Zeitreihenanalyse. Kapitel Einführung der Zeitreihen

Größe: px
Ab Seite anzeigen:

Download "Zeitreihenanalyse. Kapitel Einführung der Zeitreihen"

Transkript

1 Kapitel 5 Zeitreiheaalyse 5.1 Eiführug der Zeitreihe Uter eier Zeitreihe versteht ma die Etwicklug eier bestimmte Größe, dere Werte im Zeitablauf zu bestimmte Zeitpukte oder für bestimmte Zeititervalle erfasst ud dargestellt werde. Beispiel (für Zeitreihe vo zeitpuktbezogee Merkmale): a) Weg-Zeit-Fuktio beim freie Fall: s(t) = g 2 t2 sei die i der Zeit t zurückgelegte Fallstrecke. Misst ma t i Sekude ud s(t) i Meter, so gilt a der Erdoberfläche für die Erdbeschleuigug g 9.81m sec 2. b) Devisekurse für US $ (Kassa Geld) Tag $ für 1 Euro Für eie Aalyse dieser Zeitreihe, wie sie da i diesem Kapitel behadelt wird, wäre eie kompakte Darstellug wie i Teil a) zweckmäßig, also y(t). Dabei wäre t i Tage zu messe, ud zwar a Beste so, dass y(i) der Kurswert am i-te agegebee Tag ist, also: i y(i) Die Fuktio y(t) ist aber offesichtlich ohe weitere Iformatioe ur für die agegebee Werte vo t, ämlich 1, 2, 3, 4, 5 defiiert. Allerdigs wäre z.b. y(2.5) sivoll, we och geaue Uhrzeite agegebe wäre ud der 12 Stude später als y(2) abgefragte Kurswert bekat wäre. Die Zeitskala ließe sich also prizipiell beliebig verfeier. Bsp (für eie Zeitreihe eies zeititervallbezogee Merkmals): Jahr i := Nummer des Zeititervalls Umsatz y i (i Mio. Euro) Jahr i y i Eie Fuktio y(t) ist bei Bsp ur für t = 1,2,..., sivoll zu iterpretiere. Nicht sivoll ist z.b. y(1.5). Um sich aber z.b. eie bessere Überblick über de Verlauf der Zeitreihe zu 26

2 verschaffe, ist es zweckmäßig, die Zeitreihe i eier Kurve darzustelle (Siehe die utestehede Fig. 5-1). Dabei ist zu beachte, dass y(t) ur für bestimmte Werte vo t sivoll zu iterpretiere ist. y (Umsatz i Mio. Euro) Fig t 5.2 Kompoete eier Zeitreihe Bei lage Zeitreihe (etwa über mehrere Jahrzehte) ist eie Aufteilug i folgede 4 Kompoete sivoll: a) Tred T(t): Grudrichtug, lagfristige Etwicklug. b) Zyklische Kompoete Z(t): mitttelfristige Etwicklug, z.b. Eiflüsse vo Kojukturschwakuge. c) Saisokompoete S(t): kurzfristige Etwicklug ierhalb der eizele Jahre durch saisobedigte Schwakuge. d) Restkompoete R(t): eimalige oder seltee Eiflüsse ud Zufallsschwakuge. 27

3 Bei kurze Zeitreihe ist eie Treug zwische Tred ud zyklischer Kompoete icht mehr sivoll. Es bleibt eie Aufteilug i 3 Kompoete: a) Tred T(t): Grudrichtug, b) S(t) vergl. o., c) R(t) vergl. o. I diesem Kapitel werde ur solche Zeitreihe behadelt. Additive Verküpfug der Kompoete: (5.2.1) y(t) = T(t) + S(t) + R(t) Multiplikative Verküpfug der Kompoete: (5.2.2) y(t) = T(t) S(t) R(t) Reduktio auf additiver Verküpfug durch Logarithmere (z.b. mit Basis e ) (5.2.3) l y(t) = l T(t) + l S(t) + l R(t) 5.3 Schätzug des Treds Die Methode der gleitede Durchschitte Gleiteder Durchschitt über eie ugerade Azahl vo Werte (5.3.1) T(i) D 2m+1 (i) := y i m+y i m y i +y i y i+m 2m+1 Rekursiosformel: (5.3.2) D 2m+1 (i) = D 2m+1 (i 1) + y i+m y i m 1 2m+1 Eie Mittelbildug über eie gerade Azahl vo Werte würde eie Tredschätzug a eiem icht sivolle Wert vo t liefer. Wäre (wie etwa bei Moatswerte) doch eie Art Mittelbildug über eie gerade Azahl wüscheswert, so ka ma folgede Modifikatio des gleitede Durchschitts verwede: (5.3.3) T(i) D 2m (i) := 0.5y i m+y i m y i+m y i+m 2m Rekursiosformel: (5.3.4) D 2m (i) = D 2m (i 1) + (y i+m+y i+m 1 ) (y i m +y i m 1 ) 4m Nachteil des gleitede Durchschitts: keie Tredschätzug für die erste ud letzte Werte vo i Die Methode der expoetielle Glättug Rekursive Berechug vo T (i) als Schätzug für T(i) ach der Methode der expoetielle Glättug: (5.3.5) T (1) = y(1), T (i) = α y(i) + (1 α) T (i 1) (i 2) Die Glättugskostate α ist dabei eie vorher festzusetzede Zahl mit 0 α 1. Ma erhält eie starke Glättug, we α ahe bei 0 ist, ud eie schwache Glättug, we α ahe bei 1 ist. 28

4 Die Bezeichug expoetielle Glättug kommt daher, dass ma aus (5.3.5) folgede Formel herleite ka: (5.3.5 a) T (i) = α i 2 j=0 (1 α) j y (i j) + (1 α) i 1 y(1) (i 2) Für die praktische Berechug ist aber (5.3.5) vorzuziehe Drei Fuktiosasätze für die Tredschätzug Liearer Asatz: T(t) a + bt Parabolischer Asatz: T(t) a + bt + ct 2 Expoetieller Asatz: T(t) ab t (a,b 0) Reduktio des expoetielle auf de lieare Asatz: (5.3.6) l T(t) l a + t l b =: a + t b Die Freihadmethode Apassug eier Tredgerade (also liearer Asatz) ach Augemaß a die graphische Darstellug der Zeitreihe Die Methode der kleiste Quadrate Vorbemerkug zur Schreibweise: Um bei de i diesem Abschitt eigeführte arithmetische Mittel de Zusammehag mit der Zeitvariable zum Ausdruck zu brige, verwede wir für die Bezeichug der Zeitpukte oder Zeititervalle die Bezeichug t i statt eiach i, auch we meist (aber icht immer) t i = i ist. a) Liearer Asatz: Bestimme a ud b so, dass (5.3.7) 1 d 2 i mit d i := (a + b t i ) y i ei Miimum wird. Diese Forderug ist erfüllt, we a ud b die folgede Normalegleichuge erfülle: (5.3.8) a + t b = y Dabei bedeute z.b.: t := 1 t i, t 2 := 1 t a + t 2 b = yt t 2 i (> t 2 i.allg.), y t := 1 y i t i (= ty y t i.allg.) Zur Herleitug ud zum Verstädis der Normalegleichuge ist es ützlich, (5.3.7) ausführlich zu schreibe: 29

5 1 d 2 i = 1 (a + bt i y i ) 2 = 1 (a 2 + b 2 t 2 i + y2 i + 2abt i 2ay i 2bt i y i ) = a 2 + b 2 t 2 + y 2 + 2abt 2ay 2bty Bezeiche wir diese Ausdruck mit g(a, b), so müsse ach de u.a. i der Mathematik II Vorlesug bereitgestellte Verfahre folgede otwedige Bediguge erfüllt sei, damit g(a,b) miimal wird. g(a,b) a = 2a + 2bt 2y! = 0, g(a,b) b = 2bt 2 + 2at 2ty! = 0 Das führt auf das System (5.3.8) der Normalegleichuge, das seierseits immer eideutig lösbar ist außer i dem Soderfall ( ) t 2 = t 2 alle ti sid gleich = 1 (wege t 1 < t 2 <... ) Die Lösug des Systems (5.3.8) der Normalegleichuge lautet: (5.3.9) b = t y t y t 2 t 2, a = y bt. Dass die Werte für a ud b aus (5.3.9) wie gefordert die Fuktio g(a,b) tatsächlich miimiere, muss och gezeigt werde. Dabei geügt es i.allg. icht, die Hesse Matrix zu utersuche, da dies eie Aussage über relative Extrema liefert. Da aber g(a,b) durch lieare Substitutioe i eie quadratische Form umgewadelt werde ka, geügt die Utersuchug der Hesse Matrix doch: H(a,b) := ( 2 g(a,b) a 2 2 g(a,b) a b ) 2 g(a,b) a b 2 g(a,b) = b 2 ( 2 2t 2t 2t 2 Da für 2 die Determiate dieser Hesse Matrix = 2 2t 2 (2t) 2 = 4(t 2 t 2 ) > 0 ist ud 2 g(a,b) a = 2 > 0 ist, besitzt g(a,b) für die Werte aus (5.3.9) ach Satz 11.6 b) der 2 Mathematik II Vorlesug ei relatives Miimum. Das ist aber gleichzeitig ei absolutes Miimum, da g(a, b) durch lieare Substitutioe i eie quadratische Form umgewadelt werde ka. ) Die bei der Mittelbildug otwedige Divisioe durch ka ma bei der Berechug vo b vermeide, idem ma de Bruch i (5.3.9) mit 2 erweitert ud erhält so die Alterativformel: (5.3.9a) b = ( t y) ( t) ( y) ( t 2) ( t) 2, a = y bt. b) Parabolischer Asatz: Bestimme a,b,c so, dass 30

6 (5.3.10) 1 d 2 i mit d i := (a + bt i + ct 2 i ) y i ei Miimum wird. Diese Forderug ist erfüllt, we a, b ud c die folgede Normalegleichuge erfülle: (5.3.11) Dabei bedeute z.b.: t k := 1 t k i,,y t k := 1 t k i y i. a + t b + t 2 c = y t a + t 2 b + t 3 c = yt t 2 a + t 3 b + t 4 c = yt 2 Die bei der Mittelbildug otwedige Divisioe durch ka ma vermeide, idem ma alle Gleichuge mit durchmultipliziert: (5.3.11a) ) a + ( t) b + ( t 2 c = ( y) ) ) ( t ( 2 t 3 ( t) a + b + ) ) ( t 2 a + ( t 3 b + ( t 4 ) c = c = ( yt) ) ( yt 2 Dieses System der Normalegleichuge ist eideutig lösbar bis auf die für die Praxis belaglose Soderfälle = 1 ud = 2. c) Expoetieller Asatz: Statt aalog zu a) ud b) mit d i = ab t i y i zu arbeite, ist es zweckmäßiger, auf de lieare Asatz (vergl. (5.3.6)) zu reduziere. Ma erhält so: (5.3.12) b = t ly t ly, a = l y b t t 2 t 2 a = e a, b = e b Dabei bedeute z.b.: l y := 1 l y i,,t l y := 1 t i l y i. a,b sid also die Koeffiziete bei dem lieare Asatz für die Tredschätzug bei der Zeitsreihe l y i statt y i. Häufig ist es zweckmäßig, bei dieser Tredschätzug zu bleibe ud auf die Umrechug i a ud b zu verzichte: (5.3.13) l T(t) T ly (t) = a + b t (Tredschätzug für l y i ). Statt l ka ma z.b. auch log 10 verwede. Ma erhält da die Umrechugsformel a = 10 a, b = 10 b. Die bei der Mittelbildug otwedige Divisioe durch ka ma bei der Berechug vo b vermeide, idem ma de Bruch i (5.3.12) mit 2 erweitert ud erhält so die Alterativformel: 31

7 (5.3.12a) b = ( t ly) ( t) ( ly) ( t 2) ( t) 2, a = l y b t. a = e a, b = e b Allg. Bem. zu 5.3: I der Praxis sollte bei de Tredschätzugsverfahre etwa 30 sei. 5.4 Saisobereiigug Ei Verfahre bei additiver Verküpfug Es seie Zeitreihewerte y i i moatliche Date vorgegebe. Bei adere Aufteilug des Jahres sid die Eizelschritte etspreched zu modifiziere. 1. Schritt: Tredschätzug durch gleit. Durchschitte: (5.4.1) T(i) D 12 (i) ( t i durch i ersetzt) 2. Schritt: Tredbereigug: Bestimmug vo (5.4.2) d i := y i D 12 (i) als Schätzug für y i T(i) = S(i) + R(i). Aahme 1: Der Wert der Saisokompoete S(i) ist ur vo dem Moat ud icht vo dem Jahr abhägig. I alle Jahre soll die Saisobewegug gleich sei. Damit bestimme 12 Werte vo S(i), die de Moate zugeordet sid, die gaze Saisokompoete: (S I,S II,...,S XII ) Dieser Satz vo 12 Zahle heißt Saisoormale. Die Verbidug zur Saisokompoete ist da i folgeder Weise gegebe: (5.4.3) S I, S(i)( S i ) = S II,. falls der Moat mit der Nummer i ei Jauar ist. falls der Moat mit der Nummer i ei Februar ist.. Die Schätzug der Saisoormale ist das Ziel der ächste Schritte. 3. Schritt: Bildug der arthm. Mittel aller Werte d i, die zu jeweils eie Moat gehöre. Wir bezeiche diese arithmetische Mittel mit: d I, d II,..., d XII. d II ist z.b. das arithmetische Mittel aller Werte d i, die zum Februar gehöre. Aahme 2: Der Jahresdurchschitt aller saisobedigter Abweichuge verschwidet, d.h. (5.4.4) 1 12 (S I + S II + + S XII ) = 0 32

8 4. Schritt: Bestimmug vo (5.4.5) d := d I+d II + +d XII 12 als Korrektur zu de Werte d I,d II,...,d XII. Damit ist eie Schätzug für die Saisoormale wie folgt zu bestimme: (5.4.6) (S I,S II,...,S XII ) mit S I := d I d,...,s XII := d XII d. 5. Schritt: Bestimmug vo (5.4.7) B i := y i S i mit (vergl. (5.4.3)) SI, S (i)( Si ) = SII,. als Schätzug für y i S(i) = T(i) + R(i) falls der Moat mit der Nummer i ei Jauar ist, falls der Moat mit der Nummer i ei Februar ist, Die Werte B i bilde also eie Schätzug für die saisobereiigte Zeitreihe. 6. Schritt: Bestimmug vo (5.4.8) R i := B i D 12 (i) als Schätzug für die Restkompoete: R(i) = y i S(i) T(i). Bem.: d i ud R i köe icht für alle i der Zeitreihe berechet werde, da die gleitede Durchschitte dabei werwedet werde. Beispiele zur Saisobereiigug fide Sie i de i diesem Verzeichis abgelegte Files kap5erg1.pdf ud kap5erg2.pdf Ei Verfahre bei multiplikativer Verküpfug Durch Logarithmiere (vergl. (5.2.3)) lässt sich die Utersuchug auf de Fall der additive Verküpfug reduziere. Es ist also das Verfahre aus auf die Zeitreihe l y i azuwede. Es ist da zweckmäßig, die logarithmische Darstellug beizubehalte ud erst bei der Auswertug eizeler Zahleergebisse die Logarithmierug wieder rückgägig zu mache. 33

Kurvenanpassung durch Regression (3) Ac nichtlineare Regression/Linearisierung -

Kurvenanpassung durch Regression (3) Ac nichtlineare Regression/Linearisierung - Kurveapassug durch Regressio (3) Ac 207 - ichtlieare Regressio/Liearisierug - Für Probleme, die eie icht lieare ( ud icht polyomiale) Apassugsfuktio ahelege, ist eie direkte Berechug ach der Methode der

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Semiar für Theoretische Wirtschaftslehre Vorlesugsprogramm 11.06.2013 Zweidimesioale Datesätze (Fortsetzug) 3. Regressiosaalyse:

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Kapitel 9: Geometrische Summe und ein Mischmodell

Kapitel 9: Geometrische Summe und ein Mischmodell Kapitel 9: Geometrische Summe ud ei Mischmodell Dr. Dakwart Vogel Ui Esse WS 2009/10 1 Die Summeformel der geometrische Reihe + 1 2 1 q 1 + q+ q +... + q =, 0, q> 0, 1 1 q Bemerkuge 1. Mit Hilfe des -Zeiches

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache "Rechen"-Regeln: " ": Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt:

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache Rechen-Regeln:  : Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Additiosregel Zuächst ei paar eifache "Reche"-Regel: Lemma, Teil 1: Für beliebige Fuktioe f g gilt: Zu beweise: ur das rechte "=" Zu beweise: jede der beide Mege ist jeweils i der adere

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 7..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr.

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr. Vektorgeometrie gaz eifach Teil 6 Abstäde Berechug vo Abstäde zu Gerade ud Ebee Eifache Darstellug der Grudlage: Die wichtigste Aufgabestelluge ud Methode- Datei Nr. 640 Stad 28. Dezember 205 Demo-Text

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis Zahletheoretische Idetitäte ud die Eisesteireihe vom Gewicht 2 Vortrag zum Semiar zur Fuktioetheorie II, 3.2.203 Lukas Schürhoff Ihaltsverzeichis Wiederholug ud Vorbereitug 2 2 Zahletheoretische Idetitäte

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte Modul 0 Regressiosgerade ud Korrelatio Has Walser: Modul 0, Regressiosgerade ud Korrelatio ii Ihalt Die Regressiosgerade.... Problemstellug.... Berechug der

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

Lösungen zum Thema Folgen und Reihen

Lösungen zum Thema Folgen und Reihen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Lösuge zum Thema Folge ud Reihe Lösug zu Aufgabe 1. a) (a ) N ist eie arithmetische Folge mit d = 11 ud damit ist a 75 = 7 + (75 1)

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

3.3 Grenzwert und Stetigkeit

3.3 Grenzwert und Stetigkeit 50 KAPITEL 3. FUNKTIONEN 3.3 Grezwert ud Stetigkeit Wichtige Eigeschafte eier Fuktio f a eier Stelle 0 sid mit ihrem Verhalte bei beliebiger Aäherug a 0 verbude. Eier dieser Eigeschafte ist die Stetigkeit

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übuge zur Lieare Algebra 1 Lösuge Witersemester 009/010 Uiversität Heidelberg Mathematisches Istitut Lösuge Blatt 8 Dr D Vogel Michael Maier Aufgabe 33 Gehe wir aalog zu Algorithmus vor: v 1 M(4,K) A :=

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar d) Die Beweismethode der vollstädige Iduktio Der Übergag vo allgemeie zu spezielle Aussage heisst Deduktio Beispiele: a) Allgemeie Aussage: Spezialisierug: Schluss: Alle Mesche sid sterblich Sokrates ist

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h.

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h. Kotigeztabelle / Kreuztabelle für 2 diskrete /omialskalierte Variable ethält: 1. absolute gemeisame Häufigkeite h 11 h 12 h 21 für Kombiatioe vo zwei Merkmale / Variable a b steht also für mit jeweils

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

Klausur 3 Kurs 11ma3g Mathematik

Klausur 3 Kurs 11ma3g Mathematik 202-06-2 Klausur 3 Kurs ma3g Mathematik Lösug I eier Lotto-Ure befide sich 49 Kugel, die mit de Zahle vo bis 49 beschriftet sid. Eie eizige Kugel wird gezoge. Bereche Sie die Wahrscheilichkeit, dass diese

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Iduktio ud Rekursio Teil II WS 2009/200 Prof. Dr. Margarita Espoda Prof. Dr. Margarita Espoda Iduktio über Bäue Defiitio: a) Ei eizeler Blatt-Kote ist ei Bau o b) Falls t, t 2,,t Bäue sid, da ist

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr