Einführung in die Schaltalgebra

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Schaltalgebra"

Transkript

1 Einführung in die chltlger GUNDBEGIFFE: ECHENEGELN CHALTFUNKTIONEN MIT ZWEI EINGANGVAIABLEN EQUENTIELLE CHALTALGEBA

2 CHALTALGEBA GUNDBEGIFFE: D im dulen Zhlentem nur die eiden Ziffern und vorkommen, können ie durch chlter drgetellt werden. olche chlter können mechnich, elektromgnetich oder elektronich etätigt werden. Elektromgnetiche chlter werden l eli ezeichnet und finden in der Telefonvermittlung Anwendung. Auch in den Anfängen der Computer-Entwicklung wurden eli verwendet, die jedoch ehr ld durch öhrenchltungen und päter Trnitoren gelöt wurden. Prinzipiell it die Funktionweie eine Trnitor-chlter die gleiche wie ei einem mechnich ewegten chlter. Liegt m Eingng keine pnnung (=), o perrt der Trnitor, und m Augng liegt keine pnnung (=). Liegt m Eingng pnnung (=), o leitet der Trnitor, und m Augng liegt pnnung (=). Durch Prllel- zw. erienchltung zweier olcher chlter len ich nun einfche Grunduteine für komplexere chltungen kontruieren. Prllelchltung zweier chlter Am Augng der Prllelchltung zweier chlter und liegt dnn pnnung (=), wenn zumindet einer der eiden chlter gechloen it (= oder =). Eine olche Prllelchltung wird dher l ODE-Gtter ezeichnet. D olche ODE-Gtter häufig l Grunduteine komplizierterer chltungen verwendet werden, wird dfür ein eigene mol verwendet:

3 2 Der Zummenhng zwichen den Eingnggrößen, und dem Augng eine ODE- Gtter knn uch tellrich ngegeen werden: Im oeren Teil dieer ogennnten WAHHEITTABELLE ind pltenweie ämtliche 4 Möglichkeiten von Eingngkomintionen für und eingetrgen. Drunter teht d jeweil dzugehörige Ergeni. Mthemtich geehen wird durch die Whrheittelle eine Funktion definiert, die in Ahängigkeit von ihren eiden Vrilen und die Werte und nnehmen knn. Mn pricht von einer ODE-Verknüpfung oder Dijunktion der Vrilen und und chreit molich: = ( gleich oder ) erienchltung zweier chlter Am Augng der erienchltung zweier chlter und liegt nur dnn pnnung (=), wenn eide chlter gechloen ind (= und =). Eine olche erienchltung wird dher l UND-Gtter ezeichnet. Für d UND-Gtter wird folgende mol verwendet: Die Whrheittelle für d UND-Gtter lutet: Algerich wird die UND-Verknüpfung oder Konjunktion in der Form = ( gleich und ) ngechrieen.

4 3 Häufig enötigt mn zuätzlich noch chlter, ei denen m Augng einfch die Umkehrung de Eingngwerte liegt. olche chlter können z.b. durch einen komplementären Trnitor (p-n-p-trnitor ttt n-p-n-trnitor) reliiert werden: Der p-n-p-trnitor perrt, wenn die Bi poitiv it. Liegt m Eingng keine pnnung (=), o leitet der Trnitor und m Augng liegt pnnung (=). Liegt m Eingng pnnung (=), o perrt der Trnitor und m Augng liegt keine pnnung (=). Diee chltung wird l Negtion ezeichnet. = ( gleich nicht ) Die Whrheittelle für die Negtion lutet: Die Negtion einer Größe wird uch l Komplement von ezeichnet. ODE-Gtter, UND-Gtter und Negtionelemenete ilden die Grunduteine der chltlger, u denen komplizierte chltungen ufgeut werden können. Beipiel: Hlddierwerk E oll eine chltung entworfen werden, die e getttet, zwei Dulziffern zu ddieren. Eine olche chltung wird l Hlddierwerk ezeichnet. Für die Addition im Dultem gelten folgende egeln: = Bei der Addition von entteht ein Üertrg uf die = nächte telle, der von der ummenziffer getrennt = der ummenziffer getrennt ngegeen werden oll. = Betrchtet mn die ummenziffer und den Üertrg ü getrennt, o ergeen ich folgende Whrheittellen: ü Die umme it dnn, wenn entweder = und = it oder wenn = und = it. Alegrich ugedrückt lutet d: Für den Üertrg ü gilt: ü = = ( ) ( )

5 o 4 Au der lgerichen Drtellung knn die chltung unmittelr kontruiert werden: o o ü Diee einfche Beipiel zeigt, dß zum Entwurf von chltungen eine lgeriche Drtellung der chltfunktionen nützlich it. Eine formle Behndlung der echenregeln mit UND- und ODE-Verknüpfungen und Negtionen it dher unumgänglich. D die Negtion m Eingng eine Gtter durch Verwendung eine p-n-p-trnitor ntelle eine n-p-n-trnitor reliiert werden knn, werden hier keine eigenen Negtionelemente verwendet. Die Negtion de Eingng wird durch den Punkt im chltmol moliiert.

6 5 2 ECHENEGELN = = = = = = = = Opertionen mit : = = Opertionen mit : = = Oper. mit ich elt: = = Oper. mit dem Komplement: = = Kommuttivgeetz: = = Aozitivgeetz: ()c = (c) ()c = (c) Ditriutivgeetz: ()c = (c)(c) ()c = (c)(c) Aorptiongeetz: () = () = Doppelte Negtion: () = Geetze von DE MOGAN: (c...) =c... (c...) =c...

7 o 6 Die echenregeln der chltlger ollen nun m Beipiel de Hlddierer zur Umformung einer chltfunktion ngewendet werden: = ()() = = [()][()] = = ()() ()() = = ()() = = ()() (DG) (DG) (KG), (De Morgn) D die Konjunktion gleichzeitig den Üertrg erechnet, knn eim Hlddierwerk - im Vergleich zur erten Verion - ein Gtter eingeprt werden: ü

8 7 3 CHALTFUNKTIONEN MIT ZWEI EINGANGVAIABLEN Ingemt git e 6 chltfunktionen mit zwei Eingngvrilen, die entprechend der --Verteilung in der zugehörigen Whrheittelle (Ergenizeile l Dulzhl interpretiert) durchnumeriert werden können. Kontnte Konjunktion ()() Antivlenz, exkluive oder Dijunktion (), NO ()() Äuivlenz Negtion, Impliktion Negtion, Impliktion (), NAND Kontnte Beonder interent ind die Funktionen 8 =() NO und 4 =() NAND o

9 8 Wie die Ergenizeilen der Whrheittellen erkennen len, ind die eiden Funktionen zueinnder dul (die Ergenizeilen können durch piegelung und Komplementildung ineinnder üergeführt werden). NO- und NAND-Gtter len ich durch je zwei p-n-p-trnitoren reliieren. = =() = =() NO- und NAND-Gtter hen die Eigenchft, dß ich ämtliche chltfunktionen durch uchließliche Verwendung einer dieer Gtterrten reliieren len. z.b.: Negtion: =() =() o Konjunktion: =(()) =() o o Dijunktion: =() =(()) o o NAND und NO ind dule chltelemente.

10 9 Beipiel: eliierung eine Hlddierwerke mit NO-Gttern =[()()] =[()()] ü = =() ü In dieer chltung wird ngenommen, dß die verneinten Eingänge eenfll zur Verfügung tehen.

11 4 EQUENTIELLE CHALTALGEBA Bei den iher echrieenen chltungen it der zeitliche Aluf unerückichtigt gelieen. E wurde ngenommen, dß die Ergenie n ämtlichen Gttern imultn uftreten und o lnge erhlten leien, l die zugehörigen Eingngwerte n die chltungen ngelegt ind. Mn enötigt jedoch uch Buelemente, die e gettten, Informtionen uch dnn zu peichern, wenn die entprechenden Eingngwerte nicht mehr ngelegt ind. Eine olche peicherwirkung knn durch zwei rückgekoppelte NO-Gtter erzielt werden: r Wird n den -Eingng (et-eingng) kurzzeitig eine Ein ngelegt, o wird der Augng =. Auf Grund der ückkopplung leit die Ein m Augng uch erhlten, wenn der -Eingng wieder Null wird. r= = = Ert wenn n den r-eingng (reet-eingng) eine Ein ngelegt wird, ercheint m Augng wieder Null. Diee Null leit o lnge erhlten, i n den -Eingng wieder Ein ngelegt wird. r= = = Auf diee Weie it die peicherung einer Ein oder Null möglich.

12 Eine olche chltung, die die eiden Zutände und nnehmen knn, wird l -Flip- Flop ezeichnet und durch ein eigene mol drgetellt: r Meit teht der verneinte Augng, der j m unteren NO-Gtter entteht, eenfll zur Verfügung. Der Augng de -Flip-Flop it nicht nur von den eiden Eingnggrößen r und, ondern uch vom momentnen Zutnd = oder = de Flip-Flop hängig. Um die zeitliche Zutndänderung echreien zu können, etrchten wir dikrete, kurz ufeinnderfolgende Zeitpunkte, die wir un durchnumeriert denken. Werden zum Zeitpunkt n n den Eingng die Werte r n und n gelegt und efindet ich d Flip-Flop im Zutnd n, o it dmit der neue Zutnd n zum kurz druffolgenden Zeitpunkt n etimmt. Der neue Zutnd n knn durch folgende Beziehung lgerich echrieen werden: n = n (r n n ) Diee Gleichung wird l chrkteritiche Gleichung de -Flip-Flop ezeichnet. ie gilt nur unter der Neenedingung, dß nicht eide Eingänge gleichzeitig ind, lo: r n n = Mit Hilfe zweier UND-Gtter knn der Fll, dß eide Eingänge gleichzeitig ind, vermieden werden: j k An den -Eingng wird nur dnn eine Ein ngelegt, wenn n = it - in dieem Fll ändert d Flip-Flop einen Zutnd. Eeno wird der r-eingng nur dnn Ein, wenn n = it- uch in dieem Fll ändert d Flip-Flop einen Zutnd.Eine olche erweiterte Flip-Flop-chltung wird l JK-Flip-Flop ezeichnet. j k J K Der j-eingng dient zum etzen, der k-eingng zum Löchen de Flip-Flop. Liegt m j-eingng eine Ein j n =, o wird eine Ein gepeichert ( n = ).

13 2 Liegt m k-eingng eine Ein k n =, o entteht m Augng Null ( n = ). Liegen n eiden Eingängen Nullen, o leit der gepeicherte Wert m Augng erhlten. ind eide Eingänge gleichzeitig Ein, o ändert d Flip-Flop einen Zutnd. Die chrkteritiche Gleichung für d JK-Flip-Flop lutet omit: n = (j n n )(k n n ) Die Eigenchft, dß d JK-Flip-Flop einen Zutnd ändert, wenn n eide Eingänge gleichzeitig eine Ein ngelegt wird, wird im ogennnten T-Flip-Flop ugenützt: t D T-Flip-Flop it eigentlich ein JK-Flip-Flop, deen eide Eingänge kurzgechloen ind. Mit jeder Ein m t-eingng ändert d T-Flip-Flop einen Zutnd (ähnlich wie ein Druckttenchlter). Die chrkteritiche Gleichung entpricht genu der de JK-Flip-Flop, wenn für j n und k n t n eingeetzt wird: n = (t n n )(t n n ) Um den zeitlichen Aluf der Zutndänerungen innerhl eine euentiellen Netzwerke echreien zu können, wird der Zutnd der chltung immer nur zu kurzen äuiditnten dikreten Zeitpunkten etrchtet. Während dieer kurzen Zeitpunkte ollen ich weder die Eingngignle noch die Zutände der Flip-Flop ändern. ämtliche Zutndänderungen erfolgen zwichen den etrchteten Zeitpunkten. Um diee Verhlten zu reliieren, werden ämtliche Flip-Flop mit einem gemeinmen Tktimpul geteuert: t t Zeit r Nur während eine Tktimpule gelngen die Eingngignle n d Flip-Flop. Wird der zeitliche Atnd zwichen den Tktimpulen mit t ezeichnet, o it die Tktfreuenz. f = t Ein Netzwerk, in dem ämtliche Flip-Flop tktgeteuert ind, heißt nchrone Netzwerk.

14 3 Tktgeteuerte Flip-Flop werden uch l T-Flip-Flop zw. JKT-Flip-Flop ezeichnet und durch ein eigene chltmol drgetellt: J K Ein tktgeteuerte -Flip-Flop, n deen r-eingng der derneinte -Eingng liegt, getttet e, d Eingngignl um den Atnd zweier Tktimpule zu verzögern: etzt mn in die chrkteritiche Gleichung n = n (r n n ) für n = n und r n = n, o erhält mn: n = n, d heißt, m Augng liegt der um d Tktintervll t verzögerte Eingng. chltet mn nun eine gnze Folge olcher Verzögerungelemente hintereinnder, o erhält mn eine Verzögerungkette oder ein ogennnte chieeregiter:... D jede einzelne Flip-Flop in der Lge it, eine Dulziffer zu peichern, knn in einem u p Flip-Flop etehenden chieeregiter eine p-tellige Dulzhl gepeichert werden. Die einzelnen Dulziffern werden der eihe nch n den Eingng ngelegt und mit jedem Tktimpul um eine telle nch recht verchoen. Eeno tehen die einzelnen Dulziffern m Augng de chieeregiter zur weiteren Verreitung zur Verfügung. chieeregiter werden unter nderem häufig enutzt, um die Opernden und d eultt rithmeticher Opertionen zu peichern. Beipiel: erienddierwerk E oll eine chltung entworfen werden, die e getttet, zwei in egitern gepeicherte Dulzhlen ziffernweie zu ddieren:

15 4 Mit jedem Tktimpul ollen die nächten eiden Ziffern n und n ddiert und die nächte Ziffer der umme geildet werden. Eine chltung zur Addition zweier Dulzhlen wurde ereit entworfen: Eine olche chltung wird l Hlddierwerk ezeichnet und oft durch ein eigene mol drgetellt. Die dei enttehende umme n gleicht der Antivlenz der eiden Eingänge n und n, der Üertrg it gleich der Konjunktion von n und n. Im erienddierwerk müen jedoch nicht nur die eiden Ziffern n und n ddiert werden, ondern zu dieer Zwichenumme mu noch der Üertrg von der vorhergehenden telle ü n ddiert werden: ü ü n n ü n n ü n D nie n eiden Hlddierwerken ein Üertrg gleichzeitig uftreten knn, genügt e, die enttehenden Üerträge durch ein ODE-Gtter zu verinden. Diee chltung, die die Addition von drei Dulziffern ( n, n und ü n ) ermöglicht, wird l Vollddierwerk ezeichnet. Durch ein Verzögerungelement knn der erechnete Üertrg i zum nächten Additiontkt gepeichert werden, wodurch ein funktionfähige erienddierwerk entteht: n n t n

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze Schltnetze Aufu von Schltnetzen nhnd wichtiger Beipiele Inhltericht Codierer, Decodierer und Codekonverter Additionchltnetze Hlddierer Vollddierer Mehrtellige Addierer Multiplexer und Demultiplexer Techniche

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

2010 Burkhard Stiller M5 2

2010 Burkhard Stiller M5 2 Hertemeter 2, Intitut fr Informtik IFI, UZH, Schweiz Modul 5: Rechnerrithmetik (2) Informtik I Modul 5: Rechnerrithmetik (2) Grundrechenrten - Einheit 2 Burkhrd Stiller M5 2 Burkhrd Stiller M5 2 Addition

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

3.7 Kombinatorischer Multiplizierer Addition und Subtraktion von Gleitkommazahlen

3.7 Kombinatorischer Multiplizierer Addition und Subtraktion von Gleitkommazahlen . 3.7 Komintoricher Multiplizierer 137 Bethnl : 1. 321 1+2.10+3.100=6 3.6 Addition und Sutrktion von Gleitkommzhlen Zur Addition von Gleitkommzhlen wird uf Fetkomm-Addierer und -Sutrhierer zurückgegriffen.

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

Kaskadierung von Carry-Look-Ahead-Schaltungen

Kaskadierung von Carry-Look-Ahead-Schaltungen 35 Crr-Look-Ahed 15 Kkdierung von Crr-Look-Ahed-Schltungen Mit einer Kkdierung knn der mit großer Wortreite einhergehenden großen Anzhl n Gttern entgegengewirkt werden Dzu werden Crr-Look-Ahed-Schltungen

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Universität Hannover Institut für Energieversorgung und Hochspannungstechnik

Universität Hannover Institut für Energieversorgung und Hochspannungstechnik niverität Hnnover ntitut für Energieverorgung und Hohnnungtehnik orleung Elektrihe Energieverorgung Skrit rnformtoren (Korrigierte Auge 005) Bereiter: Prof. B.R.Old nhltverzeihni Burten und Eintz im Netz...

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

5.4 CMOS Schaltungen und VLSIDesign

5.4 CMOS Schaltungen und VLSIDesign Kp5.fm Seite 447 Dienstg, 7. Septemer 2 :55 3 5.4 CMOS Schltungen und VLSI Design 447 r u u r id + + A. 5.39: Progrmmierrer Gitterustein 5.4 CMOS Schltungen und VLSIDesign Die Boolesche Alger eginnt mit

Mehr

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments von Jule Menzel, 12Q4 5) Lplce-Whrscheinlichkeit eines ufllsexperiments Ergenis ω 1 ω 2 ω 3 ω 4 ω 1 Ω ω 2 ω 3 ω 4 Ergenismenge ist ein Ereignis ist Teilmenge von Ω kurz: c Ω Ws ist ein Ereignis? Beispiel:

Mehr

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 5.0.208 Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS 207/8) Ich

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

13-1 Funktionen

13-1 Funktionen 3- Funktionen 3 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten eine stetige Funktion f : I R und ds zugehörige Integrl f() d (dies ist

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

Einschub: Zahlendarstellung und Codes

Einschub: Zahlendarstellung und Codes Einschu: Zhlendrstellung und Codes (Unvollständige Drstellung) DST SS23 - Codes und KMAPs P. Fischer, TI, Uni Mnnheim, Seite Binärzhlen N-stellige Binärzhl:... Einzelne Stellen heißen Bits (inry digits)

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache!

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache! 1 2 Reguläre Audrücke und reguläre Sprchen Grundlgen der Theoretichen Inormtik Till Mokowki Fkultät ür Inormtik Otto-von-Guericke Univerität Mgdeurg Winteremeter 2014/15 Stz: [Kleene] Die Kle der durch

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer.

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer. Wertteigerung Frei Hau. Der Kotenloe Glafaeranchlu für Haueigentümer. Darüber freuen ich nicht nur Ihre Mieter. 40 Millimeter, 1.000 Vorteile. Im Bereich der Kommunikation it Glafaer die Zukunft. 12.000

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome.

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome. Herstsemester 2, Institut für Informtik IFI, UZH, Schweiz Modul 3: Schltnetze Informtik I Modul 3: Schltnetze Einführung in die formlen Grundlgen logischer Beschreiungen Boolesche Alger, Schltlger Vorussetzende

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen.

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen. Mnuell edatenq Fremdenverkehrs- und Gstgeweresttistik Einleitung edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit ietet, ihre sttistischen Meldungen üer ds Internet uszufüllen und einzureichen.

Mehr

1 Zeiger als Funktionsargumente. U3-1 einfache swap_double Funktion. 1 Zeiger als Funktionsargumente. 1 Zeiger als Funktionsargumente.

1 Zeiger als Funktionsargumente. U3-1 einfache swap_double Funktion. 1 Zeiger als Funktionsargumente. 1 Zeiger als Funktionsargumente. U3 3. Üung U3 3. Üung 1 Zeiger l Funktionrgumente U3-1 einfche wp_doule Funktion Aufge 2 U3-1 einfche wp_doule Funktion Prmeter werden in C y-vlue üergeen die ufgerufene Funktion knn den ktuellen Prmeter

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5. Einführung Die Gleichung x 9 ht die Lösung. x 9 Z 9 x Die Gleichung x ht die Lösung. x Z x Definition Die Gleichung x, mit, Z und 0, ht die Lösung: x x Ist kein Vielfches von, so entsteht eine neue

Mehr

12. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2009/2010

12. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2009/2010 . Lndeswettewer Mthemtik Byern Lösungseispiele. Runde 009/00 Aufge Wird zu einer ntürlichen Zhl ihre Quersumme ddiert, s erhält mn 00. Bestimme lle Zhlen, ei denen dies zutrifft. Lösung: Die Zhlen 986

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3 Gnder Dniel 00099 GEOMATHEMATIK SS 00 TECHISCHER BERICHT. Üungprogrmm: Sphärihe Geometrie. AUFGABESTELLUG:.... LÖSUGSWEG:.... Skizze:.... Umrehnung der phärihen Ditnzen in Winkel:.... Berehnung ller fehlerfreien

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Grundlgen der Elektrotechnik IV Auflge 998 Vorleung von Prof. Dr.-Ing. D. Peier nukript von. Hebbel A. Örtel Überrbeitet von Dipl.-Ing. Andre Altnn Dipl.-Ing. Dirk Borneburg Dipl.-Ing. Tho Ebke Dipl.-Ing

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

Zustandsregler für lineare Single-Input-Single-Output-Systeme

Zustandsregler für lineare Single-Input-Single-Output-Systeme Schweizeriche Geellchft für Automtik Aocition Suie pour L Automtique Swi Societ for Automtic Control SGA/ASSPA/SSAC LernModul Nr. Oktober 995 Zutndregler für linere Single-Input-Single-Output-Steme Methodik

Mehr

Mathematik Vektorrechnung

Mathematik Vektorrechnung Mthemti Vetoechnng Definitionen Rechnen mit Vetoen Linee Ahängigeit nd Unhängigeit on Vetoen Geden Gegeneitige Lge on Geden 9 Betg eine Veto Winel zwichen zwei Vetoen Eenendtellng mit Vetoen 9 Gegeneitige

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Für die Arbeit W, die von der Kraft längs eines Weges verrichtet wird gilt allgemein: W F s

Für die Arbeit W, die von der Kraft längs eines Weges verrichtet wird gilt allgemein: W F s 4 Arbeit Arbeit wird immer dnn verrichtet, wenn ein Körper unter dem Einflu einer äußeren Krft läng eine Wege verchoben, bechleunigt oder verformt wird. ür die Arbeit W, die von der Krft läng eine Wege

Mehr

Potenzen, Wurzeln, Logarithmen Definitionen

Potenzen, Wurzeln, Logarithmen Definitionen Definitionen Wir gehen von der Gleichung c und dem Beispiel 8 2 us: nennt mn Potenz nennt mn Bsis nennt mn Eponent Allgemein: "Unter versteht mn die -te Potenz zur Bsis " " ist hoch " Beispiel: 2 8 Vorgng:

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Krlsruher Institut für Technologie Institut für Alger und Geometrie PD Dr. Stefn Kühnlein Dipl.-Mth. Jochen Schröder Einführung in Alger und Zhlentheorie Üungsltt 7 Aufge 1 (4 Punkte) Sei R ein kommuttiver

Mehr

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders.

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders. Arno Fehringer, Gymnsillehrer für Mthemtik und Physik 1 Erweiterung der Euklidischen Flächensätze uf ds llgemeine Dreieck nest Anwendung zur Volumenestimmung des llgemeinen Tetreders. Arno Fehringer Juni

Mehr

Gruppe 14 René Kreiner Mat.-Nr.: 50175 Thomas Weise Mat.-Nr.: 25603 bei Dr. B. Naumann Thomas Ziegs Mat.-Nr.: 47423 Montag, 18.11.2002, 13.

Gruppe 14 René Kreiner Mat.-Nr.: 50175 Thomas Weise Mat.-Nr.: 25603 bei Dr. B. Naumann Thomas Ziegs Mat.-Nr.: 47423 Montag, 18.11.2002, 13. Hrdwreprktikum Gruppe René Kreiner Mt.-Nr.: 575 Thoms Weise Mt.-Nr.: 56 ei Dr. B. Numnn Thoms Ziegs Mt.-Nr.: 7 Montg, 8..,.5, /77 Komintorik Seite von 8 Zusmmenfssende Voretrchtung. XOR Für die logische

Mehr

Elektrischer Widerstand und Strom-Spannungs-Kennlinien

Elektrischer Widerstand und Strom-Spannungs-Kennlinien Versuch 6 Elektrischer Widerstnd und Strom-Spnnungs-Kennlinien Versuchsziel: Durch biochemische ektionen ufgebute Potentildifferenzen (Spnnungen) bewirken elektrische Ströme im Orgnismus, die n einer Vielzhl

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Gerd Wöstenkühler. Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen

Gerd Wöstenkühler. Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen Gerd Wöstenkühler Grundlgen der Digitltehnik Elementre Komponenten, Funktionen und Steuerungen Inhlt 1 Einleitung... 11 1.1 Anloge unddigitledrstellungsformen... 11 1.1.1 AnlogeGrößendrstellung... 11 1.1.2

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 29 Ferur 2012

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenurg/Ostfrieslnd/Wilhelmshven Fch. Technik, At. Elektrotechnik u. Informtik Prof. Dr. J. Wiee www.et-inf.fho-emden.de/~wiee Mthemtik, Teil B Inhlt:.) Grundegriffe der Mengenlehre.) Mtrizen, Determinnten

Mehr

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen FB Tehnologie un Mngement Komintionsshltungen (hltnetze) Eingngsvektor X Komintorishes ystem (hltnetz) y y Ausgngsvektor f(x) n y m Dtenverreitung (Kpitel 5 Tehnishe Informtik) Drstellung er ignle X hltnetz

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik Prktikum Klssische Physik I Versuchsvorereitung: P-3, 40, 4: Geometrische Optik Christin Buntin Gruppe Mo- Krlsruhe, 09. Novemer 2009 Inhltsverzeichnis Brennweiten-Bestimmungen 2. Einfche Bestimmung der

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr