Name Charakteristik Beispiele

Größe: px
Ab Seite anzeigen:

Download "Name Charakteristik Beispiele"

Transkript

1 hermodynamishe Grundrozesse: Name Charakteristik Beisiele Isohor Isobar Isotherm Isoenergetish ) Isenthal ) Isentro 3) V = onst P = onst = onst U = onst H = onst S = onst Erwärmung oder Abkühlung in festen Kesseln; Shnelle hemishe Reaktion (z.b. Exlosionen) Erwärmung oder Abkühlung in Wärmetaushern; Langsame hemishe Reaktion bei konstantem Druk Langsame Exansion oder Komression im emeraturgleihgewiht mit der Umgebung emeraturausgleihs- oder Mishungsrozeß im abgeshlossenen System Shneller Drukabfall bei realer Strömung durh Engstelle ohne Wärmeaustaush mit der Umgebung (Drosselung) Shnelle Exansion oder Komression ohne Wärmeaustaush mit der Umgebung ) Nah Herausziehen der rennwand findet emeraturausgleih oder Mishung der Stoffe und statt. Also ist dq = dw = 0 du = 0 ) Während des shnellen Drukabfalls findet kein Wärmeaustaush mit der Umgebung statt. Also ist dq = dw t = 0 dh = 0 3) Während der shnellen Strömung durh die urbine findet kein Wärmeaustaush mit der Umgebung statt. Also ist für eine ideale urbine dq re = 0 ds = 0 dw t = dh oder W t, = H - H

2 Ideales Gas hermishe Zustandsgleihung: V = mr i oder = R i R i = sezielle Gaskonstante (tabelliert) Kalorishe Zustandsgleihungen: ( ) oder du d u u = = ( ) oder dh d h h = = Beim idealen Gas sind isotherme, isoenergetishe und isenthale Zustandsänderung identish. = sezifishe Wärmekaazität bei konstantem Volumen (tabelliert) = sezifishe Wärmekaazität bei konstantem Druk (tabelliert) dh = du + d() = du + R i d - = R i dq re + dw = du ds - d = d ds = R d + d = R d + d d d i i = + + d s s = ln + ln Zustandsänderungen: Isobar: = onst onst = Isohor: = onst = onst Isotherm: = onst = onst Isentro: d d s = onst = Mit dem Isentroenexonenten κ = > folgt daraus κ = onst Polytro: Alle Zustandsgrößen sind ariabel n = onst n kann ositi oder negati sein und wird an Meßwerte angeaßt. Es wird die sezifishe Wärmekaazität längs n κ der Polytroen definiert: n = n

3 Zustandsänderungen des idealen Gases Zustandsänderung q w, w t, s,-diagramm,s-diagramm Isobar = onst ( ) ( ) 0 ln Isohor = onst ( ) 0 ( ) ln Isotherm = onst R i ln Ri ln Ri ln R ln i Isentro s = onst 0 ( ) ( ) 0 Polytro (ariabel) n ( ) R i ( ) n nri( ) n n ln

4

5 Joule-Prozess als Gasturbinen-Vergleihsrozess : Isentroe Komression (shnelllaufendender urbokomressor) 3 : Isobare Erwärmung 3 4 : Isentroe Exansion (shnelllaufende urbine) 4 : Isobare Abkühlung

6 Erisson-Prozess (Akeret-Keller-Prozess) als Gasturbinen-Vergleihsrozess Im Gegenstromwärmetausher findet interner Wärmeaustaush statt. : Isotherme Komression (gekühlter urbokomressor) 3 : Isobare Erwärmung 3 4 : Isotherme Exansion (beheizte urbine) 4 : Isobare Abkühlung

7 Gasturbine mit offenem Kreislauf und innerer Wärmezufuhr Abart: urbinenstrahltriebwerk

8 Gasturbine mit geshlossenem Kreislauf und äußerer Wärmezufuhr

9 Bewegungsablauf im Stirling-Motor KÜHLUNG KÜHLUNG VERDRÄNGERKOLBEN WÄRME VERDRÄNGERKOLBEN WÄRME 3 KÜHLUNG KÜHLUNG KUPFER- ARBEISKOLBEN WOLLE ARBEISKOLBEN KUPFER- WOLLE KUPFER- WOLLE ARBEISKOLBEN ARBEISKOLBEN KUPFER- WOLLE VERDRÄNGERKOLBEN WÄRME VERDRÄNGERKOLBEN WÄRME 3 4 4

10 SIRLING-KREISPROZESS : Arbeitskolben steht im linken Umkehrunkt; Verdrängerkolben bewegt sih nah rehts; Isohore Abkühlung: Q < 0 3 : Arbeitskolben bewegt sih nah rehts; Verdrängerkolben steht im rehten Umkehrunkt; Isotherme Komression: Q < : Arbeitskolben steht im rehten Umkehrunkt; Verdrängerkolben bewegt sih nah links; Isohore Erwärmung: Q > : Arbeitskolben bewegt sih nah links; Verdrängerkolben steht im linken Umkehrunkt; Isotherme Exansion: Q > 0 4 Es gilt: Q = - Q (interner Wärmeaustaush) 34 4 V V V V V s 3

11

12 Otto-Prozess (Gleihraumrozess) V K = Komressionsolumen; V H = Hubolumen; : Isentroe Komression 3 : Isohore Erwärmung: Sehr shnelle Verbrennung durh Fremdzündung: Q 3 > : Isentroe Exansion (Arbeitshub) 4 : Isohore Abkühlung: Ersatzrozess für Ladungswehsel: Q 4 < 0 (Ausstoßen der heißen Abgase und Ansaugen on kaltem Gemish)

13 Diesel-Prozess (Gleihdrukrozess) V K = Komressionsolumen; V H = Hubolumen; : Isentroe Komression 3 : Isobare Erwärmung: Verbrennung des in die komrimierte Luft eingesritzten Kraftstoffs nah Selbstzündung: Q 3 > : Isentroe Exansion (Arbeitshub) 4 : Isohore Abkühlung: Ersatzrozess für Ladungswehsel: Q 4 < 0 (Ausstoßen der heißen Abgase und Ansaugen on kaltem Gemish)

14 Zustandsänderungen beim Viertakterfahren im,v-diagramm Zustandsänderungen beim Zweitakterfahren im,v-diagramm

15 Exerimentell ermittelter Vergleih on Leistung und sezifishem Kraftstofferbrauh b e für einen Diesel- und einen Ottomotor, die beide 55 kw leisten. Im Leistungsmaximum gilt: Diesel Otto sezifisher Kraftstofferbrauh b e zeitbezogener Kraftstofferbrauh b z = b e P max 47,4 g/kwh 38,5 g/kwh 3,6 kg/h 3, kg/h Dihte des Kraftstoffes ρ 0,78 kg/l 0,70 kg/l zeitbezogener Volumenerbrauh b z /ρ Strekenerbrauh ro 00 km bei max = 70 km/h 7,4 l/h 8,7 l/h 0, l,0 l

16 a) b) Vergleih der annähernd maßstabsgerehten Arbeitsdiagramme on Otto- und Dieselmotor a) Ottomotor, ε = 9; b) Dieselmotor, ε = 8 Z = Zündunkt; EB = Einsritzbeginn; EE = Einsritzende aus: W. Kalide, Energieumwandlung in Kraft- und Arbeitsmashinen Arbeitsweisen Ottomotor Dieselmotor Kraftstoff-Luftgemish, Menge Luft, Menge unabhängig on. Ansaugen je nah gewünshter Leistung Motorleistung Kraftstoff-Luftgemish auf Luft auf :5 bis :0, am Ende der :7 bis :0 Verdihtung Einsritzen on Kraftstoff. Verdihten Druk im Motor: a. 0 6 bar Druk im Motor: a bar Endtemeratur: C Beginn der Verbrennung durh Zündfunken (Zündkerze) Endtemeratur: C Selbstzündung des eingesritzten Kraftstoffes durh hohe emeratur im Motor Höhstdruk: bar 3. Verbrennen emeratur: C Höhstdruk: bar emeratur: C Abshluss durh Exansion (Arbeitsleistung) Ausshieben der Abgase Abshluss durh Exansion (Arbeitsleistung) Ausshieben der Abgase 4. Ausuffen Abgastemeratur: 800 C bei Leerlauf C bei Volllast Abgastemeratur: 50 C bei Leerlauf C bei Volllast Verlust: 36 % der Kraftstoffenergie Verlust: 9 % der Kraftstoffenergie 5. Gesamtwirkungsgrad a. 4 % a. 3 % Shadstoffemissionen on PKW im Vergleih Ottomotor Dieselmotor ohne Katalysator mit Katalysator Stikoxide 00 % 0 % 50 % Kohlenmonoxid 00 % 0 % 0 % Kohlenwasserstoffe 00 % 0 % 5 % Shwefeldioxid 00 % 00 % 000 % Partikel 00 % 3 % 000 %

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Die Funktionsweise und Thermodynamik des Thermokompressionsmotors

Die Funktionsweise und Thermodynamik des Thermokompressionsmotors Die Funktionsweise und hermodynamik des hermokomressionsmotors Der hermokomressionsmotor durhläuft einen neuartigen Kreisrozess, um die Abgaswärme innermotorish zu nutzen. Die folgende abelle gibt die

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch hermodynamik hermodynamik Prof. Dr.-Ing. Peter Hakenesh eter.hakenesh@hm.edu www.lrz-muenhen.de/~hakenesh hermodynamik Einleitung Grundbegriffe Systembeshreibung 4 Zustandsgleihungen 5 Kinetishe Gastheorie

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

Thermische Zustandsgleichung : Thermodynamische Zustandsgrößen als Funktion weiterer Zustandsgrößen berechenbar, z.b.: p = p(v,t) = RT/v

Thermische Zustandsgleichung : Thermodynamische Zustandsgrößen als Funktion weiterer Zustandsgrößen berechenbar, z.b.: p = p(v,t) = RT/v Die Kalorishe Zstandsgleihng hermishe Zstandsgleihng : hermodynamishe Zstandsgrößen als Fnktion weiterer Zstandsgrößen berehenbar, z.b.: (,) R/ Kalorishe Zstandsgleihng: Kalorishe Zstandsgrößen als Fnktion

Mehr

Einführung in die Verbrennungskraftmaschine

Einführung in die Verbrennungskraftmaschine Institut für erbrennungskraftmaschinen Einführung in die erbrennungskraftmaschine,.05.0 Institut für erbrennungskraftmaschinen Ed-Übung Übersicht Grundlagen der hermodynamik Prozess und thermischer Wirkungsgrad

Mehr

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt: Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

1. Klausur in "Technischer Thermodynamik II" (SoSe2014, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik II (SoSe2014, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Al. Professor Dr.-Ing. K. Sindler. Klausur in "Technischer Thermodynamik II" (SoSe04, 03.06.04) - VERSION - Name: Fachr.: Matr.-Nr.: Es

Mehr

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus Ü 9. Aufheizung einer Preßluftflasche Eine Preßluftflasche, in der sich.84 kg Luft bei einem Druck on.74 bar und einer Temeratur on T 0 C befinden, heizt sich durch Sonneneinstrahlung auf 98 C auf. Gesucht

Mehr

Kinetische Theorie der Gase

Kinetische Theorie der Gase Kinetishe heorie der Gase 1 Zusammenassung Zusammenhang zwishen Druk, olumen und emeratur nr Nk B Ideales Gasgesetz Anzahl Atome in 1 g 1 C Avogadrozahl N N A 6.0 10 A 1 mol Boltzmannkonstante k k B R

Mehr

Thermodynamik (Wärmelehre) II Wärmeenergie

Thermodynamik (Wärmelehre) II Wärmeenergie Physik A L25 (06.12.2012) Therodynaik (Wärelehre) II Wäreenergie Wäreenge und Wärekaazität Energieerhaltung bei therodynaishen Systeen 1. Hautsatz der Therodynaik Arbeit und innere Energie bei Gasen 1

Mehr

Das Chemische Gleichgewicht Massenwirkungsgesetz

Das Chemische Gleichgewicht Massenwirkungsgesetz Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle

Mehr

Script UT Elektro- und Hybridfahrzeuge

Script UT Elektro- und Hybridfahrzeuge Inhaltsverzeichnis Grundbegriffe und PV-Diagramm...2. Kreisprozess...2.2 Erster Hauptsatz der Wärmelehre...2.3 Allgemeines Gasgesetz...2. Thermischer Wirkungsgrad...2.5 Zustandsänderungen...3.6 Übungsfragen...5

Mehr

... Matrikel-Nummer Name Vorname. ... Semester Geburtstag Geburtsort

... Matrikel-Nummer Name Vorname. ... Semester Geburtstag Geburtsort Klausur zu Vorlesung und Übung P WS 2003/04 S. Universität Regensburg Naturwissenshaftlihe Fakultät IV- hemie und Pharmazie Bitte ausfüllen... Matrikel-Nummer Name Vorname... Semester Geburtstag Geburtsort

Mehr

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess)

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) Maschine: 4-Takt Dieselmotor Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) (1)-(2) adiabatische Kompression (4)-(1) isochore Abkühlung (Ausgangszustand) Hubraum V 1 = 500

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition

Mehr

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert? FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6 Physik I U Dortmund WS07/8 Gudrun Hiller Shaukat Khan Kaitel 6 Seziische Wärme von Gasen Bei einatomigen Gasen (z.b. He): Bei zweiatomigen Gasen (z.b. N, O ): N k A Freiheitsgrade ür die kinetische Energie

Mehr

Allgemeine Vorgehensweise

Allgemeine Vorgehensweise Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße?

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? Übung 1 Aufgabe 2.6: Zustandsgrößen, Systeme und Hauptsätze a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? b) G sei eine Zustandsgröße mit der Einheit [G] = J.

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

ADIABATENKOEFFIZIENT. Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES VERSUCH 1. Grundlagen. Literatur. Theorie und Methode

ADIABATENKOEFFIZIENT. Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES VERSUCH 1. Grundlagen. Literatur. Theorie und Methode VESUCH 1 ADIABATENKOEFFIZIENT Thema Messung der Adiabatenkoeffizienten nah CLEMENT-DESOMES Grundlagen ideales und reales Gasgesetz 1. Hauptsatz der Thermodynamik Zustandsgleihungen, Guggenheim-Shema isohore,

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - hermodynamische Maschinen - Prof. Dr. Ulrich Hahn WS 2008/09 Folge von Prozessen mit Z Ende = Z Anfang rechtsläufig pro Umlauf verrichtete Arbeit: W r = W + W

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um

Mehr

Thermodynamik/Wärmetechnik

Thermodynamik/Wärmetechnik Studiengang Wirtschaftsingenieurwesen Fach hermodynamik/wärmetechnik Art der Leistung Prüfungsleistung lausur-nz. WI-W-P 06065 Datum.06.006 Bezüglich der Anfertigung Ihrer Arbeit sind folgende Hinweise

Mehr

Informationen zur Vorlesung/Übung

Informationen zur Vorlesung/Übung Informationen zur Vorlesung/Übung echnische hermodynamik ermin: mittwochs 00 5 0 Uhr (V 7.0) donnerstags 8 00 9 5 Uhr (V 7.0) Aufteilung Übung/Vorlesung gl. erminübersicht unter htt://www.itw.uni-stuttgart.de

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Versuchsprotokolle + 1=

Versuchsprotokolle + 1= Physikalishes Grundraktikum ersuh 05 Adiabatenexonent ersuhsrotokolle Aufgaben 1. Messung des Adiabatenkoeffizientens on nah Clement- Desormes. Messung dessen nah dem erfahren on Rühardt 3. Bestimmen des

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Polytrope Zustandsänderung

Polytrope Zustandsänderung Sowohl isotherme als auch isentroe Zustandsänderungen werden in Maschinen nie streng erreicht. Reale Komressions- und Exansionsrozesse lassen sich aber oft recht gut durch allgemeine Hyerbeln darstellen,

Mehr

Vorlesungsskript. zum Selbststudium. der Vorlesung. Strömungsmaschinen. Prof. Dr.-Ing. J. A. Szymczyk. Dipl.-Ing. (FH) T. Panten

Vorlesungsskript. zum Selbststudium. der Vorlesung. Strömungsmaschinen. Prof. Dr.-Ing. J. A. Szymczyk. Dipl.-Ing. (FH) T. Panten Vorlesungsskrit zur Strömungsmashinen, Prof. Dr.-Ing. Janusz A. Szymzyk Vorlesungsskrit zum Selbststudium der Vorlesung Strömungsmashinen Prof. Dr.-Ing. J. A. Szymzyk Dil.-Ing. (FH). Panten Fahgebiet für

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES

Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES VESUCH 1 ADIABATENKOEFFIZIENT Thema Messung der Adiabatenkoeffizienten nah CLEMENT-DESOMES Grundlagen ideale und reale Gase (Gasgesetze, Van-der-Waals Gleihung, Koolu- men, Van-der-Waals Shleifen, Maxwell-Konstruktion,

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Gasotto-, diesel- und stirlingmotorische BHKW

Gasotto-, diesel- und stirlingmotorische BHKW GASOTTO-, DIESEL- UND STIRLINGMOTORISCHE BHKW DIPL.-ING KATJA SOHN Aufbau und Einteilung von BHKW BHKW sind in der Regel Module unterschiedlicher Leistung, die anschlussfertig montiert geliefert werden

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Kompressor in CHEMCAD

Kompressor in CHEMCAD Komressor in CHEMCAD Berechnungsmethoden Die im Menü des Komressors zu wählenden Berechnungsmethoden sollen hier näher besrochen werden: Die Auswahl besteht aus. Adiabatic,. Polytroic und 3. Polytroic

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

5.5 Zustandsänderungen idealer Gase

5.5 Zustandsänderungen idealer Gase 5.5 Zustandsänderungen idealer Gase iele Gase verhalten sich bei technischen Anwendungen in guter Näherung wie ideale Gase (siehe Ka. 5..3). Bei einem technischen Prozess ändert sich nun der Zustand des

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 18. März 2011 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Zur Thermodynamik des idealen Gases (GK Physik 1)

Zur Thermodynamik des idealen Gases (GK Physik 1) Zur hermodynamik des idealen Gases (GK Physik 1 Zusammenfassung im Hinblick auf Prozesse. Reinhard Honegger, im Januar 2012. 1 Grundbegriffe 1.1 Zustandsgleichung = Ideale Gasgleichung Druck, olumen, emeratur

Mehr

Mitschrift Thermodynamik

Mitschrift Thermodynamik Mitschrift hermodynamik Herleitung für den Gasdruck Berechnung des oberen Kreisradius d cosϕ dϕ dψ d N eilchen im Gesamtvolumen dn d N Aufschlagswahrscheinlichkeit eines eilchens Fläche df df sinϕ Gesamte

Mehr

2.1. Aufgaben zum 1. Hauptsatz

2.1. Aufgaben zum 1. Hauptsatz .. Augaben zum. Hautsatz Augabe : Oene, geschlossene und abgeschlossene Systeme Skizziere den Aubau der olgenden Anlagen und gib sinnvolle eilsysteme an. Sind diese eilsysteme oen, geschlossen oder abgeschlossen?

Mehr

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung Institut für Fahrzeugsystemtechnik Lehrstuhl für Fahrzeugtechnik Leiter: Prof. Dr. rer. nat. Frank Gauterin Rintheimer Querallee 2 76131 Karlsruhe Übung zur orlesung Grundlagen der Fahrzeugtechnik I Übung

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O

Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O Wie stark sich das Distickstoffmonooxid auf die Leistung eines Motors auswirkt sieht man sehr gut anhand einer exemplarischen

Mehr

Kfz Katalysatoren / Lambdasonde. Von Kordula Hurka & Boris Fritz

Kfz Katalysatoren / Lambdasonde. Von Kordula Hurka & Boris Fritz Kfz Katalysatoren / Lambdasonde Von Kordula Hurka & Boris Fritz Gliederung Historisches Abgase - Zusammensetzung Benzin - Verbrennungsprodukte - Schadstoffe Katalyse - Aufbau - Reaktion im KAT - Arten

Mehr

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm.

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm. Institut für hermodynamik hermodynamik II - Lösung 8 Aufgabe 13: In einem nach dem Clausius-Rankine-Prozess arbeitenden Damfkraftwerk wird flüssiges Wasser in der Kesselseiseume von 1 =,2 bar und t 1 =

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 26: Stirling-Motor UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 26 Stirling-Motor Der

Mehr

Heissluftmotor ******

Heissluftmotor ****** luftmotor 8.3.302 luftmotor ****** 1 Motivation Ein luft- bzw. Stirlingmotor erzeugt mechanische Arbeit. Dies funktioniert sowohl mit einer Beheizung als auch mit einem Kältebad. Durch Umkehrung der Laufrichtung

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0.

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0. 3 Lösungen Lösung zu 65. (a) Siehe Abbildung 1. (b) Schritt I: freie adiabatische Expansion, also ist δw 0, δq 0 und damit. Folglich ist nach 1. Hauptsatz auch U 0. Schritt II: isobare Kompression, also

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Zusatzinformationen zu Wärmelehre/Energieumsetzung

Zusatzinformationen zu Wärmelehre/Energieumsetzung Zusatzinformationen zu Wärmelehre/Energieumsetzung Katalysator Dieses Kapitel überschreitet die Fächergrenze zur Chemie. Da heute vielfach fächerübergreifende Themen für die Unterrichtspraxis empfohlen

Mehr

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen Prof. Dr. Norbert Ham 1/10 5. Zustandsfunktionen Idealer und Realer Gase ZustandsÄnderungen Die rennung zwischen unserem System und der ÅUmweltÇ wird durch eine Wand realisiert. WÄnde kånnen unterschiedliche

Mehr

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7 Verhalten reiner, realer Stoffe Kaitel 7 Maxwellsche Beziehungen Verknüfen die energetischen Zustandsgrößen und die Entroie mit den thermischen Zustandsgrößen Zustandsgröße sezifische Innere Energie du

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Aufgabe 1: Der 1. Hautsatz der Thermodynamik a) Für ein geschlossenes System folgt aus der Energieerhaltung (Gleichung (94) im Skrit) du = dw + dq, (1.1) da ausser Arbeit und Wärme

Mehr

Der erste Hauptsatz der TD- Lernziele

Der erste Hauptsatz der TD- Lernziele Der erste Hautsatz der D- Lernziele o Einleitung o Zustandgrössen und funktionen o Wärme, Arbeit und Energie o Innere Energie o Der erste Hautsatz der hermodynamik o olumenarbeit o Wärmeübergänge o Die

Mehr

- 1 - Name:... Fachbereich Maschinenbau Prof. Dr.-Ing. W. Grundmann

- 1 - Name:... Fachbereich Maschinenbau Prof. Dr.-Ing. W. Grundmann - 1 - Name:... Fachbereich Maschinenbau Prof. Dr.-Ing. W. Grundmann Matr.-Nr.:... Prüfungsleistung im Fach Kolbenmaschinen 1 Allgemeine Hinweise: Die Prüfung besteht aus einem Fragen- und einem Aufgabenteil.

Mehr

Hybrid Baukasten. Architektur für die Mobilität der Zukunft. Dirk Breuer. Advisor Advanced Technology Toyota Deutschland GmbH

Hybrid Baukasten. Architektur für die Mobilität der Zukunft. Dirk Breuer. Advisor Advanced Technology Toyota Deutschland GmbH Hybrid Baukasten Architektur für die Mobilität der Zukunft Dirk Breuer Advisor Advanced Technology Toyota Deutschland GmbH Toyotas Weg zur Mobilität der Zukunft Drei Generationen Prius Über 16Jahre Vollhybrid-Technik

Mehr

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Physik A VL7 (..0) hermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Kreisprozesse Carnot scher Kreisprozess Reale Wärmemaschinen (tirling-motor, Dampfmaschine, Otto- und Dieselmotor) Entropie Der.

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

3.1 Innere Energie und erster Hauptsatz

3.1 Innere Energie und erster Hauptsatz Kaitel 3: hermodynamik Die historish entwikelte hermodynamik wird heute als hänomenologishe hermodynamik bezeihnet. Hierbei wird on bis 3 Hautsätzen ausgegangen, die sih aus der menshlihen Erfahrung ergeben

Mehr

i mittels Feststoff-Gasreaktionen

i mittels Feststoff-Gasreaktionen Energiespeicherung Thermochemische h h Energiespeicherung i mittels Feststoff-Gasreaktionen Antje Wörner und Henner Kerskes Frankfurt rt 01. Dezember ember 2011 Thermochemische Speicherung von Wärme Prinzip

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Aufgabe 1.3-1 Ein Heizgerät verbraucht 5 m³/h Leuchtgas (H u = 21018 kj/m³) und erwärmt 850 dm³/h Wasser um 30 C. Die Wärmekapazitä t des Wassers

Mehr

Lektion 1.2: Einteilung der Verbrennungskraftmaschinen (Teil 1)

Lektion 1.2: Einteilung der Verbrennungskraftmaschinen (Teil 1) Lektion 1.2: Einteilung der Verbrennungskraftmaschinen (Teil 1) Das Ziel der Lektion: Wichtige Informationen über die innenmotorischen Vorgänge und konstruktive Ausführungen der Verbrennungskraftmaschinen

Mehr

8.3 Hauptsätze der Thermodynamik Der erste Hauptsatz (Energieerhaltung)

8.3 Hauptsätze der Thermodynamik Der erste Hauptsatz (Energieerhaltung) Experimentalphysik I ortmund S0/ Shaukat Khan @ - ortmund. de Kapitel 8 8. Hauptsätze der hermodynamik 8.. er erste Hauptsatz (Energieerhaltung) Zunahme an innerer Energie = zugeführte ärmemenge + zugeführte

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

Verbrennungskraftmaschine

Verbrennungskraftmaschine Wirtz Luc 10TG2 Verbrennungskraftmaschine Eine Verbrennungskraftmaschine ist im Prinzip jede Art von Maschine, die mechanische Energie in einer Verbrennungskammer gewinnt. Die Kammer ist ein fester Bestandteil

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 7 ladimir Dyakonov #3 am..7 Folien unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html.3 Ideales Gas Exerimentelle Bestimmung der

Mehr

1. Beispiel: Untersuchung des Einflusses des Zuleitungswiderstandes

1. Beispiel: Untersuchung des Einflusses des Zuleitungswiderstandes Beisiele - Hydraulik Vershaltungen. Beisiel: Untersuhung des Einflusses des Zuleitungswiderstandes auf die Volumenstromshwankungen arallel geshalteter Verbrauher Beweis der Behautung: Je höher der Zuleitungswiderstand

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Ferienkurs Experimentalphysik 2 - Mittwoch-Übungsblatt. 1 Aufgabe: Adiabatengleichung fürs Ideale Gas

Ferienkurs Experimentalphysik 2 - Mittwoch-Übungsblatt. 1 Aufgabe: Adiabatengleichung fürs Ideale Gas Aufgabe: Gasrozess Ferienkurs Exerimentalhysik - Mittwoch-Übungsblatt 1 Aufgabe: Adiabatengleichung fürs Ideale Gas Aus dem 1. HS und den Wärmekaazitäten c und c olgt zusammen mit dem Adiabatenkoeffizienten

Mehr

k B T de + p k B T dv µ k B T dn oder de = T ds pdv + µdn (1) Enthalpie I = E + pv zu betrachten und es gilt di = T ds + V dp + µdn (3)

k B T de + p k B T dv µ k B T dn oder de = T ds pdv + µdn (1) Enthalpie I = E + pv zu betrachten und es gilt di = T ds + V dp + µdn (3) III. hermodynamik 14. Wärme und Arbeit 14.1 Wiederholung Ziffer 4: Reversible Zustandsänderungen (a) Zustandsgrößen im thermodynamischen Gleichgewicht: Extensive Zustandsgrößen: E, V, N; ln Φ(E, V, N)

Mehr

23.2 Vergleichsprozesse für Turbinenkraftmaschinen

23.2 Vergleichsprozesse für Turbinenkraftmaschinen . Vergleichsrozesse für urbinenkraftmaschinen. Vergleichsrozesse für urbinenkraftmaschinen Kolbenmaschinen sind wegen hoher mechanischer Beansruchungen - hohe Drücke, Schwingungsrobleme- bauartbedingt

Mehr