Mining Concept-Drifting Data Streams using Ensemble Classifiers

Größe: px
Ab Seite anzeigen:

Download "Mining Concept-Drifting Data Streams using Ensemble Classifiers"

Transkript

1 Vortrag m Semnar aus maschnellem Lernen Über das Paper: Mnng Concept-Drftng Data Streams usng Ensemble Classfers Haxun Wang, We Fan, Phlp S. Yu, Jawe Han Vortrag: Robert Deußer

2 Glederung Enführung Ensemble Classfer Idee Fehlerreduzerung durch Ensemble Ensatz Gewchtsanpassung Algorthmus (Instance Based) Ensemble Prunng Ergebnsse Dskusson (Exkurs: Inkrementelle Regellerner) 2

3 Enletung Datenströme, Item-Sets Inkrementelle Lernverfahren (VFDT, ) Blockwese Batch (k-means) Topc Drft Problem: Up-to-date vs. Outdated concepts Herausforderungen bem Lernen n Datenströme (mt Topc Drft): Accuracy Effcency Ease of Use 3

4 (Weghted) Classfer Ensembles Idee: Tranere unterschedlche Classfer und klassfzere Bespele va Abstmmung Her: Tele Datenstrom n Blöcke fester Länge (chunks) Tranere auf jedem Block enen Classfer Be Abstmmung hat jeder Classfer en Gewcht, das umgekehrt proportonal zu senem vermuteten Fehler st 4

5 Fehlerreduzerung durch Ensemble Se C der Classfer, der auf Block S tranert wurde, E k das Ensemble bestehend aus den letzten k tranerten Classfern und G k en Classfer der auf den letzten k Blöcken tranert wurde. Dann hat das (umgekehrt proportonal zum Klassfkatonsfehler gewchtete) Classfer Ensemble E k Fehler <= dem Fehler des Classfers G k Anmerkung: G j mt j < k kann trotzdem genauer sen als E k 5

6 Gewchtsanpassung Gesucht: Gewchte de umgekehrt proportonal zum Klassfkatonsfehler snd Kann Klassfkatonsfehler nur abschätzen Annahme: Aktueller Block S n kommt dem zu klassfzerenden Bespel am nächsten (Problem?) MSE als Maß für den Klassfkatonsfehler: MSE r : MSE für Classfer, der a-pror W-ket zur Klassfkaton nmmt MSE : MSE für Classfer C Das Gewcht von C st dann MSE MSE r w = p( c)(1 = = c 1 S n MSE r ( x, c) (1 S n MSE p( c)) f c 2 ( x)) 2 6

7 Gewchtsanpassung (2) Analog wenn Kosten berückschtgt werden sollen Beneftmatrx: Beneft wenn x, das zu Klasse c gehört als zu Klasse c gehörend klassfzert wrd: x b c c ( ) Dann st Beneft für Classfer C :, b = b Das Gewcht von C st dann: r w = ( x, c) b S n c b c, c ( x) fc ( x) 7

8 Algorthmus Komplextät: O ( p f ( n / p) + Kn) n: Anzahl Elemente m Datenstrom p: Anzahl Parttonen (n/p = Blockgröße) f(s): Aufwand enen Classfer auf s zu traneren (.d.r. super-lnear) 8

9 (Ensemble) Prunng Problem: Alle K Classfer werden zum Klassfzeren konsultert Zel: Ene Telmenge von C (den gelernten Classfern), de ähnlch gut we C st, fnden Ansätze: Fnden ener Telmenge C von C, de klenstmöglchen MSE hat Fnden ener Telmenge C von C de größtmöglchen Abstand (KL-dstance) hat Problem: Aufwand, Cost-senstve Applcatons(?), Topc Drft (be KL-dstance) 9

10 Instance based Prunng (IBP) Es werden n der Regel ncht alle K Classfer benötgt Es genügt ene ausrechend schere Vorhersage zu haben Be ausrechend scherer Vorhersage, werden kene weteren Classfer befragt Setzt ene gewsse Fehlertoleranz der Anwendung voraus Bespel: p ( fraud y) t( y) > cost p(fraud y) > cost / t( y) t(y) = 900$, cost = 90$ Sobald scher st das p(fraud y) > 0.1 wrd Untersuchung veranlasst 10

11 Instance based prunng (2) De gewchtete W-ket nach konsulteren von k Classfern st Mt enem Fehler Entelen des Werteberechs von F k (. ) ([0,1]) n z Körbe (bns), en Bespel x gehört zu bn (, k) wenn Für jeden bn berechnen von ) 1, [ ) ( z z x F k + = = = k k k w x p w x F 1 1 ) (fraud ) ( ) ( ) ( ) ( x F x F x K k k = ε Fehlers aller Bespele : Varanz des : durchschnttlcher Fehler aller Bespele 2,, k k σ µ 11

12 IBP - Klassfkaton Überprüfen ob Klassfkaton scher st ( st bn zu dem y gehört) Algorthmus: 12

13 IBP - Wertebestmmung Durchschnttlcher Fehler und Varanz können bem Traneren des Classfers ermttelt werden Aufwand blebt glech: O ( p f ( n / p) + Kn) 13

14 Ergebnsse Synthetscher DS Bespele glechvertelt n Ene Hyperebene telt den Bespelraum n zwe Tele glech großen Volumens (pos/neg) Um Topc Drft zu smuleren, werden de Dmensonsgewchte der Hyperebene kontnuerlch verändert Parameter: d [0,1] k: We vel Dmensonen ändern hr Gewcht = 20% N: We oft fndet ener Änderung statt, alle N = 1000 Bespele, 10% Chance das sch das Vorzechen der Änderung umdreht t: Größe der Änderung = 0.1 Nose: Be 5% aller Bespele werden de Labels getauscht 14

15 Ergebnsse Synthetscher DS 15

16 Ergebnsse Credt Card Data Aus Real lfe Daten erhalten 5 Mllonen Datensätze, aus dem Zetraum enes Jahres Zwe Datenströme Chronologsch sortert Nach Transaktonswert sortert Parameter: cost (für de Untersuchung ener Transakton): 90$ beneft: Gerettete Summe - Kosten aller Untersuchungen 16

17 Ergebnsse Credt Card Data 17

18 Zusammenfassung Ensemble Classfer haben gegenüber herkömmlchen Classfern de folgenden Vortele 1. Verbesserung der Klassfkatonsgenaugket 2. Modell wrd Effzenter gelernt 3. Lassen sch gut Skaleren / Parallelseren 4. Berückschtgung von Topc Drft Instance based Prunng kann be geegneter Problemstellung den Klassfkatonsaufwand erheblch reduzeren Dskusson & Fragen 18

19 (Exkurs) Inkrementelle Regellerner Dscoverng Decson Rules from Numercal Data Streams Incremental Rule Learnng based on Example Nearness from Numercal Data Streams F. Ferrer-Troyano, J. Agular-Ruz, J. Rquelme Adressert werden ähnlche Zele (effzentes Lernen n Datenströme mt Topc Drft), aber Fokus auf HghSpeed Datenströme Entwckelt für Lernen n Datenströmen Autorenteam hat zwschen 2001 und 2006 ver Papers zu dem Themenkomplex veröffentlcht Algorthmen werden m Detal beschreben, Begründungen für das Funktoneren, den Aufwand etc. werden ncht gegeben. Paper snd aufgrund schlechtem Englsch schwer verständlch 19

20 Zusammenfassung Regeln bestehen aus d Intervallen, ene Regel st dann de Konjunkton aller d Intervallwerte Regeln für verschedene Klassenlabel überlappen ncht Klassfkaton: Wenn Regel das Bespel überdeckt st es klassfzert, ansonsten Votngverfahren Tranng: Jede Klasse wrd durch a Regeln beschreben, wenn neues Bespel ncht abgedeckt wrd, wächst ene Regel um es enzuschlessen (das gerngste Wachstum wrd genommen) Bem ersten Algorthmus wrd das Wachstum von Regeln durch Growth-Bounds engeschränkt Bem zweten Algorthmus werden be Entschedungsgrenzen unsaubere Regeln (überdecken pos/neg Bespele) zugelassen und be Bedarf getrennt 20

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Numerische Methoden II

Numerische Methoden II umersche Methoden II Tm Hoffmann 23. Januar 27 umersche Bespele umersche Methoden zur Approxmaton von Dervatpresen: - Trnomsche Gttermethode - Implzte Fnte Dfferenzen - Explzte Fnte Dfferenzen - Crank-colson

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Algorthmen und Programmeren II Sorteralgorthmen mperatv Tel II Prof. Dr. Margarta Esponda Free Unverstät Berln Tele und Herrsche "Dvde und Conquer" Vele Probleme lassen sch ncht mt trvalen Schlefen lösen

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Der Parameter Migrationsmatrix Teil I

Der Parameter Migrationsmatrix Teil I Der Parameter Mgratonsmatrx el I Anne-Chrstne Barthel Semnar Portfolokredtrsko Unverstät Mannhem 22..27 Glederung. Bedeutung der Mgratonsmatrx 2. Schätzung der Mgratonsmatrx. Statstscher Hntergrund: Markov-Ketten.

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell Modellerung von Hydrosystemen Numersche und daten-baserte Methoden BHYWI-22-21 @ 2018 Fnte-Elemente-Methode Selke-Modell Olaf Koldtz *Helmholtz Centre for Envronmental Research UFZ 1 Technsche Unverstät

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Überblck Graphsche Modelle: Syntax und Semantk Graphsche Modelle m Maschnellen Lernen Inferenz n Graphschen

Mehr

Sequential minimal optimization: A fast Algorithm for Training Support Vector machines

Sequential minimal optimization: A fast Algorithm for Training Support Vector machines Sequental mnmal optmzaton: A fast Algorthm for Tranng Support Vector machnes By John C. Platt (998) Referat von Joerg Ntschke Fall der ncht-trennbaren Tranngs-Daten (/) In der Realtät kommen lnear ncht-trennbare

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Klausur zur Vorlesung Lineare Modelle SS 2006 Diplom, Klausur A

Klausur zur Vorlesung Lineare Modelle SS 2006 Diplom, Klausur A Lneare Modelle m SS 2006, Prof. Dr. W. Zucchn 1 Klausur zur Vorlesung Lneare Modelle SS 2006 Dplom, Klausur A Aufgabe 1 (18 Punkte) a) Welcher grundsätzlche Untersched besteht n der Interpretaton von festen

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014 4. ndexzahlen 5.1 Grundlagen 5.2 Presndzes 5.3 ndexzahlenumrechnungen 1 4.1 Grundlagen Als Messzahlen werden de Quotenten bezechnet, de aus den Beobachtungswerten bzw. den Maßzahlen zweer Telmengen derselben

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9 WS 2016/17 Prof. Dr. Horst Peters 06.12.2016, Sete 1 von 9 Lehrveranstaltung Statstk m Modul Quanttatve Methoden des Studengangs Internatonal Management (Korrelaton, Regresson) 1. Überprüfen Se durch Bestmmung

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Vorlesungsprüfung Politische Ökonomie

Vorlesungsprüfung Politische Ökonomie Vorlesungsprüfung Poltsche Ökonome 22.06.2007 Famlenname/Vorname: Geburtsdatum: Matrkelnummer: Studenrchtung: Lesen Se den Text aufmerksam durch, bevor Se sch an de Beantwortung der Fragen machen. Ihre

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Änderungen des Honorarverteilungsmaßstabes (HVM) zum 1. Oktober 2018

Änderungen des Honorarverteilungsmaßstabes (HVM) zum 1. Oktober 2018 A1612 Änderungen des Honorarvertelungsmaßstabes (HVM) zum 1. Oktober 2018 Der Honorarvertelungsmaßstab der KV Berln wrd mt Wrkung zum 1. Oktober 2018 durch Beschluss der Vertreterversammlung vom 21. Jun

Mehr

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104 Kaptel 4: Unscherhet n der Modellerung Modellerung von Unscherhet Machne Learnng n der Medzn 104 Regresson Modellerung des Datengenerators: Dchteschätzung der gesamten Vertelung, t pt p p Lkelhood: L n

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 2. Übung (05.02.2009) Agenda Agenda Datenbsp. scalefactors.dat Berechnen der Varanzen der Latent Response Varablen Berechnen der modellmplzerten

Mehr

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken!

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken! SEMINARPROGRAMME Abenteuer Führung Der Survval Gude für den ersten Führungsjob De erste Führungsaufgabe st ken Zuckerschlecken! Junge Hgh Potentals erkennen das schnell. Her taucht ene unangenehme Überraschung

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Mathematikaufgabe 100

Mathematikaufgabe 100 Home Startsete Impressum Kontakt Gästebuch Aufgabe: Sechs Flugzeuge mt unterschedlchen Geschwndgketen und Abständen flegen n ener Warteschlefe m Kres. Lösen Se de Aufgabenstellung, daß alle Flugzeuge mt

Mehr

Strategien zur Effizienzsteigerung Robustheitsbasierter Optimierungen

Strategien zur Effizienzsteigerung Robustheitsbasierter Optimierungen Prof. Dr.-Ing. habl. Deter Bestle Engneerng Mechancs and Vehcle Dynamcs Strategen zur Effzenzstegerung Robusthetsbaserter Otmerungen Motvaton Redukton des Suchraumes aufgrund von Otmerungsnebenbedngungen

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am U Graz, Insttut egelungs- und Automatserungstechnk Schrftlche Prüfung aus Systemtechnk am 4.. 5 Name / Vorname(n): Kenn-Matr.Nr.: Bonuspunkte: 4 errechbare Punkte 4 5 7 5 errechte Punkte U Graz, Insttut

Mehr

Multivariate Analysemethoden

Multivariate Analysemethoden Multvarate Analysemethoden q-q-plot Methode zur Prüfung der Multvaraten Normalvertelung Günter Menhardt Johannes Gutenberg Unverstät Manz Prüfung der NV-Annahme Vertelungsanpassung/Prüfung Prüfung der

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Elektron Loch Symmetrie und Grundzustand beim Fraktionellen Quanten Halleffekt (FQHE)

Elektron Loch Symmetrie und Grundzustand beim Fraktionellen Quanten Halleffekt (FQHE) Hauptsemnar Theoretsche Physk (Sommersemester 003) Elektron Loch Symmetre und Grundzustand bem Fraktonellen Quanten Halleffekt (FQHE) Srko Plz 04.06.003 Velen Dank an den Betreuer T. Sommer für sene Unterstützung

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesung. Enführung. Bldverarbetung 3. Morphologsche Operatonen 4. Bldsegmenterung 5. Merkmale von Objekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Bewegungsanalyse aus Bldfolgen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

Kalibrierverfahren / Anwendungsbeispiele aus der Voltammetrie

Kalibrierverfahren / Anwendungsbeispiele aus der Voltammetrie 1 Kalbrerverfahren / Anwendungsbespele aus der Voltammetre a) Externer tandard Messwert (z.b. Peakstrom / na) 14 12 1 8 6 4 Externe Kalbrerung Messwert Probe A 1.9 1.47567 B 6.264.1249 2 Probe R D N P.99945

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Konzept der Chartanalyse bei Chart-Trend.de

Konzept der Chartanalyse bei Chart-Trend.de Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Gitterbasierte Kryptosysteme (Ajtai-Dwork, Regev) Sebastian Pape

Gitterbasierte Kryptosysteme (Ajtai-Dwork, Regev) Sebastian Pape Gtterbaserte Kryptosysteme (Ajta-Dwork, Regev) Sebastan Pape Überblck Motvaton Gtter SVP, usvp, Gtterbassredukton Kryptosysteme Ajta-Dwork Regev (2003), Regev (2005) Zusammenfassung Gtterbaserte Kryptosysteme

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

1. Graphen 8. B={{d,e},{b,d},{a,b},{d,f},{b,c}}.

1. Graphen 8. B={{d,e},{b,d},{a,b},{d,f},{b,c}}. . Graphen 8 Bespel: f 5 5 d e 7 7 a 4 b 6 c Für den obenstehenden zusammenhängenden Graphen soll en Mnmalgerüst konstruert werden. Wr ordnen zunächst de Kanten des Graphen nach wachsender Bewertung, d.h.

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Übung zu Erwartungswert und Standardabweichung

Übung zu Erwartungswert und Standardabweichung Aufgabe Übung zu Erwartungswert und Standardabwechung In ener Lottere gewnnen 5 % der Lose 5, 0 % der Lose 0 und 5 % der Lose. En Los kostet 2,50. a)berechnen Se den Erwartungswert für den Gewnn! b)der

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten.

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten. Faktorwerte Da es das Zel der Faktorenanalyse st, de Zahl der Kennwerte zu reduzeren (aus velen Items sollen deutlch wenger Faktoren resulteren, st es nötg, Kennwerte für de Ausprägungen der Personen n

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr/Paul Prasse Domnk Lahmann Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte,

Mehr

Tutorium Makroökonomik I:

Tutorium Makroökonomik I: UNIVERITÄTKOLLEG Unverstätskolleg: #tdm+ Ttorm Makroökonomk I:. Lneare Fnktonen mehrerer Varablen Dr. Krstn aetz Tobas Fscher Kostenlose satzangebote nd Lehrmateralen für alle tderenden Ttorm Makroökonomk

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr