NACHRICHTENTECHNIK - REFERAT Hüseyin ÖZCELIK 5HNB 95/ Akustik

Größe: px
Ab Seite anzeigen:

Download "NACHRICHTENTECHNIK - REFERAT Hüseyin ÖZCELIK 5HNB 95/ Akustik"

Transkript

1 NACHRICHTENTECHNIK - REFERAT Hüseyin ÖZCELIK 95/ Akustik

2 NT-Refeat AKUSTIK Seite 1 Höhee technische Bundeslehanstalt Wien 10 D. Jonke

3 NT-Refeat AKUSTIK Seite Inhaltsvezeichnis 1 Wellengleichungen 1.1 Heleitung de Wellengleichung in zei Diensionen Schingungen eine Meban 1.1. Zeidiensionale Wellengleichung 4 1. Heleitung de Wellengleichung in dei Diensionen 4 (Wellengleichung in de Akustik) Wellenaten 7.1 Ebene Wellen 7. Kugelellen 7 3 Akustische Stokeis Esatzschaltung 8 3. Nah- und Fenfeld 9 4 Schallintensität (Schallstäke) 10 5 Liteatuvezeichnis 11

4 NT-Refeat AKUSTIK Seite 3 1 Wellengleichungen Akustik 1.1 Heleitung de Wellengleichung in zei Diensionen Schingungen eine Meban (x,y,t)... Rückstellkaft de Meban in z-richtung qq (x,y,t)... auf de Meban lastende Duck in z-richtung T... Vospannung (Kaft po Längeneinheit) µ... Massendichte (Masse po Flächeneinheit) c... Ausbeitungsgeschindigkeit In de Gleichgeichtslage uht die Meban in de x-y-ebene, sie steht unte eine gleichäßigen Vospannung T. Die Rückstellkaft (x,y,t) ist dabei nu duch die Vospannung T gegeben. Bei eine Meban ist die Biegefestigkeit venachlässigba klein 1. Fü die Meban it den Seitenlängen x und y gilt dann: Käftezelegung: (1) µ x y T y T x + qxyt ( ) x y t x x y y x x x y y y +,, Systee, bei denen die Biegefestigkeit nicht venachlässigba klein sind, bezeichnet an als Platte.

5 NT-Refeat AKUSTIK Seite 4 duch Division duch x y ehält an: () µ 1 1 T + T t x x x y y y + + x x x y y y qxyt + (,, ) de Genzübegang x 0, y 0 egibt: µ t x +,, y (3) T + qxyt ( ) (4) + (,, ) x y µ T t Ekläung des Rechenschittes: geg.: f ( x, y) x li x 0 1 T qxyt ( 1, ) (, ) x ( + xy, ) xy (, ) x x li x ( x+ x) x x y x y x li x 0 x Einfühung von c: T c µ 1 0 x x + x x x Diensionsbetachtung: N kg kg s kg s s! (5) + (,, ) x Nabla-Opeato: + x y Nabla : + x y y 1 1 c t T qxyt

6 NT-Refeat AKUSTIK Seite (6) xyt (,, ) (,, ) c t T qxyt 1.1. Zeidiensionale Wellengleichung Die Gleichung (6) it q (x,y,t)0 id als zeidiensionale Wellengleichung bezeichnet, sie ist die allgeeine Fo de eindiensionalen Wellengleichung. 1 xyt (,, ) c t 1. Heleitung de Wellengleichung in dei Diensionen (Wellengleichung in de Akustik) pp (x,y,z,t)... Duck de Flüssigkeit ρρ (x,y,z,t)... Dichte de Flüssigkeit v... Geschindigkeit eines ateiellen Punktes de Flüssigkeit (auch Schnelle) v &... Beschleunigung eines ateiellen Punktes de Flüssigkeit ΨΨ (x,y,z,t)... Geschindigkeitspotential (auch Schnellenpotential) Zu Heleitung de Wellengleichung in dei Diensionen id eine Flüssigkeit betachtet, die duch ihen Duck pp (x,y,z,t) und ihe Dichte ρρ (x,y,z,t) chaakteisiet sind. Es id in idealisiete Fo angenoen, daß die Flüssigkeit keine Schubspannungen zuläßt und dait Ipuls- und Massenehaltung in de geschlossenen Syste gelten. Ipulsehaltung: (1) ρ v & gad p De Richtungsableitung de Maxialändeung (bz. -Steigung) des Ducks p ist die negative Beschleunigung de Dichte. it &v dv dt Die vektoielle Beschleunigung ist die zeitliche Ändeung de Geschindigkeit eines ateiellen Punktes in de Flüssigkeit. p gad p x e p y e p + + z e x y z

7 NT-Refeat AKUSTIK Seite 6 (,,, ) 0+ (,,, ) ( xyzt,,, ) 0+ ( xyzt,,, ) pxyzt p pxyzt ρ ρ ρ Die konstanten Gößen p 0 und ρ 0 entspechen de Ruheduck bz. de Ruhedichte, die zeitabhängigen Gößen p(x,y,z,t) und ρ(x,y,z,t) entspechen de i Noalfall deutlich kleineen Duckändeung bz. Dichteändeung. dv () ρ 0 gad p dt De Ausduck ρ(x,y,z,t) ist gegenübe ρ 0 venachlässigba klein, bei Diffeenzieen von p (Gadientenbildung) fällt das konstante p 0 eg, so daß an die lineaisiete Fo de Gleichung (1) ehält. Massenehaltung: d ρ dt (3) div ( ρv) Die Divegenz de it de Geschindigkeit v behafteten Dichte egibt eine Dichteändeung, elche definiet ist it: div e x e y e x + y + z z v exvx + eyv y + ezvz ρv v x ρ y ρv div ( ρv){ e xe x + ee y y + x { y { ee z z z div ( ρv ) ρv ρv ρv + + x y z x y z Die lineaisiete Fo de Gleichung (3) ehält an in Analogie zu (): z (4) d ρ ρ 0 div v dt Zusaenhang zischen p und ρ: dp dp d ρ dt d ρ dt

8 NT-Refeat AKUSTIK Seite 7 Einfühung von c: c dp d ρ ρ0 Diensionsbetachtung: Eingesetzt in (4): N kg kg s kg s! (5) 1 p ρ 0div v c t v gadψ Es id das Geschindigkeitspotential (bz. -Schnellenpotential) Ψ eingefüht, elches in (5) eingesetzt id: ψ (6) ρ 0 gad gad p t oaus (7) p ρ ψ 0 t folgt. as iedeu in (4) eingesetzt auf folgendes füht: (8) 1 ρ ψ 0 ρ c t 0 div gad ψ Nabla Opeato: + + x y z ψ c ψ t

9 NT-Refeat AKUSTIK Seite 8 Wellenaten.1 Ebene Wellen Die allgeeine Lösung fü die obige Wellengleichung lautet: ( ) ( ) ψ F x ct + F x + ct 1 obei F 1 und F Funktionen de Zeit sind (F 1 F 1 (t), F F (t)). Physikalisch gesehen bedeutet diese Funktion folgendes: De este Ausduck F1 ( x ct) stellt eine Wellenbeegung in positive x-richtung da. De Wet dieses Ausducks ist fü xx 0 und t0 gleich F1( x0 ), zu eine späteen Zeit tt 1 id xx 0 +ct 1, so daß de Funktionset F1( x0 + ct1 ct1) F1( x0) iede de selbe ist. D.h. die Stöung it de Wet x 0 ist in de Zeit t 1 it de Ausbeitungsgeschindigkeit c nach x 0 +ct 1 geandet. F (x+ct) stellt eine in negative x-richtung fotscheitende Welle da, die Übelegung dafü sind analog zu esten Suanden. De Velauf de Funktionen F 1 (t) und F (t) hängt von de Fo de Duckstöung ab. Fü den Fall, daß die Duckstöung duch eine sinusföig schingende Meban eegt id (vgl. Bild), bekot die Lösung die Fo [ ( c ) ] x ψ k cos ω t + ϕ an. Die Sinuselle it de Aplitude k läuft in de positiven x-richtung it de Geschindigkeit c. Die Welle ist eine Longitudinalelle, die Teilchenveschiebung efolgt in Fotpflanzungsichtung.. Kugelellen Ist sie Stöungsstelle i Mediu klein gegenübe de Wellenlänge 3, so handelt es sich u eine punktföige Schallquelle, bei de sich die Duckstöungen kugelsyetisch ausbeiten. Kontä dazu sind Tansvesalellen, bei denen die Teilchenveschiebung noal zu Fotpflanzungsichtung efolgt. Ein Beispiel dafü sind Wasseellen. 3 Die Wellenlänge ist als küzeste Entfenung zischen zei Stellen, an denen gleiche Schingungszustand hescht (z.b.: Aplitudenaxia), definiet. λ c / f

10 NT-Refeat AKUSTIK Seite 9 Wellengleichung fü Kugelellen: ( ψ) ( ψ) c t Die patikuläe Lösung hat die Fo: ( ) 1 ψ f± ct & ( ) ( ) v gad ψ ψ 1 1 e f ct f ct e c p ρ ψ ρ 0 0 f ct t ( ) Die kugelföige Ausbeitung, dastellba duch kugelföige Flächen konstanten Ducks (Isobae), veusacht eine Aplitude, die it de Entfenung u den Fakto 1 / abnit. Allgeein kann an sagen, daß die eisten Schallquellen als Kugelstahle anzusehen sind. 3 Akustische Stokeis De Schallechselduck p und die Schallschnelle v entspingen als Gößen de kugelföigen Wellenausbeitung ein und deselben Quelle. In Analogie zu Oh schen Gesetz kann an nun de Schallduck die Bedeutung eine Wechselspannung, de Schnelle diejenige eines Wechselstoes zuodnen. Als ditte Göße ist ein koplexe Stahlungsidestand einzufühen, an den die Schallquelle ihe Sahlungsenegie in de Fo von Wik- und Blindleistung abgibt. 3.1 Esatzschaltung Fü eine Kugelelle u eine Schallquelle de Duckaplitude p 0 gilt:

11 NT-Refeat AKUSTIK Seite 10 Die Gleichungen bescheiben eine sich in adiale Richtung ausbeitende Kugelelle, bei de de Duck it 1 / und die Schnelle it 1 / zu Entfenung abnehen. 3. Nah- und Fenfeld Die Schnelle v eilt i Nahbeeich de Schallechselduck p u den Phaseninkel ϕactan 1 / k nach. In unittelbae Nähe de Schallquelle, d.h. >>λ (Entfenung zu Schalquelle viel kleine als Wellenlänge), ist de Realteil gegenübe de Iaginäteil venachlässigba. Außehalb des Nahbeeiches, o sich Schallechselduck und -Schnelle nahezu ohne gegenseitige Phasenveschiebung ausbeiten (ϕ 0), d.h. <<λ, läßt sich de Iaginäteil gegenübe de Realteil venachlässigen. Es entsteht nu ein Wikanteil, die Eegung pflanzt sich als ebene Welle fot, fü elche dann iede die Gleichungen in.1 gelten. 4 Schallintensität (Schallstäke) Die bei fotlaufenden Schallellen in 1 Sekunde duch eine zu Schallichtung senkechte Fläche von 1 duchtetende Enegieenge nennt an Schallintensität, auch Schallstäke. Die Schallintensität I ist eine vektoielle Göße (i Gegensatz zu Schallduck, de lediglich einen Skala dastellt). [ I ] W I pxyzt vxyzt (,,, ) (,,, ) De Mittelet des it de Geschindigkeit v beegten Schallducks p egibt den Schallduck I. Bei sinusföigen Signalveläufen kann die koplexe Scheibeise eingefüht eden, fü den Fenbeeich gilt dann: * 1 * [ ] Re[ ] [ ] [ ] p p0 e p Re p0 e v v e v Re v e j( ωt+ ϕ1) j( ωt+ ϕ1) j( ωt+ ϕ) j( ωt+ ϕ) 0 0 I Re p v p v Fü eine bestite Richtung : I p v

12 NT-Refeat AKUSTIK Seite 11 1 I p v p v ρ c I p ρ c I p ρc 5 Liteatuvezeichnis Svoboda/Tieb, Physik, Band1 Oldenboug Velag Wien F. Tendelenbug, Einfühung in die Akustik, 3. Auflage, Spinge Velag P. Hagedon, Technische Schingungslehe, Band, Spinge Velag G. Schidt, Akustik, C.Heyanns Velag Belin D. Fanz, Elektoakustik, Fanzis Velag, München

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Fragenausarbeitung TPHY TKSB, WS 2001/2002

Fragenausarbeitung TPHY TKSB, WS 2001/2002 Fagenausabeitung TPHY TKSB, WS 2/22. Blatt, Kapitel Kapazität! siehe auch Fagen 4-43 bzw. 45 Matthias Tischlinge Einzelausabeitungen: 4) Geben Sie die Definition und Einheit de Kapazität an. Wid die an

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion 19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde

Mehr

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Laufende Nr.: Matrikel-Nr.: Seite: Es sind keine Hilfsmittel (auch keine Taschenrechner) zugelassen!

Laufende Nr.: Matrikel-Nr.: Seite: Es sind keine Hilfsmittel (auch keine Taschenrechner) zugelassen! Laufende N.: Matikel-N.: Seite: Ruh-UnivesitÄt Bochum Lehstuhl fü Hochfequenztechnik Σ 60 Püfungsklausu im Fach: am 04.0.996 Elektomagnetische Wellen Bitte die folgenden Hinweise beachten:. Die Daue de

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV ZÜ 3. Aufgabe 3. Ein Wagen Masse M) kann eibungsfei auf eine waagechten Bahn fahen. An eine Achse uch seinen Schwepunkt S que zu Fahtichtung hängt eibungsfei gelaget ein Massenpenel Masse, Länge l, Stab

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

TEIL 1 Untersuchung des Grundbereichs 2)

TEIL 1 Untersuchung des Grundbereichs 2) Matin ock, Düppenweilestaße 6, 66763 Dillingen / Saa lementa-physikalische Stuktu Wassestoff-Molek Molekülionlion ( + ) ) kläung ung des Velaufs de Gesamtenegie (( Ges fü den Σ g Zustand des -Molekülsls

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

HTL Kapfenberg Gravitation Seite 1 von 7. Gravitation

HTL Kapfenberg Gravitation Seite 1 von 7. Gravitation HTL Kapfenbeg Gavitation Seite 1 von 7 Pichle oland oland.pichle@htl-kapfenbeg.ac.at Gavitation Matheatische / Fachliche Inhalte in Stichwoten: Gavitationskaft, Gavitationsfeldstäke, Gavitationspotenzial,

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

Literaturempfehlung. Literaturempfehlung

Literaturempfehlung. Literaturempfehlung Liteatuempfehlung Paul A. Tiple, Gene Mosca: Physik fü Wissenschaftle und Ingenieue 6. Auflage (2009), Spektum Akad. Velag David Halliday, Robet Resnick, Jeal Walke: Physik Bachelo-Edition 2. Auflage (2009),

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Zwei konkurrierende Analogien in der Elektrodynamik

Zwei konkurrierende Analogien in der Elektrodynamik Zwei konkuieende Analogien in de Elektodynamik Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Analogien: Elektodynamik 1 Physikalische Gößen de Elektodynamik elektische Ladung Q

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008 Abitu - Leistungskus Physik Sachsen-Anhalt 008 Thema G Efoschung des Weltalls Die Entdeckungen von Johannes Keple und Isaac Newton sowie die Estellung de Gundgleichung des Raketenantiebs duch Konstantin

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.  MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kene und Teilchen Modene Expeimentalphysik III Volesung 16 MICHAEL FEINDT INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kenkaft KIT Univesität des Landes Baden-Wüttembeg und nationales Foschungszentum in de Helmholtz-Gemeinschaft

Mehr

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx XVIII. as mathematische un as physikalische Penel Eine lineae iffeentialgleichung. Onung hat ie allgemeine Fom: y() y() () P() Q() y() = (). ie allgemeine Lösung iese inhomogenen Gleichung lautet y() =

Mehr

dt transportiert. x Beim Entzug dieser Wärmemenge wird die Masse d m = neu gebildet. A dm = ρ dv =ρ A dx : T x bzw.

dt transportiert. x Beim Entzug dieser Wärmemenge wird die Masse d m = neu gebildet. A dm = ρ dv =ρ A dx : T x bzw. Feiwiige Aufgaben zu Voesung WS 00/00, Batt 4 40) Auf einem keinen Teich befindet sich eine 1 cm dicke Eisschicht. Die Luft daübe hat die Tempeatu - 10 C. Wie ange dauet es, bis die Eisschicht auf eine

Mehr

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines HOCHSCHLE FÜ TECHNK ND WTSCHFT DESDEN (FH) nivesity of pplied Sciences Fachbeeich Elektotechnik Paktikum Gundlagen de Elektotechnik Vesuch: Stellwidestände Vesuchsanleitung 0. llgemeines Eine sinnvolle

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

Maxwellsche Gleichungen. James Clerk Maxwell ( )

Maxwellsche Gleichungen. James Clerk Maxwell ( ) Mawellsche Gleichungen James Clek Mawell 1831-1879 bisheige Gundgleichungen... Ladungen ezeugen elekische Felde: div s gib keine Ladungen die magneische Felde ezeugen: Söme ezeugen magneische Wibel-Felde:

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

T5 Ausstrahlungsprobleme

T5 Ausstrahlungsprobleme T5 Ausstahlungspobleme T5. Potentiale und Wellengleichung Die Quelle elektomagnetische Stahlung, d.h. von Wellen, die sich im ganzen Raum ausbeiten, sind zeitlich veändeliche Ladungs- und Stomdichten.

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1.

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1. KAPITEL 8 Wichtige statistische Veteilungen In diesem Kapitel weden wi die wichtigsten statistischen Veteilungsfamilien einfühen Zu diesen zählen neben de Nomalveteilung die folgenden Veteilungsfamilien:

Mehr

Biophysik für Pharmazeuten I. 2016/17

Biophysik für Pharmazeuten I. 2016/17 .09.06. Biophysik fü Phaazeuten I. 06/7 Mechanik Bioechanik Volesung Mechanik László Selle http://biofiz.sote.hu undlegende Begiffe de Physik, wie Kaft, Enegie,... Mechanik Kineatik (Bewegungslehe) Tanslation

Mehr

6 Ideale Strömungen. 6.2 Potentialströmungen. 6.1 Inkompressibilität

6 Ideale Strömungen. 6.2 Potentialströmungen. 6.1 Inkompressibilität 6 Ideale Stöungen Als Ideale Stöungen bezeichnet an Stöungen von inkopessiblen, eibungslosen (Re ) Flüssigkeiten. 6. Inkopessibilität Wann daf an eine Stöung als inkopessibel bezeichnen? Wie goss sind

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1

Einführung in die Physik I. Mechanik deformierbarer Körper 1 Einfühung in die Physik I Mechanik defomiebae Köe O. von de Lühe und U. Landgaf Defomationen Defomationen, die das Volumen änden Dehnung Stauchung Defomationen, die das Volumen nicht änden Scheung Dillung

Mehr

Wasserstoff-Atom Lösung der radialen SGL

Wasserstoff-Atom Lösung der radialen SGL Wassestoff-Atom Lösung de adialen SGL Die adiale SGL des H-Atoms lautet: d R d + dr d + ηr + α R ( + 1) R = mit μee η= μ Ze α= e 4 πε Lösungsansatz: 1) Auffinden de Lösung fü (Asymptotische Lösung: R ())

Mehr

Es handelt sich um eine linear-limitationale Produktionsfunktion.

Es handelt sich um eine linear-limitationale Produktionsfunktion. ösung Aufgabenblatt Mikoökonomie II WS 00/06 Aufgabe Eine Untenehmung poduziet den Output mit de Poduktionsfunktion min( /, /). Bestimmen Sie den "Epansionspfad". Welche Menge id das Untenehmen poduzieen,

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2) Lk Physik in 1/ 1. Klausu aus de Physik 4. 03. 003 latt 1 (von ) 1. Elektonenablenkung duch Zylindespule Eine Zylindespule mit Radius 6, 0 cm, Länge l 30 cm, Windungszahl N 1000 und Widestand R 5, 0 Ω

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Experimentalphysik II

Experimentalphysik II Expeimentalphysik II (Kompendium) Heausgegeben von Jeffey Kelling Felix Lemke Stefan Majewsky Stand: 23 Oktobe 2008 1 Inhaltsvezeichnis Elektizität und Magnetismus 3 Elektisches Feld 3 Magnetisches Feld

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

Fläche und Umfang des Kreises

Fläche und Umfang des Kreises Fläche und Umfang des Keises Mai 015 Ano Fehinge, Gymnasiallehe fü Mathematik und Physik Appoximation de Keisfläche duch einbeschiebene und umbeschiebene eguläe Vielecke duch sukzessive Eckenvedopplung

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr