Einführung in die Schaltalgebra

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Schaltalgebra"

Transkript

1 Einführung in die chltlger GUNDBEGIFFE: ECHENEGELN CHALTFUNKTIONEN MIT ZWEI EINGANGVAIABLEN EQUENTIELLE CHALTALGEBA

2 CHALTALGEBA GUNDBEGIFFE: D im dulen Zhlentem nur die eiden Ziffern und vorkommen, können ie durch chlter drgetellt werden. olche chlter können mechnich, elektromgnetich oder elektronich etätigt werden. Elektromgnetiche chlter werden l eli ezeichnet und finden in der Telefonvermittlung Anwendung. Auch in den Anfängen der Computer-Entwicklung wurden eli verwendet, die jedoch ehr ld durch öhrenchltungen und päter Trnitoren gelöt wurden. Prinzipiell it die Funktionweie eine Trnitor-chlter die gleiche wie ei einem mechnich ewegten chlter. Liegt m Eingng keine pnnung (=), o perrt der Trnitor, und m Augng liegt keine pnnung (=). Liegt m Eingng pnnung (=), o leitet der Trnitor, und m Augng liegt pnnung (=). Durch Prllel- zw. erienchltung zweier olcher chlter len ich nun einfche Grunduteine für komplexere chltungen kontruieren. Prllelchltung zweier chlter Am Augng der Prllelchltung zweier chlter und liegt dnn pnnung (=), wenn zumindet einer der eiden chlter gechloen it (= oder =). Eine olche Prllelchltung wird dher l ODE-Gtter ezeichnet. D olche ODE-Gtter häufig l Grunduteine komplizierterer chltungen verwendet werden, wird dfür ein eigene mol verwendet:

3 2 Der Zummenhng zwichen den Eingnggrößen, und dem Augng eine ODE- Gtter knn uch tellrich ngegeen werden: Im oeren Teil dieer ogennnten WAHHEITTABELLE ind pltenweie ämtliche 4 Möglichkeiten von Eingngkomintionen für und eingetrgen. Drunter teht d jeweil dzugehörige Ergeni. Mthemtich geehen wird durch die Whrheittelle eine Funktion definiert, die in Ahängigkeit von ihren eiden Vrilen und die Werte und nnehmen knn. Mn pricht von einer ODE-Verknüpfung oder Dijunktion der Vrilen und und chreit molich: = ( gleich oder ) erienchltung zweier chlter Am Augng der erienchltung zweier chlter und liegt nur dnn pnnung (=), wenn eide chlter gechloen ind (= und =). Eine olche erienchltung wird dher l UND-Gtter ezeichnet. Für d UND-Gtter wird folgende mol verwendet: Die Whrheittelle für d UND-Gtter lutet: Algerich wird die UND-Verknüpfung oder Konjunktion in der Form = ( gleich und ) ngechrieen.

4 3 Häufig enötigt mn zuätzlich noch chlter, ei denen m Augng einfch die Umkehrung de Eingngwerte liegt. olche chlter können z.b. durch einen komplementären Trnitor (p-n-p-trnitor ttt n-p-n-trnitor) reliiert werden: Der p-n-p-trnitor perrt, wenn die Bi poitiv it. Liegt m Eingng keine pnnung (=), o leitet der Trnitor und m Augng liegt pnnung (=). Liegt m Eingng pnnung (=), o perrt der Trnitor und m Augng liegt keine pnnung (=). Diee chltung wird l Negtion ezeichnet. = ( gleich nicht ) Die Whrheittelle für die Negtion lutet: Die Negtion einer Größe wird uch l Komplement von ezeichnet. ODE-Gtter, UND-Gtter und Negtionelemenete ilden die Grunduteine der chltlger, u denen komplizierte chltungen ufgeut werden können. Beipiel: Hlddierwerk E oll eine chltung entworfen werden, die e getttet, zwei Dulziffern zu ddieren. Eine olche chltung wird l Hlddierwerk ezeichnet. Für die Addition im Dultem gelten folgende egeln: = Bei der Addition von entteht ein Üertrg uf die = nächte telle, der von der ummenziffer getrennt = der ummenziffer getrennt ngegeen werden oll. = Betrchtet mn die ummenziffer und den Üertrg ü getrennt, o ergeen ich folgende Whrheittellen: ü Die umme it dnn, wenn entweder = und = it oder wenn = und = it. Alegrich ugedrückt lutet d: Für den Üertrg ü gilt: ü = = ( ) ( )

5 o 4 Au der lgerichen Drtellung knn die chltung unmittelr kontruiert werden: o o ü Diee einfche Beipiel zeigt, dß zum Entwurf von chltungen eine lgeriche Drtellung der chltfunktionen nützlich it. Eine formle Behndlung der echenregeln mit UND- und ODE-Verknüpfungen und Negtionen it dher unumgänglich. D die Negtion m Eingng eine Gtter durch Verwendung eine p-n-p-trnitor ntelle eine n-p-n-trnitor reliiert werden knn, werden hier keine eigenen Negtionelemente verwendet. Die Negtion de Eingng wird durch den Punkt im chltmol moliiert.

6 5 2 ECHENEGELN = = = = = = = = Opertionen mit : = = Opertionen mit : = = Oper. mit ich elt: = = Oper. mit dem Komplement: = = Kommuttivgeetz: = = Aozitivgeetz: ()c = (c) ()c = (c) Ditriutivgeetz: ()c = (c)(c) ()c = (c)(c) Aorptiongeetz: () = () = Doppelte Negtion: () = Geetze von DE MOGAN: (c...) =c... (c...) =c...

7 o 6 Die echenregeln der chltlger ollen nun m Beipiel de Hlddierer zur Umformung einer chltfunktion ngewendet werden: = ()() = = [()][()] = = ()() ()() = = ()() = = ()() (DG) (DG) (KG), (De Morgn) D die Konjunktion gleichzeitig den Üertrg erechnet, knn eim Hlddierwerk - im Vergleich zur erten Verion - ein Gtter eingeprt werden: ü

8 7 3 CHALTFUNKTIONEN MIT ZWEI EINGANGVAIABLEN Ingemt git e 6 chltfunktionen mit zwei Eingngvrilen, die entprechend der --Verteilung in der zugehörigen Whrheittelle (Ergenizeile l Dulzhl interpretiert) durchnumeriert werden können. Kontnte Konjunktion ()() Antivlenz, exkluive oder Dijunktion (), NO ()() Äuivlenz Negtion, Impliktion Negtion, Impliktion (), NAND Kontnte Beonder interent ind die Funktionen 8 =() NO und 4 =() NAND o

9 8 Wie die Ergenizeilen der Whrheittellen erkennen len, ind die eiden Funktionen zueinnder dul (die Ergenizeilen können durch piegelung und Komplementildung ineinnder üergeführt werden). NO- und NAND-Gtter len ich durch je zwei p-n-p-trnitoren reliieren. = =() = =() NO- und NAND-Gtter hen die Eigenchft, dß ich ämtliche chltfunktionen durch uchließliche Verwendung einer dieer Gtterrten reliieren len. z.b.: Negtion: =() =() o Konjunktion: =(()) =() o o Dijunktion: =() =(()) o o NAND und NO ind dule chltelemente.

10 9 Beipiel: eliierung eine Hlddierwerke mit NO-Gttern =[()()] =[()()] ü = =() ü In dieer chltung wird ngenommen, dß die verneinten Eingänge eenfll zur Verfügung tehen.

11 4 EQUENTIELLE CHALTALGEBA Bei den iher echrieenen chltungen it der zeitliche Aluf unerückichtigt gelieen. E wurde ngenommen, dß die Ergenie n ämtlichen Gttern imultn uftreten und o lnge erhlten leien, l die zugehörigen Eingngwerte n die chltungen ngelegt ind. Mn enötigt jedoch uch Buelemente, die e gettten, Informtionen uch dnn zu peichern, wenn die entprechenden Eingngwerte nicht mehr ngelegt ind. Eine olche peicherwirkung knn durch zwei rückgekoppelte NO-Gtter erzielt werden: r Wird n den -Eingng (et-eingng) kurzzeitig eine Ein ngelegt, o wird der Augng =. Auf Grund der ückkopplung leit die Ein m Augng uch erhlten, wenn der -Eingng wieder Null wird. r= = = Ert wenn n den r-eingng (reet-eingng) eine Ein ngelegt wird, ercheint m Augng wieder Null. Diee Null leit o lnge erhlten, i n den -Eingng wieder Ein ngelegt wird. r= = = Auf diee Weie it die peicherung einer Ein oder Null möglich.

12 Eine olche chltung, die die eiden Zutände und nnehmen knn, wird l -Flip- Flop ezeichnet und durch ein eigene mol drgetellt: r Meit teht der verneinte Augng, der j m unteren NO-Gtter entteht, eenfll zur Verfügung. Der Augng de -Flip-Flop it nicht nur von den eiden Eingnggrößen r und, ondern uch vom momentnen Zutnd = oder = de Flip-Flop hängig. Um die zeitliche Zutndänderung echreien zu können, etrchten wir dikrete, kurz ufeinnderfolgende Zeitpunkte, die wir un durchnumeriert denken. Werden zum Zeitpunkt n n den Eingng die Werte r n und n gelegt und efindet ich d Flip-Flop im Zutnd n, o it dmit der neue Zutnd n zum kurz druffolgenden Zeitpunkt n etimmt. Der neue Zutnd n knn durch folgende Beziehung lgerich echrieen werden: n = n (r n n ) Diee Gleichung wird l chrkteritiche Gleichung de -Flip-Flop ezeichnet. ie gilt nur unter der Neenedingung, dß nicht eide Eingänge gleichzeitig ind, lo: r n n = Mit Hilfe zweier UND-Gtter knn der Fll, dß eide Eingänge gleichzeitig ind, vermieden werden: j k An den -Eingng wird nur dnn eine Ein ngelegt, wenn n = it - in dieem Fll ändert d Flip-Flop einen Zutnd. Eeno wird der r-eingng nur dnn Ein, wenn n = it- uch in dieem Fll ändert d Flip-Flop einen Zutnd.Eine olche erweiterte Flip-Flop-chltung wird l JK-Flip-Flop ezeichnet. j k J K Der j-eingng dient zum etzen, der k-eingng zum Löchen de Flip-Flop. Liegt m j-eingng eine Ein j n =, o wird eine Ein gepeichert ( n = ).

13 2 Liegt m k-eingng eine Ein k n =, o entteht m Augng Null ( n = ). Liegen n eiden Eingängen Nullen, o leit der gepeicherte Wert m Augng erhlten. ind eide Eingänge gleichzeitig Ein, o ändert d Flip-Flop einen Zutnd. Die chrkteritiche Gleichung für d JK-Flip-Flop lutet omit: n = (j n n )(k n n ) Die Eigenchft, dß d JK-Flip-Flop einen Zutnd ändert, wenn n eide Eingänge gleichzeitig eine Ein ngelegt wird, wird im ogennnten T-Flip-Flop ugenützt: t D T-Flip-Flop it eigentlich ein JK-Flip-Flop, deen eide Eingänge kurzgechloen ind. Mit jeder Ein m t-eingng ändert d T-Flip-Flop einen Zutnd (ähnlich wie ein Druckttenchlter). Die chrkteritiche Gleichung entpricht genu der de JK-Flip-Flop, wenn für j n und k n t n eingeetzt wird: n = (t n n )(t n n ) Um den zeitlichen Aluf der Zutndänerungen innerhl eine euentiellen Netzwerke echreien zu können, wird der Zutnd der chltung immer nur zu kurzen äuiditnten dikreten Zeitpunkten etrchtet. Während dieer kurzen Zeitpunkte ollen ich weder die Eingngignle noch die Zutände der Flip-Flop ändern. ämtliche Zutndänderungen erfolgen zwichen den etrchteten Zeitpunkten. Um diee Verhlten zu reliieren, werden ämtliche Flip-Flop mit einem gemeinmen Tktimpul geteuert: t t Zeit r Nur während eine Tktimpule gelngen die Eingngignle n d Flip-Flop. Wird der zeitliche Atnd zwichen den Tktimpulen mit t ezeichnet, o it die Tktfreuenz. f = t Ein Netzwerk, in dem ämtliche Flip-Flop tktgeteuert ind, heißt nchrone Netzwerk.

14 3 Tktgeteuerte Flip-Flop werden uch l T-Flip-Flop zw. JKT-Flip-Flop ezeichnet und durch ein eigene chltmol drgetellt: J K Ein tktgeteuerte -Flip-Flop, n deen r-eingng der derneinte -Eingng liegt, getttet e, d Eingngignl um den Atnd zweier Tktimpule zu verzögern: etzt mn in die chrkteritiche Gleichung n = n (r n n ) für n = n und r n = n, o erhält mn: n = n, d heißt, m Augng liegt der um d Tktintervll t verzögerte Eingng. chltet mn nun eine gnze Folge olcher Verzögerungelemente hintereinnder, o erhält mn eine Verzögerungkette oder ein ogennnte chieeregiter:... D jede einzelne Flip-Flop in der Lge it, eine Dulziffer zu peichern, knn in einem u p Flip-Flop etehenden chieeregiter eine p-tellige Dulzhl gepeichert werden. Die einzelnen Dulziffern werden der eihe nch n den Eingng ngelegt und mit jedem Tktimpul um eine telle nch recht verchoen. Eeno tehen die einzelnen Dulziffern m Augng de chieeregiter zur weiteren Verreitung zur Verfügung. chieeregiter werden unter nderem häufig enutzt, um die Opernden und d eultt rithmeticher Opertionen zu peichern. Beipiel: erienddierwerk E oll eine chltung entworfen werden, die e getttet, zwei in egitern gepeicherte Dulzhlen ziffernweie zu ddieren:

15 4 Mit jedem Tktimpul ollen die nächten eiden Ziffern n und n ddiert und die nächte Ziffer der umme geildet werden. Eine chltung zur Addition zweier Dulzhlen wurde ereit entworfen: Eine olche chltung wird l Hlddierwerk ezeichnet und oft durch ein eigene mol drgetellt. Die dei enttehende umme n gleicht der Antivlenz der eiden Eingänge n und n, der Üertrg it gleich der Konjunktion von n und n. Im erienddierwerk müen jedoch nicht nur die eiden Ziffern n und n ddiert werden, ondern zu dieer Zwichenumme mu noch der Üertrg von der vorhergehenden telle ü n ddiert werden: ü ü n n ü n n ü n D nie n eiden Hlddierwerken ein Üertrg gleichzeitig uftreten knn, genügt e, die enttehenden Üerträge durch ein ODE-Gtter zu verinden. Diee chltung, die die Addition von drei Dulziffern ( n, n und ü n ) ermöglicht, wird l Vollddierwerk ezeichnet. Durch ein Verzögerungelement knn der erechnete Üertrg i zum nächten Additiontkt gepeichert werden, wodurch ein funktionfähige erienddierwerk entteht: n n t n

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze Schltnetze Aufu von Schltnetzen nhnd wichtiger Beipiele Inhltericht Codierer, Decodierer und Codekonverter Additionchltnetze Hlddierer Vollddierer Mehrtellige Addierer Multiplexer und Demultiplexer Techniche

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Universität Hannover Institut für Energieversorgung und Hochspannungstechnik

Universität Hannover Institut für Energieversorgung und Hochspannungstechnik niverität Hnnover ntitut für Energieverorgung und Hohnnungtehnik orleung Elektrihe Energieverorgung Skrit rnformtoren (Korrigierte Auge 005) Bereiter: Prof. B.R.Old nhltverzeihni Burten und Eintz im Netz...

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

5.4 CMOS Schaltungen und VLSIDesign

5.4 CMOS Schaltungen und VLSIDesign Kp5.fm Seite 447 Dienstg, 7. Septemer 2 :55 3 5.4 CMOS Schltungen und VLSI Design 447 r u u r id + + A. 5.39: Progrmmierrer Gitterustein 5.4 CMOS Schltungen und VLSIDesign Die Boolesche Alger eginnt mit

Mehr

Einschub: Zahlendarstellung und Codes

Einschub: Zahlendarstellung und Codes Einschu: Zhlendrstellung und Codes (Unvollständige Drstellung) DST SS23 - Codes und KMAPs P. Fischer, TI, Uni Mnnheim, Seite Binärzhlen N-stellige Binärzhl:... Einzelne Stellen heißen Bits (inry digits)

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

Zustandsregler für lineare Single-Input-Single-Output-Systeme

Zustandsregler für lineare Single-Input-Single-Output-Systeme Schweizeriche Geellchft für Automtik Aocition Suie pour L Automtique Swi Societ for Automtic Control SGA/ASSPA/SSAC LernModul Nr. Oktober 995 Zutndregler für linere Single-Input-Single-Output-Steme Methodik

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Grundlgen der Elektrotechnik IV Auflge 998 Vorleung von Prof. Dr.-Ing. D. Peier nukript von. Hebbel A. Örtel Überrbeitet von Dipl.-Ing. Andre Altnn Dipl.-Ing. Dirk Borneburg Dipl.-Ing. Tho Ebke Dipl.-Ing

Mehr

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen.

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen. Mnuell edatenq Fremdenverkehrs- und Gstgeweresttistik Einleitung edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit ietet, ihre sttistischen Meldungen üer ds Internet uszufüllen und einzureichen.

Mehr

Gerd Wöstenkühler. Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen

Gerd Wöstenkühler. Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen Gerd Wöstenkühler Grundlgen der Digitltehnik Elementre Komponenten, Funktionen und Steuerungen Inhlt 1 Einleitung... 11 1.1 Anloge unddigitledrstellungsformen... 11 1.1.1 AnlogeGrößendrstellung... 11 1.1.2

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer.

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer. Wertteigerung Frei Hau. Der Kotenloe Glafaeranchlu für Haueigentümer. Darüber freuen ich nicht nur Ihre Mieter. 40 Millimeter, 1.000 Vorteile. Im Bereich der Kommunikation it Glafaer die Zukunft. 12.000

Mehr

Logische Grundschaltungen

Logische Grundschaltungen Elektrotechnisches Grundlgen-Lor II Logische Grundschltungen Versuch Nr. 9 Erforderliche Geräte Anzhl Bezeichnung, Dten GL-Nr. 1 Voltmeter 335 1 Steckrett SB 1 1 Steckrett SB 2 mit 5V Netzteil 1 Steckrett

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2014) Prof Dr Jens Teuner Leitung der Üungen: Mrcel Preuß, Sestin Breß, Mrtin Schwitll, Krolin

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

Gruppe 14 René Kreiner Mat.-Nr.: 50175 Thomas Weise Mat.-Nr.: 25603 bei Dr. B. Naumann Thomas Ziegs Mat.-Nr.: 47423 Montag, 18.11.2002, 13.

Gruppe 14 René Kreiner Mat.-Nr.: 50175 Thomas Weise Mat.-Nr.: 25603 bei Dr. B. Naumann Thomas Ziegs Mat.-Nr.: 47423 Montag, 18.11.2002, 13. Hrdwreprktikum Gruppe René Kreiner Mt.-Nr.: 575 Thoms Weise Mt.-Nr.: 56 ei Dr. B. Numnn Thoms Ziegs Mt.-Nr.: 7 Montg, 8..,.5, /77 Komintorik Seite von 8 Zusmmenfssende Voretrchtung. XOR Für die logische

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Elektrischer Widerstand und Strom-Spannungs-Kennlinien

Elektrischer Widerstand und Strom-Spannungs-Kennlinien Versuch 6 Elektrischer Widerstnd und Strom-Spnnungs-Kennlinien Versuchsziel: Durch biochemische ektionen ufgebute Potentildifferenzen (Spnnungen) bewirken elektrische Ströme im Orgnismus, die n einer Vielzhl

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle S2-Adsorptionsisothermen_UWW rstelldtum 28.3.214 7:41: Üungen in physiklischer Chemie für Studierende der Umweltwissenschften Versuch Nr.: S2 Version 214 Kurzezeichnung: Adsorptionsisotherme estimmung

Mehr

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen FB Tehnologie un Mngement Komintionsshltungen (hltnetze) Eingngsvektor X Komintorishes ystem (hltnetz) y y Ausgngsvektor f(x) n y m Dtenverreitung (Kpitel 5 Tehnishe Informtik) Drstellung er ignle X hltnetz

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Übungsblatt Nr. 13 Themenübersicht

Übungsblatt Nr. 13 Themenübersicht Technische Universität Dortmund Lehrstuhl Informtik VI Prof. Dr. Jens Teuner Pflichtmodul Informtionssysteme (SS 2015) Prof. Dr. Jens Teuner Leitung der Üungen: Imn Kmehkhosh, Thoms Lindemnn, Mrcel Preuß

Mehr

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten Die Brückenlppentechnik zum sicheren Verschluss von Nsenseptumdefekten T. Stnge, H.-J. Schultz-Coulon Einleitung Die Rekonstruktion eines defekten Nsenseptums zählt zu den schwierigsten rhinochirurgischen

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

Funktionsrealisierende physikalische Phänomene 5: INFORMATIONSVERARBEITUNG

Funktionsrealisierende physikalische Phänomene 5: INFORMATIONSVERARBEITUNG Fkultät Elektrotechnik und Informtiontechnik Lehrtuhl Automtiierungtechnik Prof. Klu Jnchek MS6 Funktionreliierende phyikliche Phänomene 5: INFORMAIONSVERARBEIUNG 6. Betimmende Phänomene Informtionverrbeitung

Mehr

Public-Key-Verfahren: Diffie-Hellmann und ElGamal

Public-Key-Verfahren: Diffie-Hellmann und ElGamal Westfälische Wilhelms-Universität Münster Ausreitung Pulic-Key-Verfhren: Diffie-Hellmnn und ElGml im Rhmen des Seminrs Multimedi und Grphen WS 2007/2008 Veselin Conev Themensteller: Prof. Dr. Herert Kuchen

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1 Qudrt und Rechteck Prllelogrmm 3 Dreieck 4 Trpez 5 Drchen und Rute 6 Exkurs: Höhen zeichnen 7 heckliste Kopiervorlge: Formeln herleiten 8 Hinweise zur Benutzung 6 10 13 17 0 3 4 Die vorliegenden

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Inhaltsverzeichnis. Modul Produktion + Steuerungstechnik Grundlagen. Zusammenfassung Wintersemester 05/06

Inhaltsverzeichnis. Modul Produktion + Steuerungstechnik Grundlagen. Zusammenfassung Wintersemester 05/06 Inhltsverzeichnis Modul Produktion + Steuerungstechnik Grundlgen Zusmmenfssung Wintersemester 05/06 Inhltsverzeichnis... 2 1. Einleitung... 3 1.1 Einordnung... 3 1.2.1 Steuern... 3 1.2.2 Regeln... 3 1.2.3

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Dental-CT bei Kindern Technische Vorgehensweise und exemplarische Befunde

Dental-CT bei Kindern Technische Vorgehensweise und exemplarische Befunde Corneli Schröder, Alexnder Schumm Dentl-CT ei Kindern Technische Vorgehensweise und exemplrische Befunde Die Computertomogrphie der Zhnreihen (Dentl-CT) wird ei Kindern und Jugendlichen selten eingesetzt,

Mehr

Aufgaben Translationsdynamik Seite 1. TM1: Federpendel. Lösungshinweis: Die Gewichtskraft prägt einen zusätzlichen Impulsstrom auf. N 200 m.

Aufgaben Translationsdynamik Seite 1. TM1: Federpendel. Lösungshinweis: Die Gewichtskraft prägt einen zusätzlichen Impulsstrom auf. N 200 m. Aufgen Trnltiondynik Seite 1 TM1: Federpendel Aufgentellung: Eine Feder verlängert ich ei eine kontnten Ipultro der Stärke 30 N u 15 c. Diee Feder wird nun n eine Ende ufgehängt und nderen Ende it eine

Mehr

Kapitel 8 Apps installieren und verwalten

Kapitel 8 Apps installieren und verwalten Kpitel 8 Apps instllieren und verwlten In diesem Kpitel sehen wir uns die Stndrdquelle ller Apps einml etws genuer n, den Google Ply Store (kurz: Google Ply oder Ply Store). Er ist der Dreh- und Angelpunkt,

Mehr

17 Doppelbündel-Rekonstruktion mit Semitendinosussehne

17 Doppelbündel-Rekonstruktion mit Semitendinosussehne Kpitel 17 143 17 Doppelündel-Rekonstruktion mit Semitendinosussehne Wolf Petersen 17.1 Einleitung Ds vordere Kreuznd (VKB) esteht us 2 funktionellen Bündeln: einem nteromedilen (AM) und einem posterolterlen

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Technische Informatik 2

Technische Informatik 2 TiEl-F Sommersemester 24 Technische Informtik 2 (Vorlesungsnummer 2625) 23--- TiEl-F Prof. Dr.-Ing. Jürgen Doneit Zimmer E29 Tel.:73 54 455 doneit@fh-heilronn.de 23--- TiEl-F35 Digitltechnik 23--3- . Digitlschltungen,

Mehr

Aufgabe 1: Eutektischer Punkt. Liquiduslinie (L) T E. Soliduslinie (S) Eutektisches Mischungsverhältnis. Legierungssystem ohne Mischkristallbildung:

Aufgabe 1: Eutektischer Punkt. Liquiduslinie (L) T E. Soliduslinie (S) Eutektisches Mischungsverhältnis. Legierungssystem ohne Mischkristallbildung: Werktoffe der Elektrotechnik, WS / Löungen zur Zentrlübung Seite von 6 Aufgbe : Wiederholung: Legierungytem ohne Michunglücke: Liquidulinie (L) Legierungytem ohne Michkritllbildung: Eutekticher Punkt T

Mehr

www. line21 Kommunikation Daten- und Telefontechnik über 1 Kabel mit 4 Adern. Kein Problem mit line21 natürlich von Rutenbeck!

www. line21 Kommunikation Daten- und Telefontechnik über 1 Kabel mit 4 Adern. Kein Problem mit line21 natürlich von Rutenbeck! Dten- und Telefontechnik üer Kel mit 4 Adern. Kein Prolem mit line ntürlich von Ruteneck! Internet Kom mu ni knt, der; -en, -en [: kirchenlt. communicns (Gen.: communicntis) = Teilnehmer m Aendmhl, zu

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers Hchschule STDIENGANG Wirtschftsingenieurwesen Bltt n 6 Aschffenburg Prf. Dr.-Ing.. Bchtler, Armin Huth Versuch 2 Versin. m 23.3.2 Versuchsumdruck Schltungsrinten des Opertinserstärkers Inhlt Verwendete

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Reglersynthese nach dem Frequenzkennlinienverfahren REGELUNGSTECHNIK

Reglersynthese nach dem Frequenzkennlinienverfahren REGELUNGSTECHNIK REGELUNGSTECHNIK augeführt am Fachhochchul-Studiengang Automatiierungtechnik für Beruftätige von Chritian Krachler Graz, im April 4 Inhaltverzeichni INHALTSVERZEICHNIS a Bodediagramm... 4 Rechnen mit dem

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Programmieren in C/C++ und Matlab

Programmieren in C/C++ und Matlab Progrmmieren in C/C und Mtl Sine Schmidt & Sestin Buer Institut für Geowissenschften Christin-Alrechts-Universität zu Kiel Progrmmieren in C/C und Mtl CAU, SS 08 for- / while-schleifen: - numerische Integrlerechnung

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

Effizienter Entwurfsfluss durch neue Verfahren der Logiksynthese und Technologieabbildung von VHDL-Hardwarebeschreibungen

Effizienter Entwurfsfluss durch neue Verfahren der Logiksynthese und Technologieabbildung von VHDL-Hardwarebeschreibungen Effizienter Entwurfflu urch neue Verfhren er Logikynthee un Technologieilung von VHDL-Hrwreechreiungen vorgelegt von Diplom-Ingenieur Jn Gutche Von er Fkultät IV - Elektrotechnik un Informtik er Technichen

Mehr

WIG-Schweißen mit Impulsen im höheren Frequenzbereich

WIG-Schweißen mit Impulsen im höheren Frequenzbereich WIG-Schweißen mit Impulen im höheren Frequenzbereich N. Knopp, Münderbach und R. Killing, Solingen Einleitung Beim WIG-Impulchweißen im khz-bereich wird der Lichtbogen eingechnürt und erhöht da Einbrandverhalten

Mehr

9.3 Blitz- und Überspannungsschutz für PV-Anlagen und Solarkraftwerke

9.3 Blitz- und Überspannungsschutz für PV-Anlagen und Solarkraftwerke .3 Blitz- und Überpannungchutz für PV-Anlagen und Solarkraftwerke.3. Blitz- und Überpannungchutz für PV-Anlagen Auf dem Sektor der Photovoltaik (PV) nimmt inzwichen Deutchland eine führende Rolle auf dem

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

1 Einleitung 1 1 Einleitung Licht it Leben. Licht faziniert chon immer die Menchheit. Ohne die Sonne al natürliche Licht- und Wärmequelle enttände kein Leben auf der Erde und e könnte auch kein Leben exitieren.

Mehr

Kapitel 6 E-Mails senden und empfangen

Kapitel 6 E-Mails senden und empfangen Kpitel 6 E-Mils senden und empfngen Sie ist zwr mittlerweile infolge des hohen Spmufkommens ein wenig in Verruf gerten, gehört er immer noch zum Stndrdkommuniktionsmittel des Weürgers: die E-Mil. Zentrle

Mehr

2. Postkeynesianische Wachstumstheorie

2. Postkeynesianische Wachstumstheorie 14 2. Potkeyneianiche Wachtumtheorie 2.1 Einkommen- un apazitäteffekt Theoreticher Anknüpfungpunkt er potkeyneianichen Wachtumtheorie it er Doppelcharakter er Invetitionen. In er auf eine kurze Frit konzipierte

Mehr

ENERGIETECHNISCHES PRAKTIKUM I

ENERGIETECHNISCHES PRAKTIKUM I ENERGIETECHNISCHES PRAKTIKUM I Veruch 9: Wechelrichter mit Puldauermodulation 1 EINLEITUNG...2 2 PULSDAUERMODULATION BEI SPANNUNGSSTEUERUNG...5 3 LITERATUR...9 4 VERSUCHSDURCHFÜHRUNG...10 4.1 Zeitunabhängige

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

Wie erfahre ich, welches Programm ich verwenden muss? 1. Wie kann ich meine Videobänder auf eine Disc übertragen? 5

Wie erfahre ich, welches Programm ich verwenden muss? 1. Wie kann ich meine Videobänder auf eine Disc übertragen? 5 hp dvd writer Wie... Inhlt Wie erfhre ich, welches Progrmm ich verwenden muss? 1 Deutsch Wie knn ich eine Disc kopieren? 2 Wie knn ich meine änder uf eine Disc üertrgen? 5 Wie knn ich einen DVD-Film erstellen?

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Neue Internet Radio Funktion

Neue Internet Radio Funktion XXXXX XXXXX XXXXX /XW-SMA3/XW-SMA4 Neue Internet Rdio Funktion DE EN Dieser drhtlose Lutsprecher ist druf usgelegt, Ihnen den Empfng von Pndor*/Internet-Rdiosendern zu ermöglichen. Bitte echten Sie jedoch,

Mehr

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31 Rvensurg-Weingrten Vorlesung zur Dtenverreitung Tehnishe Informtik Inhltsverzeihnis 5 TECHNISCHE INFORMATIK...5-2 5. ENTWURF DIGITALER SYSTEME...5-2 5.2 KOMBINATIONSSCHALTUNGEN (SCHALTNETZE)...5-3 5.2.

Mehr

TE- und TM-Moden im Wellenleiter. Bachelorarbeit

TE- und TM-Moden im Wellenleiter. Bachelorarbeit TE- und TM-Moden im Wellenleiter Sebstin Rubitzek 30. September 2014 in Grz Bchelorrbeit betreut von Ao.Univ.-Prof. Mg. Dr.rer.nt. Ulrich Hohenester 1 Inhltsverzeichnis 1 Einleitung 3 1.1 Ws ist ein Wellenleiter?......................

Mehr

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs Brutkreb Genetiche Urachen, erhöhte Riiken Informationen über familiär bedingten Brut- & Eiertockkreb Brutkreb: Wie und wo er entteht Wenn bei der Zellteilung ein Fehler paiert Alle Zellen unere Körper

Mehr

Vorlesungsskript Mathematik I für Wirtschaftsingenieure

Vorlesungsskript Mathematik I für Wirtschaftsingenieure Vorlesungsskript Mthemtik I für Wirtschftsingenieure Verfsserin: HSD Dr. Sybille Hndrock TU Chemnitz Fkultät für Mthemtik e-mil: hndrock@mthemtik.tu-chemnitz.de Wintersemester 2005/06 Litertur [] Dllmnn,

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Stochastische Überraschungen beim Spiel BINGO

Stochastische Überraschungen beim Spiel BINGO Stochatiche Überrachungen beim Spiel BINGO NORBERT HENZE, KARLSRUHE, UND HANS HUMENBERGER, WIEN Zuammenfaung: In dieem Beitrag wird da bekannte Spiel BINGO erläutert und näher analyiert. Augehend vom konkreten

Mehr

QualitŠtskriterien fÿr die betriebliche Gesundheitsfšrderung

QualitŠtskriterien fÿr die betriebliche Gesundheitsfšrderung WH IN U O Gesunde Mitreiter in gesunden Unternehmen Erfolgreiche Prxis etrielicher Gesundheitsfšrderung in Europ QulitŠtskriterien fÿr die etrieliche Gesundheitsfšrderung Vorwort Seit 1996 existiert ds

Mehr

Inhalt. Vision ME Benutzerhandbuch s

Inhalt. Vision ME Benutzerhandbuch s Benutzerhandbuch Inhalt 1. Einleitung...2 1.1. Automatiche Anmeldung bei Viion ME...2 2. Schüler dazu einladen, einer Klae beizutreten...3 2.1. Schüler in der Klae anzeigen...6 2.2. Die App au Schülericht...7

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

7. Portfolioinvestitionen und Wechselkursschwankungen. Literatur. Prof. Dr. Johann Graf Lambsdorff Universität Passau SS 2008

7. Portfolioinvestitionen und Wechselkursschwankungen. Literatur. Prof. Dr. Johann Graf Lambsdorff Universität Passau SS 2008 Prof. Dr. Johnn Grf Lmsdorff Universität Pssu SS 2008 Litertur r IS 0 r 0 P 0 P x MP 7. Portfolioinvestitionen und Wechselkursschnkungen + Z Jrcho, H.-J. und P. Rühmnn (2000) : Monetäre Außenirtschft I.

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Systematik hoch übersetzender koaxialer Getriebe

TECHNISCHE UNIVERSITÄT MÜNCHEN. Systematik hoch übersetzender koaxialer Getriebe TECHNISCHE UNIVERSITÄT MÜNCHEN Intitut für Machinen- und Fahrzeugtechnik Lehrtuhl für Machinenelemente Sytematik hoch überetzender koaxialer Getriebe Florian Mulzer Volltändiger Abdruck der von der Fakultät

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

VELUX INTEGRA Solar SSL Montage eines solarbetriebenen Rollladens auf Dachfenster VL/VK

VELUX INTEGRA Solar SSL Montage eines solarbetriebenen Rollladens auf Dachfenster VL/VK VELUX ITEGRA Solr SSL Montge eines solretrieenen Rollldens uf Dchfenster VL/VK VAS 453267-2013-09 0 C Zur Vermeidung von Schäden durch Schnee m Rolllden, die ortsüliche Buprxis und die eknnten Regelwerke

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Definition: Eine Funktion mit der Gleichung y = c (,, c R; 0) heißt qudrtische Funktion oder Funktion. Grdes. qudrtisches Glied;...lineres Glied; c...solutes Glied Der Grph einer

Mehr