Luisenburg-Gymnasium Wunsiedel

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Luisenburg-Gymnasium Wunsiedel"

Transkript

1 Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig und ist eine andere Möglichkeit, die Größe eines Winkels anzugeen. Gradmaß Bogenmaß 0 π π π π π 3π π Bei Winkeln üer 360 zw. π eginnen die Sinus- und Kosinuswerte von vorn. Kreissektorfläche A = r π Kreissegmentfläche A: 360 Sektorfläche minus Dreiecksfläche Dreieck ist gleichschenklig! α A 4 Kugelvolumen 3 VK = r π Kugeloerfläche O K = 4r π 3 3V 3 K O r = r = K 4π 4π SINUS und KOSINUS Im Einheitskreis (Radius ) gilt für den Mittelpunktswinkel α : Hochwert: y = sinα Rechtswert: = cosα Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite von

2 Vergleich der Sinus- und Kosinuswerte in den anderen Quadranten z.b. für α = 30 : II. Quadrant: sin( ) = sin50 = sin 30 cos( ) = cos50 = cos 30 III. Quadrant: sin( ) = sin 0 = sin 30 cos( ) = cos 0 = cos30 IV. Quadrant: sin( ) = sin 330 = sin 30 cos( ) = cos 330 = cos30 Vorzeichen von Sinus und Kosinus: Sinus- und Kosinusfunktion im Bogenmaß (also ohne Benennung) statt im Gradmaß ACHTUNG: Taschenrechner auf RAD umstellen! Alle Werte wiederholen sich im Astand π (Periodenlänge) Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite von

3 Veränderungen der Sinusfunktion y = a sin a ist die Amplitude (größte Aweichung in y-richtung von der Mittellage) und ewirkt also eine Streckung/Stauchung in y-richtung. hier: a = ; Amplitude hier: a = ; Amplitude y = sin() verändert die Periode von π auf π, ewirkt also eine Streckung/Stauchung in -Richtung. hier: = ; Periode π π hier: = ; Periode = π y = sin( - c) c ewirkt eine Verschieung in -Richtung hier: c = 0 hier: c = also um nach rechts! (Phasenverschieung) y = sin() + d d ewirkt eine Verschieung in y-richtung hier: d = 0 hier: d = also um nach oen! Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 3 von

4 Beispiel: y = 3sin[( - )] + π Amplitude 3 Periode = π um nach rechts um nach oen 3 EXPONENTIELLES WACHSTUM und EXPONENTIALFUNKTION lineares Wachstum: y = + a eponentielles Wachstum: y = a für a > : Startwert : Anzahl der Zeiteinheiten a: Wachstumsfaktor Die -Achse ist Asymptote. a ist immer positiv und ungleich 0! Wachstum für a> Zerfall oder Anahme für a< Jede Funktion mit einem im Eponenten heißt Eponentialfunktion. Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 4 von

5 4 LOGARITHMUS = log p ist diejenige Hochzahl (Eponent), mit der man die Basis potenzieren muss um den Potenzwert p zu erhalten, also: log p = denn = p log 8 = 3 denn 3 = 8 Sonderfälle: log = 0 log = log 0 = lg Es git nur Basen >0 und ungleich! Rechenregeln für den Logarithmus: log ( p q) = log p + log q (Logarithmus eines Produkts) p log ( ) = log p log q (Logarithmus eines Quotienten) q r log ( p ) = r log p (Logarithmus einer Potenz) log p log a p = (Wechsel der Basis) log a Lösen von Eponentialgleichungen z.b. auf eiden Seiten gleiche Basen herstellen und dann Eponenten vergleichen: + + = + = = = 0,5 oder erst noch zusammenfassen: = 7 3 = = 9 = = 7 z.b. eide Seiten logarithmieren (z.b. mit Zehnerlogarithmus): + lg = 3 + ( + )lg = lg3 + = = lg3 lg3 lg lg3 = lg 3 lg3 = ( ) = lg lg3 = lg lg3 lg3 = lg lg3 lg = lg3 ( lg 3 lg ) lg 3 = lg3 lg = lg 3 Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 5 von

6 5 MEHRSTUFIGE ZUFALLSEXPERIMENTE typische Aufgaenstellungen, z.b. eim n-maligen Würfeln: a) eim n-ten Wurf die erste Sechs: (Die ersten n- Würfe sind keine 6, der letzte schon.) n 6 ) frühestens eim n-ten Wurf eine 6: (Die ersten n- Würfe sind keine 6, der letzte Versuch kann eine 6 sein, muss aer nicht!) n c) Wie oft muss mindestens geworfen werden, damit mit einer WSK von wenigstens 90% mindestens eine Sechs kommt? P( mindestens eine Sechs ) = - P( keine Sechs ) = muss also 90% sein! 6 n n 0, 0, n n 0,9 lg lg 0, n lg lg 0, lg0, n lg n Beachte: Beim Multiplizieren oder Dividieren mit einer negativen Zahl dreht sich das Ungleichheitszeichen um! edingte WK: P( A B) P B ( A) = ist die WK, dass A eintritt unter der Voredingung, P( B) dass B gilt; am esten mit Vierfeldertafel: A A B P ( A B) P( A B ) P (B) B P( A B) P( A B) P (B) P (A) P (A) Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 6 von

7 6 GANZRATIONALE FUNKTIONEN f n ( ) = a heißt auch Potenzfunktion oder Parael n-ter Ordnung Ist n gerade, so ist der Graph achsensymmetrisch zur y-achse. Ist n ungerade, so ist der Graph punktsymmetrisch zum Ursprung. 3 ganzrationale Funktion, z.b. dritten Grades: f ( ) = 0,5( 5 + 6) 3 Zur Nullstellensuche muss man die Gleichung lösen: 0,5( 5 + 6) = 0 Finde die erste Nullstelle durch Proieren: z.b. = Polynomdivision ergit die erste Zerlegung des Terms: 3 ( 5 + 6) : ( ) = 6 Löse 6 = 0 entweder mit der Lösungsformel (Mitternachtsformel aus der 9. Klasse) oder mit Satz von Vieta: 6 = ( 3)( + ) Also heißen die anderen eiden Nullstellen: = 3 und 3 = Somit kann man die Funktion auch komplett in Linearfaktoren zerlegen: f ( ) = 0,5( )( 3)( + ) Arten von Nullstellen: einfache Nst.: schneiden die -Achse; gehören zu einem einfachen Linearfaktor: f() = ( + )( - ) = - = Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 7 von

8 doppelte Nst.: erühren die -Achse; gehören zu einem zweifachen Linearfaktor: f() = ( - 3)² = = 3 dreifache Nst.: erühren und schneiden die -Achse gehören zu einem dreifachen Linearfaktor: f() = ( - )³ = = 3 = Symmetrie von Funktionen f(-) f() f(-) f() f(-) = f() achsensymmetrisch zur y-achse f(-) = - f() punktsymmetrisch zum Ursprung Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 8 von

9 Das Verhalten einer ganzrationalen Funktion im Unendlichen: Nur der Grad (höchster vorkommender Eponent) entscheidet zusammen mit dem davor stehenden Faktor (Koeffizienten): f() = 0,5 3 -,5 + Das 0,5 ist positiv, also kommt der Graph von links unten und geht nach rechts oen. lim f ( ) = ± g() = Das Minus vor dem 4 ist negativ, also kommt der Graph von links unten und geht nach rechts unten. lim f ( ) = Groverlauf des Graphen einer ganzrationalen Funktion z.b. f() = ( + ) ( - )² ( - ) Der Grad ist 4 (höchster Eponent nach dem Ausmultiplizieren). Koeffizient ist positiv, also kommt der Graph von links oen und geht nach rechts oen, d.h. lim f ( ) = + = - ist einfache Nst., also Schnittstelle = ist doppelte Nst., also Berührstelle 3 = ist einfache Nst., also Schnittstelle Dann muss der Graph zwangsläufig etwa so verlaufen: Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 9 von

10 7 Das Verhalten z.b. einer gerochen-rationalen Funktion im Unendlichen: falls lim f ( ) = +, so heißt f divergent falls lim f ( ) = a, so heißt f konvergent gegen die feste Zahl a z.b. + f ( ) = Nenner immer positiv, also D f = R + 5 Zähler immer ungleich 0, also keine Nullstellen lim f ( ) = lim + = lim = 5 + = also: waagrechte Asymptote y = TRICK: höchste Nennerpotenz ausklammern und kürzen! Die Brüche, die nur im Nenner ein enthalten, werden alle 0!!! y = G f Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite 0 von

11 8 Der Einfluss von Parametern im Funktionsterm auf den Graphen am Beispiel ( ) ( ) f = + (Scheitelform! also S(/)) oder f ( ) = + 3 a) Verschieung in y-richtung Verschieung in y-richtung nach oen: f() + d, falls d > 0 Verschieung in y-richtung nach unten: f() + d, falls d < 0 f() + = ( - )² + + = ( - )² + 3 S(/3) f() - = ( - )² + - = ( - )² S(/0) Hänge das d hinten ans Ende des Funktionsterms an! ) Verschieung in -Richtung Verschieung in -Richtung nach rechts: f( - ), falls > 0 Verschieung in -Richtung nach links: f( - ), falls < 0 f( - ) = ( - - )² + = ( - )² + S(/) f( -(-)) = ( + - )² + = ( + )² + S(-/) Ersetze jedes im Funktionsterm durch das ( - )! c) Strecken oder Stauchen in y-richtung Strecken in y-richtung mit dem Faktor c: c f(), falls c > Stauchen in y-richtung mit dem Faktor c: c f(), falls 0 < c < f() = [( - )² +] = ( - )² + 4 S(/4) 0,5 f() = 0,5 [( - )² +] = 0,5 ( - )² + S(/) Schreie den Faktor c vor den ganzen Funktionsterm! Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite von

12 d) Strecken oder Stauchen in -Richtung Strecken in -Richtung mit dem Faktor a: f(a), falls 0 < a < Stauchen in -Richtung mit dem Faktor a: f(a), falls c > f(0,5) = (0,5 - )² + = [0,5 ( - )]² + = 0,5 ( - )² + S(/) f() = ( - )² + = [ ( - 0,5)]² + = 4 ( - 0,5)² + S(0,5/) Ersetze jedes vorkommende im Funktionsterm durch a! e) Spiegeln des Graphen Achsenspiegeln an der -Achse: Achsenspiegeln an der y-achse: Punktspiegeln am Ursprung: -f() f(-) -f(-) -f() = - [( - )² + ] = - ( - )² - f(-) = (- - )² + = ( + )² + -f(-) = - [(- - )² + ] = -( + )² - S(/-) S(-/) S(-/-) Schreie das - vor den ganzen Term zw. vor jedes vorkommende zw. eides! Grundwissen Mathematik 0. Klasse, Luisenurg-Gymnasium Wunsiedel Seite von

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α Grundwissen athematik 0.Klasse Gymnasium SOB.Kreiszahl..Kreis α Länge des Kreisbogens b r 360 α Fläche des Kreissektors A r 360 Das Bogenmaß b eines Winkels α ist die Länge der zugehörigen Bogenlänge b

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

r Oberflächeninhalt 1 Berechnungen am Kreis O 4r 1.1 Bogenmaß Das Bogenmaß x ist das zu gehörende Verhältnis Bogenlänge, also die 1.

r Oberflächeninhalt 1 Berechnungen am Kreis O 4r 1.1 Bogenmaß Das Bogenmaß x ist das zu gehörende Verhältnis Bogenlänge, also die 1. Grundwissen Mathematik 0 Berechnungen am Kreis. Bogenmaß Das Bogenmaß ist das zu gehörende Verhältnis Bogenlänge, also die Radius Zahl / r Umrechnungen: r r 0 30 45 60 90 360 0. Kreisteile Sektorfläche:.3

Mehr

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10.

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10. M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß?

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß? M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius Kreissektor mit Mittelpunktswinkel? die Länge des Kreisbogens für einen Wie berechnet man in einem Kreis mit Radius Kreissektors

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus EvBG Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen Wahrscheinlichkeitsrechnung 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

1 Kreis und Kugel @ GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe 10

1 Kreis und Kugel @ GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe 10 Kreis und Kugel Zum Kreis vgl. Klasse 8, 6... ogenmaß: Durch den Mittelpunktswinkel α wird auf einer Kreislinie mit Radius r ein Kreissektor mit ogenlänge b festgelegt. Es gilt: b r πα 80 Am Einheitskreis

Mehr

MTG Grundwissen Mathematik 10. Klasse

MTG Grundwissen Mathematik 10. Klasse MTG Grundwissen Mathematik 0. Klasse Der Kreis und der Kreissektor Umfang eines Kreises mit Radius r: u = r π Fläche eines Kreises mit Radius r: A = r²π. Der Kreissektor Bogenlänge eines Kreisessektors

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Aufgaben zum Basiswissen 10. Klasse

Aufgaben zum Basiswissen 10. Klasse Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor

Mehr

Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften.

Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften. Polynome und mehrfache Nullstellen Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften. Stichwort: Polynome im Affenkasten www.mathematik-verstehen.de 1 Polynome und mehrfache Nullstellen

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

ARBEITSHEFT. Mathematik mit CAS. Lösungen für TI-Geräte C.C.BUCHNER

ARBEITSHEFT. Mathematik mit CAS. Lösungen für TI-Geräte C.C.BUCHNER ARBEITSHEFT Mathematik mit CAS Lösungen für TI-Geräte C.C.BUCHNER 2 Inhaltsverzeichnnis 2 Einführung in die Arbeit mit einem CAS 3 Kreis und Kugel 5 Kreis und Kugel Kann ich das? 8 Sinus- und Kosinusfunktion

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten.

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten. Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 9/10 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die grau geschriebenen

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x Funktionen-Katalog I. Geraden II. Ganzrationale Funktion: Parabeln -ten Grades 3-ten Grades Parabeln höheren Grades III. Gebrochenrationale Funktionen: Asymptoten, Polstellen... IV. Eponentialfunktionen

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Curriculare Analyse. Beispiel: Leitidee Funktionaler Zusammenhang. Dr. M.Gercken, 2009

Curriculare Analyse. Beispiel: Leitidee Funktionaler Zusammenhang. Dr. M.Gercken, 2009 Curriculare Analyse Beispiel: Leitidee Funktionaler Zusammenhang Dr. M.Gercken, 2009 Quellen [1] Bildungsplan 1994 [2] Bildungsplan 2004 [3] Schulcurriculum Helmholtz Gymnasium, Karlsruhe [4] Schulcurriculum

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Inhalt Klassenarbeiten zum Themenbereich 1: Kreiszahl π Kreis und Kugel Geometrische und funktionale Aspekte der Trigonometrie

Inhalt Klassenarbeiten zum Themenbereich 1: Kreiszahl π Kreis und Kugel Geometrische und funktionale Aspekte der Trigonometrie Inhalt Vorwort Klassenarbeiten zum Themenbereich 1: Kreiszahl π Kreis und Kugel Geometrische und funktionale Aspekte der Trigonometrie... 1 Klassenarbeit 1... 2 Flächeninhalte von Kreisringsektoren, Kreisen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K Grundwissen Mthemtik 10. Klsse Kreis Länge eines Kreisbogens b 360 r r r b Fläche eines Kreissektors 360 r r r Bogenmß Bogenmß des Winkels : Umrechnungsformel: b α Bogenmß r α Bogenmß π α 360 Grdmß Kugel

Mehr

4 Ganzrationale Funktionen

4 Ganzrationale Funktionen FOS, Jahrgangsstufe (technisch) 4 Ganzrationale Funktionen 4 Polynomfunktionen Eine Funktion, die man auf die Form f : x a n x n + a n x n + + a 2 x 2 + a x + a 0 mit x R bringen kann, heißt ganzrationale

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Abbildungen und Funktionen Lösung:

Abbildungen und Funktionen Lösung: lineare Funktion f() = Neue Funktionsgleichung: f() = - 5 Es ändert sich nur der y-abschnitt Spiegeln an der -Achse Neue Funktionsgleichung: f() = - + Steigung und y-abschnitt mal (-) Neue Funktionsgleichung:

Mehr

Polynome. Michael Spielmann. 1 ganzrationale Funktionen, Polynome 1. 2 Kurvenverlauf 1. 3 Symmetrie 2. 4 Nullstellen und Linearfaktoren 3

Polynome. Michael Spielmann. 1 ganzrationale Funktionen, Polynome 1. 2 Kurvenverlauf 1. 3 Symmetrie 2. 4 Nullstellen und Linearfaktoren 3 Polnome Michael Spielmann Inhaltsverzeichnis ganzrationale Funktionen, Polnome Kurvenverlauf Smmetrie Nullstellen und Linearfaktoren 5 Polnomdivision 6 Kurvenverlauf an Nullstellen 5 7 Nullstellen und

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Schulinternes Curriculum Mathematik

Schulinternes Curriculum Mathematik Schulinternes Curriculum Mathematik Klasse Inhaltsbezogene Prozessorientierte 1. Natürliche Zahlen Große Zahlen; Römische Zahlzeichen; Anordnung auf dem Zahlenstrahl; Graphische Darstellung Vermehrt soll

Mehr

Grundwissen Mathematik 7.Klasse Gymnasium SOB

Grundwissen Mathematik 7.Klasse Gymnasium SOB 1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

mathphys-online TRIGONOMETRISCHE FUNKTIONEN y-achse x-achse Graph von sin(x) Graph von cos(x) Graph von tan(x)

mathphys-online TRIGONOMETRISCHE FUNKTIONEN y-achse x-achse Graph von sin(x) Graph von cos(x) Graph von tan(x) TRIGONOMETRISCHE FUNKTIONEN 5 4 8 7 6 5 4 0 4 5 6 7 8 4 5 Graph von sin(x) Graph von cos(x) Graph von tan(x) x-achse Trigonometrische Funktionen Inhaltsverzeichnis Kapitel Inhalt Seite Winkelfunktionen

Mehr

Aufstellen von Funktionstermen

Aufstellen von Funktionstermen Aufstellen von Funktionstermen Bisher haben wir uns mit der Untersuchung von Funktionstermen beschäftigt, um Eigenschaften des Graphen zu ermitteln. Nun wollen wir die Betrachtungsweise ändern. Wir gehen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren

Mehr

Einstieg. Bogenmaß. Allgemeine Formeln

Einstieg. Bogenmaß. Allgemeine Formeln 2 Einstieg Differenzialrechnung * Integralrechnung * Geometrie Stochastik * Zusatzthemen * Prüfungsaufgaben Wiederholung einiger Formeln Aufgaben aus dem Pflichtteil Schaubilder und Funktionsterme Streckung

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 10 Der Stoffverteilungsplan geht

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Schulinterner Lehrplan Klasse 10

Schulinterner Lehrplan Klasse 10 Schulinterner Lehrplan Klasse 10 Unterrichtsvorhaben Klasse 10 (E- und G-Kurs) 1. Verpackungen (E-Kurs S. 41 S. 58; G-Kurs S. 19 S. 34) Oberfläche und Volumen von Pyramide und Kegel Projektarbeit Kugel:

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Schulinterner Plan 10

Schulinterner Plan 10 Schulinterner Plan 10 PA Partnerarbeit SV Schülervortrag SK Sachkompetenz SoK Sozialkompetenz Zeit Thema und inhaltliche Schwerpunkte Kernmethode/ Arbeitsform 28h 2h Funktionen und ihre Anwendungen 1.

Mehr

Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz

Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz Monat Training Eignungstest - Vorbereitung auf Eignungstests bei Vorstellungsgesprächen - Beispielaufgaben zum Trainieren 6-9 K2: Geeignete

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

8. Spezielle Funktionen

8. Spezielle Funktionen 94 Andreas Gathmann 8. Spezielle Funktionen Nachdem wir jetzt schon relativ viel allgemeine Theorie kennen gelernt haben, wollen wir diese nun anwenden, um einige bekannte spezielle Funktionen zu studieren

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Nullstellen ganzrationaler Funktionen

Nullstellen ganzrationaler Funktionen Nullstellen ganzrationaler Funktionen 1 Nikolausproduktion Gewinnoptimierung bei der Nikolausproduktion Weihnachten steht vor der Tür! Die Firma des Unternehmers Niko Laus will herausfinden, ab welcher

Mehr

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. LINEARE GLEICHUNGEN Lineare Gleichungen - Einführung *Lösen von

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik BBS Gerolstein Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik für die Berufsoberschule II www.bbs-gerolstein.de/cms/download/mathematik/vorkurs-mathe-bos-.pdf bzw. www.p-merkelbach.de/bos/mathe/vorkurs-mathe-bos-.pdf

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

Repetitionsaufgaben: Quadratische Funktionen

Repetitionsaufgaben: Quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

Methodischdidaktische. Charakt. Beispiele. Überlegungen

Methodischdidaktische. Charakt. Beispiele. Überlegungen FSG Kern- und Schulstandards Klasse 9/10 Mathematik (Stand7/2011) Inhalte (Schulbuchorientiert Reihenfolge), charakteristische Beispiele, die das Niveau zeigen (anwenden vernetzen), Leitideen + Kompetenzen

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.

Mehr

6 Trigonometrische Funktionen

6 Trigonometrische Funktionen 6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Lösung zur Übung 3. Aufgabe 9)

Lösung zur Übung 3. Aufgabe 9) Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen

Mehr