11. Stabilitätsprobleme

Größe: px
Ab Seite anzeigen:

Download "11. Stabilitätsprobleme"

Transkript

1 11. Stabilitätsprobleme 11.1 Einführung Bisher wurden statische Systeme im stabilen Gleichgewicht betrachte (siehe Abbildung , links). Bei der Berechnung von Lagerkräften und - momenten, Schnittgrößen sowie Spannungen wurde vom unverformten System ausgegangen, d.h. eine sogenannte Theorie 1. Ordnung betrieben. In der estigkeitslehre interessierte das Versagen des Systems bei Erreichen einer kritischen Grenzspannung. Abb : Stabiles, indifferentes und labiles Gleichgewicht. Im folgenden geht es uns, als Aufgabengebiet der Stabilitätstheorie, um indifferente und labile Gleichgewichte statischer Systeme (Abbildung , Mitte und rechts). Wie wir sehen werden, wird es bei der Berechnung der Gleichgewichtslagen des Systems nötig, die Verformung mit einfließen zu lassen. Man spricht in diesem Zusammenhang auch von einer Theorie zweiter Ordnung. Dabei stehen die Verformungen stets senkrecht zu der Belastung, und sie sind nicht länger proportional zur aufgeprägten Last. 11. Ein erstes Stabilitätsproblem Betrachte den in Abbildung links dargestellten Stab der Höhe h, gestützt durch eine senkrecht zur Achse wirkende eder in Abstand h 1 vom Boden, welcher an seiner Spitze durch eine längs seiner Achse wirkende Druckkraft belastet wird. Ziel soll es sein, diejenige kritische Drucklast k zu finden, bei der der Stab beginnt, auszubrechen. Dazu schneiden wir die eder frei, lenken den Stab ein wenig aus der Gleichgewichtslage aus (siehe Abbildung 11..1, rechts) und stellen die Momentenbilanz um den Punkt D auf: 5

2 M = 0 h + h D c 1 = 0. (11..1) h 1 ' h 1 A A ' =c A Ay Abb : Mit eder gehaltener Stab unter Drucklast. Mit dem edergesetz (der Inde steht für die Kraft der eder): = c (11..) folgt daraus: 6

3 ch 1 h = 0, (11..3) h 1 und da die Auslenkung nicht verschwinden soll, muß gelten: 1 = c h h k. (11..4) Dies ist die gesuchte kritische Last, bei der das System ausweicht. Man darf sagen, daß der Gleichgewichtszustand des Systems zusammenbricht, falls die Kraft über den genannten Wert steigt. Praktisch wird die Verformung durch eine kleine Ezentrizität, Unebenheit oder sonstige Störung des Systems eingeleitet. Beachte ferner, daß das Ausweichen senkrecht zur Last erfolgt Zur Phänomenologie von Stabilitätsproblemen Wie im letzten Beispiel angedeutet, treten Stabilitätsprobleme in der Prais auf, wenn das Bauteil / das Bauelement auf Druck oder Schub belastet wird. Beispiele sind: (a) Knicken: Siehe Abbildung (b) Beulen eines Blechs: Ein durch genügend hohe Druck- oder Schubspannungen belastetes Blech beult aus, siehe Abbildung (c) Kippen: Der Druckgurt eines unter genügend hoher Querlast stehenden Biegeträgers weicht senkrecht zur Kraftrichtung aus, siehe Abbildung ). (d) Biegedrillknicken: Ein unsymmetrisches Profil unter genügend hoher Druckbelastung verdreht sich und knickt aus, siehe Abbildung Abb : Knicken eines Stabes unter Druck. 7

4 Abb : Beulen eines Blechs unter Druck Die Eulersche Knickgleichung - Gelenkige Lagerung Betrachte den in Abbildung dargestellten Stab unter Aiallast. Diese greift in ührungsrichtung des oberen einwertigen Lagers an. Unten ist der Stab an einem zweiwertigen Gelenk befestigt. Gesucht ist die maimal zulässige Drucklast, bevor der Stab, wie rechts im Bild zu sehen, ausbricht. Wie schon im Beispiel 11., untersuchen wir das Gleichgewicht am ausgelenkten System, d.h. wir starten von der bekannten Differentialgleichung der Biegelinie mit zugehörigen Momentenfläche: () M w () =, M () = w(). (11.4.1) EI l E, I w() Abb : Eulerscher Knickstab gehalten von einem ein- und einem zweiwertigen Lager. Einsetzen liefert: 8

5 w () = α w, α = > 0, (11.4.) EI wobei durch das Quadrat angedeutet wird, daß es sich bei der Abkürzung α um eine positive Größe handelt. Es resultiert folgende Differentialgleichung zweiter Ordnung: () + α = 0 w w. (11.4.3) Die allgemeine Lösung dieser Gleichung lautet: w () = A ( α) + Bcos( α) sin, (11.4.4) und die Konstanten A bzw. B bestimmen wir aus den Randbedingungen, die für das in Abbildung dargestellte System zu fordern sind: ( = 0 ) = 0 B = 0 w, (11.4.5) und: ( = l) = 0 Asin( αl) = 0 w. (11.4.6) Es wäre töricht, aus der letzten Beziehung A = 0 schließen zu wollen, denn dann hätten wir nur die triviale (die Nullösung) gefunden, die sicherlich bis zum Erreichen der Grenzlast vorliegt, wie man auch ohne Rechnung weiß. Es gibt aber noch eine andere Möglichkeit, die Gleichung (11.4.6) zu erfüllen, nämlich, wenn man fordert: αl = nπ, (11.4.7) wobei n eine ganze (positive) Zahl ist. Dann folgt: α n π = = l EI, (11.4.8) d.h. die Kraft muß so gewählt werden, daß eine ganz bestimmte Knickbedingung eben die aus Gleichung (11.4.6), erfüllt ist: EIπ = = n,. (11.4.9) l k k n k Indem man in Gleichung (11.4.4) einsetzt, entsteht: 9

6 nπ w() = Asin. ( ) l Man beachte, daß über die Amplitude der Verschiebung nichts ausgesagt wird. Je nach Wert von n erhält man verschiedene Modi der Auslenkung. Solche sind für die Werte n = 1,, 3 in Abbildung dargestellt. Der erste dargestellte Versagensfall erfordert die geringste Kraftanstrengung und tritt daher i.a. auch zuerst ein. n = 1 n = n = 3 k k 4 k 4 k 9 k 9 k Abb : Auslenkungsmodi des Eulerschen Knickstabs. Kennt man die zum Knicken nötige Kraft, so läßt sich bei bekanntem Stabquerschnitt A daraus eine kritische Spannung errechnen: k EIπ σ k = =. ( ) A Al Mit Hilfe des schon aus Abschnitt bekannten Trägheitsradius i : I i = (11.4.1) A definiert man den sogenannten Schlankheitsgrad λ des Stabes zu: l λ =, ( ) i und die kritische Spannung läßt sich dann auch schreiben als: Eπ σk =. ( ) λ 30

7 Die Abhängigkeit der kritischen Spannung vom Schlankheitsgrad, die sogenannte Eulerhyperbel, ist in Abbildung zu sehen: σ k Grenze: ließspannung σ 1 ~ λ Abb : Eulerhyperbel. Man erkennt, daß für gedrungene Stäbe, also bei kleinen Werten von l, bzw. kleinem Schlankheitsgrad λ, die kritische Spannung deutlich ansteigt und eventuell oberhalb der ließgrenze liegt, womit die Stabilitätsfrage als Sicherheitsproblem hinfällig wird Die vier Eulerschen Knicktypen S k = l S k = 0.7l S k = 0.5l S k = l Abb : Die vier Eulerschen Knickfälle. 31

8 Neben der im vorigen Abschnitt besprochenen Lagerung wurden von Euler noch weitere Lagerungsarten von Stäben und die damit jeweils verbundene Stabilitätsfrage untersucht. Man spricht von den vier Eulerschen Knicktypen eines Stabes. Diese sind in Abbildung schematisch zu sehen. Des weiteren ist bei jedem all ein Parameter S k angegeben. Dieser bestimmt die notwendige kritische Last, welche je nach Lagerungsfall verschieden ist, gemäß: k EIπ =. (11.5.1) S k z y N M Q D M + dm w() w(+ ) Q + dq N + dn Abb : Biegung eines Knickstabstücks. Um diese Gleichung mit den bei gegebener Einspannung relevanten Parameterwerten S k herzuleiten, ist es ratsam, eine Gleichung für die Verschiebung herzuleiten, die zunächst unabhängig von der gewählten Einspannung (oder mathematisch ausgedrückt: Randbedingung) gilt. Dazu argumentiert man lokal für das in Abbildung dargestellte 3

9 Balkenstück wie folgt. Kräfte- und Momentengleichgewicht am gekrümmten, unter der Drucklast stehenden Balken liefern mit den Bezeichnungen der Abbildung folgende Zusammenhänge: ( N + dn ) cos( ) + ( Q + dq) sin( ) 0 = 0 : N + =, ( Q + dq) cos( ) + ( N + dn ) sin( ) 0 y = 0 : + Q =, (11.5.) ( ) M D = 0 : M Q ( Q + dq) + M + dm = 0. Vernachässigt man hierin Größen höherer Ordnung, die bei der Entwicklung der Winkelfunktionen, sowie beim Ausmultiplizieren der Klammerausdrücke entstehen, so resultieren folgende drei Zusammenhänge, die wir schon aus dem Abschnitt über Normalkrafts-, Querkrafts- und Momentenflächen her kennen: dn = Q, N dq dm =, = Q. (11.5.3) Wir kümmern uns zunächst um die beiden letzten Gleichungen. Aus der Abbildung ist ersichtlich, daß: dw = w ( + ) w ( ) = w =. (11.5.4) Außerdem ist: N =, (11.5.5) also folgt: d M = = + w. (11.5.6) ür die Krümmung weiß man nach Gleichung (10.6.7) außerdem, daß gilt: M w =. (11.5.7) EI Also folgt durch Kombination dieser Gleichungen: 33

10 EI, (11.5.8) ( w ) + w = 0 was man bei konstanter Steifigkeit EI auch wie folgt schreiben kann: IV w + λ w = 0, α =. (11.5.9) EI Dieses ist eine Differentialgleichung vierter Ordnung, eine sogenannte Eigenwertgleichung und, wie man durch Differentieren verfizieren kann, lautet ihre allgemeine Lösung: ( ) = A ( α) + Bsin( α) + Cα D w cos +. ( ) y = tan y = π π = π π Abb : Zur Lösung der transzendenten Gleichung im Eulerfall 3. Dabei bezeichnen A, B, C und D vier Integrationskonstanten, die man geeignet an Randbedingungen anpassen muß. Dieses sei für den all Nummer 3 aus Abbildung erläutert. Offenbar muß gelten: 34

11 ( = 0 ) = 0, y ( = 0) = 0, y( = l) = 0, M( = l) = 0 y. (11.5.9) Durch Kombination der resultierenden Gleichungen, bzw. Eliminierung von C und D, erhält man: ( cos [ α ] 1) A + ( sin[ αl] αl) B = 0 l, ( ) [ α ] A + sin[ αl] B 0 cos l =. Um nicht die Nullösung für A und B zu erhalten, muß die Determinante dieses Gleichungssystems verschwinden, also gelten: ( αl) = αl tan. ( ) Dies ist eine transzendente Gleichung, die man, wie in Abbildung angedeutet, graphisch lösen kann. Wie man sieht, gibt es analog zu dem im vorherigen Abschnitt diskutierten Lagerungsfall auch hier unendlich viele Lösungen, nämlich Schnittpunkte. ür den ersten gilt: αl (11.5.1) Wegen Gleichung (11.4.0) ergibt sich: k π EI, ( ) ( 0.7l) und dies war bereits in der Abbildung durch Angabe des aktors S k in Verbindung mit Gleichung (11.5.1) gesagt worden. 35

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

2. Stabilitätsprobleme und Theorie II. Ordnung 2.1 Einführung

2. Stabilitätsprobleme und Theorie II. Ordnung 2.1 Einführung LEHRSTUHL FÜR BAUSTATIK, UNIVERSITÄT SIEGEN 2. Stabilitätsprobleme und Theorie II. Ordnung 2.1 Einführung Arten der Gleichgewichtslagen Ein Tragwerk muss in stabiler Gleichge- wichtslage sein. Viele Tragwerke

Mehr

Das Omega- Verfahren nach DIN 4114

Das Omega- Verfahren nach DIN 4114 Das Omega- Verfahren nach DIN 4114 Dipl.- Ing. Björnstjerne Zindler, M.Sc. Letzte Revision: 9. Mai 20 Inhaltsverzeichnis 1 Das Omega- Verfahren im Allgemeinen 2 2 Das Omega- Verfahren im Besonderen 3 3

Mehr

5 Kontinuierliche Schwingungssysteme

5 Kontinuierliche Schwingungssysteme 31 Die bisher betrachteten diskreten Schwingungssysteme bestehen aus konentrierten massebehafteten Körpern, die an diskreten Stellen über Bindungen gekoppelt sind und damit über eine endliche Zahl f von

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben).

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben). Technische Universität Darmstadt Technische Mechanik I B 13, G Kontinuumsmechanik Wintersemester 007/008 Prof. Dr.-Ing. Ch. Tsakmakis 9. Lösungsblatt Dr. rer. nat. P. Grammenoudis 07. Januar 008 Dipl.-Ing.

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur. Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur.  Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen Kräfte Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

-BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg TEIL 7 BEMESSUNG IM STAHLBAU.

-BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg TEIL 7 BEMESSUNG IM STAHLBAU. STAHLBAU -BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg Nachweiskonzept Die Beanspruchung S d darf nicht größer sein als die Beanspruchbarkeit R d eines Bauteils

Mehr

Skript. Technische Mechanik. Festigkeitslehre

Skript. Technische Mechanik. Festigkeitslehre Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März

Mehr

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem Stabiitätsprobeme Arten der Geichgewichtsagen Stabiitätskriterium Verzweigungsprobem & Durchschagsprobem Theorie II. II. Ordnung und Knickgeichung Arten der Geichgewichtsagen Ein Tragwerk muss in stabier

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2 Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Beispiel 3: Ersatzstabverfahren

Beispiel 3: Ersatzstabverfahren Beispiel: Ersatzstabverfahren Blatt: Seite 1 von 9 Beispiel 3: Ersatzstabverfahren Bestimmung der maßgeblichen Knickfigur und zugehörigen Knicklänge in der Ebene. Nachweis gegen Biegeknicken nach dem Ersatzstabverfahren

Mehr

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken:

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken: UNIVERITÄT IEGEN B 10 Lehrstuhl für Baustatik - chiefe Biegung - chiefe Biegung Kommt es bei einem Balken nicht nur u Durchbiegungen w in -Richtung, sondern auch u Durchbiegungen v in -Richtung, so spricht

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe Stabilitätsfragen Theorie II. Ordnung Wintersemester 2012/2013 Stabilitätsfragen 1 / 36 Einleitung Begriffe (aus Wikipedia) Theorie I. Ordnung Die Berechnung der Kräfte an unverformten Tragwerken nennt

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

6.2 Lineare Differentialgleichungen erster Ordnung

6.2 Lineare Differentialgleichungen erster Ordnung 98 6.2 Lineare Differentialgleichungen erster Ordnung Eine Differentialgleichung erster Ordnung heisst linear, wenn sie auf die Form y = p(x)y +q(x) (I) gebracht werden kann. Die DGL y = p(x)y (H) heisst

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der Eigentlich löst man n Gleichungen mit n Unbekannten (die normalerweise eindeutig lösbar sind) am besten mit Hilfe der Determinantenmethode (die aber in den Schulen nicht mehr gelernt wird) bzw. am allerschnellsten

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 23. September 2016 Aufgabe 1 (12 Punkte) Ein Wanderer (Gewicht G ) benutzt in unebenem Gelände einen Wanderstab

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt.

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 6 4. Darstellung der Ebene 4. Die Parametergleichung der Ebene einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 0 2 r uuur

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

1.3. Aufgaben zur Statik

1.3. Aufgaben zur Statik 1.3. Aufgaben ur Statik Aufgabe 1: Kräfteerlegung Ein Schlitten kann auf einer Schiene horiontal bewegt werden. Im Winkel von = 40 ur Schiene ieht ein Seil mit der Kraft = 100 N an dem Schlitten. Bestimme

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

7.2 Dachverband Achse Pos A1

7.2 Dachverband Achse Pos A1 7.2 Dachverband Achse 1 + 2 Pos A1 Dieser neukonstruierte Dachverband ersetzt den vorhandenen alten Verband. Um die Geschosshöhe der Etage über der Zwischendecke einhalten zu können, wird er auf dem Untergurt

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION)

E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION) 160 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr