidered JOINTly Conjoint Analyse Ordnen Sie bitte die Objekte Ihren Präferenzen entsprechend in eine Rangreihe. traditionelle auswahlbasierte Wählen Sie bitte aus den Alternativen,

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Prüfungsfach/Modul: Allgemeine Volkswirtschaftslehre Wirtschaftstheorie Wahlmodul Klausur: Institutionenökonomik (Klausur 60 Min) (200101, 201309, 211301)

Mehr