2.1 Polynome, Polynomfunktionen und Nullstellen. p(x) = k=0

Größe: px
Ab Seite anzeigen:

Download "2.1 Polynome, Polynomfunktionen und Nullstellen. p(x) = k=0"

Transkript

1 Kapitel 2 Polyome 2. Polyome, Polyomfuktioe ud Nullstelle Der Polyomrig R[x] Defiitio: Ei Polyom mit eier Variable x über eiem kommutative Rig R ist ei formaler Ausdruck der Form px) = a k x k wobeiallea k ElemetedesRigsRsiduda 0.DieWertea k etmadiekoeffiziete des Polyoms px). Der Grad dieses Polyoms ist. Die Mege aller Polyome über dem Rig R wird mit R[x] bezeichet. Jedes Polyom bestimmt eie Polyomfuktio R R, die ma a jeder Stelle r R durch Eisetze des Wertes r für die Variable x ud Auswertug der Operatioe im Rig R bereche ka. Der Wert, der sich bei dieser Auswertug ergibt, wird mit pr) bezeichet. Leider ka diese Notatio auch leicht zu Verwechsluge zwische Polyom ud Polyomfuktio führe. Eiziges Uterscheidugsmerkmal ist das Argumet: ist x eie Variable, so bezeichet px) ei Polyom, für Rigelemete r bezeichet pr) de Wert der Polyomfuktio a der Stelle r. Soll dieser Uterschied och deutlicher betot werde, ka die Fuktio auch mit f p bezeichet werde, der Wert a der Stelle r wäre da f p r). Zwei Polyome px) = a k x k ud qx) = m b k x k sid sytaktisch) gleich, falls = m ud a k = b k für k = 0,... Durch Eiführug eier Additio ud eier Multiplikatio vo Polyome bildet sich die Struktur des Polyomrigs R[x]. Die Operatioe sid so defiiert, dass sie verträglich mit de Operatioe auf de Polyomfuktioe Additio ud Multiplikatio der Fuktioswerte) sid. I der folgede Formel werde alle icht i de Operade defiierte Werte 20

2 a k ud b k gleich 0 gesetzt. m a k x k ± b k x k = a k x k m b k x k = max,m) +m j=0 a k ±b k )x k k a j b k j )x k Horer-Schema Der aive Asatz zur Auswertug eies Polyoms vo Grad a eier Stelle r erfordert 2 Multiplikatioe Poteze vo r bereche ud mit de Koeffiziete multipliziere) ud Additioe. Wesetlich effizieter ist die Polyomauswertug mit dem Horer-Schema, für die Multiplikatioe ud Additioe ausreiched sid. Die Grudidee beruht auf der folgede Beobachtug: fr) = a k r k = a r k +a r +...+a 2 r 2 +a r+a 0 = a }{{} r +a ) r...a 3 ) r +a 2 ) r +a ) r +a 0 c }{{} c }{{} c 3 }{{} c 2 }{{} c } {{ } c 0 Offesichtlich ist c = a ud für die Berechug der Zwischeergebisse c,c 2,...,c 0 braucht ma jeweils eie Multiplikatio ud eie Additio. Zur Rechug auf dem Papier verwedet ma das folgede Schema: fx) a a a... a a 0 Der Wert vo c 0 ist der Fuktioswert vo fx). + c r c r c 2 r c r c c c 2 c 2 c c 0 Beispiel: Bestimme f3) vo fx) = 2x 4 4x 3 +3x+0. Wichtig ist, dass für alle fehlede Koeffiziete Nulle eigetrage werde! Damit ist f3) = 73. Das Horer-Schema ka ma auch eisetze, um eiige spezielle Polyomdivisioe auszuführe, bei dee ei Polymo px) = a kx k durch ei Polyom der Form x a) geteilt 2

3 wird der allgemeie Fall wird im ächste Abschitt behadelt). Ziel ist die Bestimmug eies Polyoms qx) = b kx k ud eies Rests r R, so dass px) = qx) x a)+r. Wertet ma das Polyom px) a der Stelle a mit dem Horer Schema aus ud setzt b = c,b 2 = c,...,b = c 2,b 0 = c ud r = c 0, ka durch eie eifache Koeffizietevergleich achgerechet werde, dass die geforderte Idetität erfüllt ist: Für x steht auf der like Seite Polyom px)) der Koeffiziet a, auf der rechte Seite bei qx) x a)+r ) der Koeffiziet b = c = a. Für x steht liks der Koeffiziet a, rechts der Koeffiziet b 2 a b = c a c = a, de c = a c +a. Aalog setzt sich das fort bis zum Koeffiziete vo x 0 : Liks steht a 0 ud auf der rechte Seite r a b 0 = c o a c = a 0, de c 0 = a c +a 0. Nullstelle Defiitio: a R ist Nullstelle des Polyoms px) R[x], falls pa) = 0. Satz: Ist a Nullstelle vo px), da existiert ei Polyom qx), so dass px) = x a) qx) Der Beweis folgt aus der Awedug des Horer-Schemas zur Polyomdivisio: c 0 ist eierseits der Rest aus der Polyomdivisio durch x a), adererseits der Wert der Polyomfuktio a der Stelle a. Deshalb ist a geau da eie Nullstelle, we bei der Polyomdivisio der Rest verschwidet. Defiitio: a ist k-fache Nullstelle vo px), we ei Polyom qx) existiert, so dass px) = x a) k qx) Zerlegug vo komplexe ud reelle Polyome Fudametalsatz der Algebra Gauss): Jedes komplexe Polyom px) = a kx k mit a i C hat eie komplexe Nullstelle. Folglich ka px) i der Form a x z µ ) µ= dargestellt werde, wobei z µ die Nullstelle vo px) sid. Auf de recht aspruchsvolle) Beweis wird hier verzichtet. Stattdesse solle die Kosequeze für reelle Polyome geauer utersucht werde:. Jedes reelle Polyom hat eie komplexe Nullstelle. 2. Ist z eie komplexe Nullstelle eies reelle Polyoms px) = a kx k, da ist auch die kojugiert komplexe Zahl z eie Nullstelle vo px): pz) = a kz k = a kz k a k R = a kz k v w = v w = a kz k v +w = v +w = pz) = 0 = 0. 22

4 3. Ist z C \ R eie komplexe Nullstelle eies reelle Polyoms px), da gibt es ei komplexes) Polyom qx), so dass px) = x z)x z)qx) = x 2 z +z)+zz)qx) = x 2 2Rez)+ z 2 )qx) Da die beide Liearfaktore zusamme ei reelles Polyom ergebe, ist auch qx) ei reelles Polyom. Der folgede Satz fasst die Schlussfolgeruge zusamme. Satz: Jedes reelle Polyom px) R[x] ka folgedermaße zerlegt werde: px) = a k x k = a l m x b i ) ki x 2 +c i x+d i ) mit k +k k l +2m = ist Grad des Polyoms px). i= b,b 2,...b l sid k fache, k 2 fache bzw. k l fache reelle Nullstelle vo px). Die Polyome x 2 +c i x+d i habe keie reelle Nullstelle. Zum Beweis dieses Satzes geügt es, die vorher aufgelistete Beobachtuge zusammezufasse ud rekursiv azuwede. De Abschluss dieses Abschitts bildet ei weiterer Satz, der für uedliche Körper eie Bijektio zwische Polyome ud Polyomfuktioe postuliert. Es ist wichtig, darauf hizuweise, dass die Aussage icht auf Polyome über edliche Körper übertrage werde ka. Satz: Zwei Polyome px), qx) R[x]auch aus Q[x] oder C[x]) sid geau da sytaktisch gleich gleiche Koeffiziete), we sie sematisch gleich sid gleiche Polyomfuktioe). Beweis: Nur die Rückrichtug muss begrüdet werde. Ageomme zwei Polyome px) ud qx) erzeuge die gleiche Polyomfuktio ud sei das Maximum der Grade der beide Polyome. Das Differezpolyom sx) = px) qx) hat die Eigeschaft, a jeder Stelle r R de Wert 0 azuehme: sr) = pr) qr) = 0. Da sid die Zahle 0,,... Nullstelle vo sx) ud es gibt ei Polyom tx), so dass i= sx) = x 0)x )...x )tx) Da der Grad vo s) höchstes ist, aber die erste + Faktore auf der rechte Seite scho ei Polyom vom Grad + erzeuge, bleibt als eizige Kosequez, dass tx) das Nullpolyom ist. Damit ist auch sx) das Nullpolyom ud daraus folgt die Gleichheit vo px) ud qx). 2.2 Ratioale Fuktioe I diesem Abschitt werde ur Polyome über de reelle Zahle behadelt. Ma ka aber alle Betrachtuge problemlos auf Polyome über eiem beliebige Körper verallgemeier, we ma die Divisio vo Zahle durch die Multiplikatio mit iverse Elemete ersetzt a b astelle vo a b ). Defiitioe: Eie gaz ratioale Fuktio ist eie Polyomfuktio px). 23

5 Eie gebroche) ratioale Fuktio ist ei Quotiet aus zwei Polyome px) qx). Eie echt gebroche ratioale Fuktio ist ei Quotiet vo zwei Polyome px) qx) mit Gradpx)) < Gradqx)). Satz: Jede ratioale Fuktio px) qx) wobei hx) gaz ratioal ud rx) qx) lässt sich darstelle i der Form px) rx) = hx)+ qx) qx) echt gebroche ratioal ist. Beweis: Dieser Beweis zeigt, warum ud wie Polyomdivisio fuktioiert. Eie etscheidede Rolle spiele die Grade ud m ud die führede Koeffiziete a ud b m der Polyome m px) = a k x k qx) = b k x k. Für < m ist die Behauptug trivialerweise erfüllt, idem ma für hx) das Nullpolyom ud rx) = px) setzt. Ist m, wird der Satz mit vollstädiger Iduktio ach d = m bewiese: Iduktiosafag: d = 0, d.h. = m Ma setzt hx) = a b ud rx) = px) a b qx). Zu zeige ist Gradrx)) < ud px) rx) qx) = hx)+ qx) Dazu utersucht ma de Koeffiziete vo x im Polyom rx), das ist a a b b = 0. Folglich ist der Grad vo rx) kleier als. Für die zweite Behauptug geht ma vo der Idetität px) = a b qx) + px) a b qx) = hx)qx) + rx) aus. Die Behauptug folgt, we ma beide Seite durch qx) teilt. Iduktiosschritt: d d+ Sei = m+d+. Ma begit mit eiem ähliche Asatz wie beim Iduktiosafag: p x) = px) a x m qx) ud folglich px) b m qx) = a x m + p x) b m qx) Der Koeffiziet vo x im Polyom p x) ist 0, d.h. der Grad vo p x) ist kleier als ud folglich ka für die ratioale Fuktio p x) qx) die Iduktiosvoraussetzug agewedet werde. Bezeichet ma die Polyome aus der Iduktiosvoraussetzug mit h x) ud r x), so ergibt sich px) qx) = a x m + p x) b m qx) = a x m +h x)+ r x) b m qx) = hx)+ r x) qx) Die Polyomdivisio spielt im Polyomrig R[x] eie ähliche Rolle wie die gazzahlige Divisio mit Rest im Rig der gaze Zahle. Isbesodere ka ma die Defiitioe vom größte 24

6 gemeisame Teiler ggt) ud kleiste gemeisame Vielfache kgv) auf de Polyomrig übertrage ud de Euklidische Algorithmus zur Berechug des ggt verwede. Defiitio: Seie px) ud qx) Polyome, da ist der größte gemeisame Teiler ggtpx), qx)) das Polyom dx) maximale Grades, so dass Zerleguge px) = dx) hx) ud qx) = dx) gx) existiere ud der führede Koeffizet vo dx) gleich ist. Das kleiste gemeisame Vielfache kgvpx), qx)) ist das Polyom sx) miimale Grades, so dass Zerleguge sx) = px) hx) ud sx) = qx) gx) existiere ud der führede Koeffizet vo sx) gleich ist. Euklidischer Algorithmus Voraussetzug: px) ud qx) sid zwei Polyome dere führede Koeffizete sid ud Gradpx)) Gradqx)). procedure ggtpx), qx)) sx) = px) tx) = qx) while tx)!= 0) rx) = Rest vo sx) / tx) sx) = tx) tx) = rx) retur sx) Mit Hilfe des größte gemeisame Teilers ka auch das kleiste gemeisame Vielfache leicht berechet werde: px) qx) kgvpx),qx)) = ggtpx),qx)) Defiitio: Zur Bestimmug der Defiitiosbereichs vo ratioale Fuktioe px) qx) wird vorausgesetzt, dass ggtpx), qx)) =. Ist diese Voraussetzug och icht erfüllt, muss zuerst eie gekürzte Darstellug erzeugt werde, idem ma beide Polyome durch ihre größte gemeisame Teiler teilt. Der Defiitiosbereich besteht da aus alle reelle Zahle mit Ausahme der Nullstelle des Polyoms qx) i der gekürzte Darstellug. Beispiel: x2 x = x+ ist defiiert auf gaz R. Defiitio Polstelle): Ist ggtpx), qx)) = ud ist b eie k-fache Nullstelle vo qx), da et ma b eie k-fache Pol der ratioale Fuktio px) qx). 2.3 Polyomiterpolatio Viele Zusammehäge i reale Prozesse ud verschiedee physikalische Gesetze lasse sich durch Polyome beschreibe z.b der Zusammehag zwische elektrischer Spaug ud Leistug i eiem Stromkreis oder das Fallgesetz). Ist solch ei Zusammehag bekat 25

7 d.h. ket ma das Polyom, das ei bestimmtes Gesetz beschreibt), ka ma durch Eisetze vo Werte auch Aussage zu Situatioe mache, die icht experimetell utersucht wurde. Häufig will ma aber de umgekehrte Weg gehe: Ma ket de Zusammehag och icht ud versucht, eie Reihe vo Messwerte als Fuktioswerte eies Polyoms kleie Grades) zu iterpretiere. Ei erster Schritt dazu ist die Polyomiterpolatio, bei der es darum geht, ei Polyom zu fide, dass die Messwerte geau wiedergibt icht zu verwechsel mit der Polyomapproximatio, bei der kleie Fehler erlaubt sid, aber dafür der Grad stärker beschräkt ist). Aufgabestellug: Gegebe sid +reelle Wertepaare x 0,y 0 ),x,y ),...x,y ), wobei x 0 < x <... < x vorausgesetzt wird. Gesucht ist ei Polyom px) vom Grad, so dass px i ) = y i für alle i = 0,,...,. Die x Werte bezeichet ma auch als Stützstelle des gesuchte Polyoms. Es gibt eie Reihe verschiedeer Asätze zur Lösug dieses Problems. Der aive Asatz geht vo eiem Polyom px) = a kx k aus, wobei die Koeffiziete Variable sid. Bei der Auswertug des Polyoms a der Stelle x i das ist eie kokrete Zahl) etsteht die Gleichug xk i a k = y i, die i de Variable a k liear ist. Isgesamt etsteht ei System vo + lieare Gleichuge mit + Variable. Wie später gezeigt wird, gibt es eie eideutige Lösug des Gleichugssystems, die ma mit de bekate Verfahre z.b. Gauß- Elemiatio) ausreche ka. Wesetlich elegater ist aber die folgede Iterpolatio mit Lagrage-Polyome. Satz: Für die i der Aufgabestellug gegebee Wertepaare gibt es geau ei Polyom px) vom Grad, dass die Forderug px i ) = y i für alle i = 0,,..., erfüllt. Dieses Polyom hat die Form px) := y j x x i x j x i j= i {,2,...,}\{j} Beweis: Ma betrachtet zuerst die i der Summe zusammegefasste Hilfspolyome, die offesichtlich alle vom Grad sid: x x i p j x) = x j x i i {,2,...,}\{j} Wie ma leicht überprüfe ka, tritt bei der Auswertug vo p j x) a eier Stelle x i der folgede Effekt auf: { falls i = j p j x i ) = 0 falls i j Durch die Multiplikatio der Hilfspolyome p j mit de vorgegebee Fuktioswerte y j zeigt das Polyom px) = j=0 y j p j x) das gewüschte Verhalte. Zum Eideutigkeitsbeweis geht ma wieder davo aus, dass zwei Polyome px) ud qx) de Satz erfülle. Der Grad des Differezpolymos sx) = px) qx) ist kleier oder gleich, aber es hat midestes + Nullstelle, ämlich x 0,x,...,x. Somit muss sx) das Nullpolyom sei ud daraus folgt mit px) = qx) die Eideutigkeit. Eie dritte Methode zur Polyomiterpolatio geht auf Newto zurück. Sie geht vo dem folgede Asatz aus. px) = α 0 +α x x 0 )+α 2 x x 0 )x x )+...+α x x 0 )x x )...x x ) 26

8 Zuächst ist icht klar, ob ma auf diesem Weg überhaupt ei Polyyom erhalte ka, das alle Forderuge erfüllt. Durch schrittweises Eisetze der Werte x 0,x,...,x ergibt sich aber das Gleichugssystem y 0 = α 0 y = α 0 +α x x 0 ) y 2 = α 0 +α x x 0 )+α 2 x x 0 )x x ) : : y = α 0 +α x x 0 )+α 2 x x 0 )x x )+...+α x x 0 )x x )...x x ) Daraus ka ma schrittweise vo obe ach ute die Werte vo α 0,α,...α bereche ud das Polyom px) zusammesetze. Die Berechug der α-werte ka durch die Nutzug des sogeate Schemas der dividierte Differeze och weiter vereifacht werde: x 0 y 0 ց x y ր ց x 2 y 2 ր ց y 0, y,2 ց ր ց y 0,2 y,3 ց y 0,3 ց ց y ր 2,3 y ր ց,4 ց : :... : : y 0, ր : :... x y ր ր y ց 2, ր y, ր x y Dabei werde die Eiträge y i,j spalteweise vo liks ach rechts ach der folgede Formel berechet: ց y i,i+ = y i+ y i x i+ x i ud für alle j > i+ y i,j = y i+,j y i,j x j x i 27

9 Kapitel 3 Grezwerte vo Folge ud Fuktioe 3. Grezwerte vo Folge Defiitio: Eie Folge ist formal gesehe) eie Abbildug vo N oder N + ach R, d.h. jedem N wird ei a R zugeordet. Abweiched vo der fuktioale Notatio werde für Folge die Schreibweise a ) N, a ) 0 oder a 0,a,a 2,... verwedet. MaetdieZahlea dieglieder derfolge. Sieköeexplizit oderauchrekursivdefiiert werde. Beispiele für explizite Defiitioe:. Kostate Folge c R): Durch die Defiitio a = c etsteht die Folge c) N = c,c,c, Arithmetische Folge c,d R): Durch die Defiitio a = c + d etsteht die Folge c+ d) N = c,c+d,c+2d, Geometrische Folge c,q R,q 0): Durch die Defiitio a = c q etsteht die Folge c q ) N = c,cq,cq 2,cq 3, Harmoische Folge: Durch die Defiitio a = ) = N +, 2, 3,... Beispiele für rekursive Defiitioe: für alle etsteht die Folge. Eie kostate Folge wird rekursiv durch a 0 = c ud a + = a defiiert. 2. Eie arithmetische Folge wird rekursiv durch a 0 = c ud a + = a +d defiiert 3. Eie geometrische Folge wird rekursiv durch a 0 = c ud a + = a q defiiert. 4. Auch die harmoische Folge ka ma rekursiv defiiere, aber diese Beschreibug ist mit a = ud a + = wesetlich komplizierter ist als die explizite Defiitio. + a 5. Die Folge der Fiboacci-Zahle ist ei Beispiel dafür, dass bei rekursive Defiitioe evetuell auch Verakeruge a mehr als eier Stelle otwedig sid: a 0 = 0, a = ud a +2 = a +a +. 28

10 Beschräktheit ud Mootoie Defiitio: Eie Folge a ) N et ma: Kovergez beschräkt K R N a K vo ute beschräkt K R N a K vo obe beschräkt K R N a K mooto wachsed N a + a streg mooto wachsed N a + > a mooto falled N a + a streg mooto falled N a + < a Defiitio: Eie Folge a ) N kovergiert strebt) gege de Grezwert a, falls ε > 0 0 N 0 a a < ε ZurNotatio derkovergez eierfolge a ) N gege degrezwertaköediefolgede Ausdrücke verwedet werde: a a oder kurz a a a = a oder kurz a = a Satz: Für jede kovergete Folge a ) N ist der Grezwert eideutig, d.h. a a a b a = b Beweis idirekt): Ageomme, es gäbe eie Folge a, die gege zwei verschiedee Zahle a b kovergiert. Zur Herleitug eies Widerspruchs wird ε = b a 3 > 0 gesetzt. 0,a 0,a a a < ε 0,b 0,b a b < ε 0 = max 0,a, 0,b ) Für alle > 0 gilt: a a < ε a b < ε b a b a + a a < ε+ε = 2 b a Widerspruch! 3 Dreicksugleichug Satz: Jede kovergete Folge ist beschräkt. Beweis: Ma kostruiert eie Schrake, idem ei Wert für ε festgelegt wird, z.b. ε :=. Nach Grezwertdefiitio gibt es ei 0 N, sodass füralle 0 dieugleichug a a erfüllt ist, die ma äquivalet durch a a a+ beschreibe ka. Wählt ma K = max{ a 0, a,... a 0, a, a+ }, da ist a K für alle N. 29

11 Nullfolge ud Teilfolge Defiitio: Eie Folge, die gege 0 kovergiert, wird Nullfolge geat. Defiitio: Ist a ) N eie Folge ud i ) i N eie streg mooto wachsede Folge vo atürlichezahle, dawirda i ) i N = a 0,a,a 2,... eieteilfolge vo a ) N geat. Satz: We a ) N gege a kovergiert, da kovergiert auch jede Teilfolge vo a ) N gege a. Beispiele: ) Die harmoische Folge a = ist eie Nullfolge. Begrüdug a Had der Defiitio: Es sei ei ε > 0 gegebe. Gesucht ist ei 0, so dass für alle 0 die Ugleichug a 0 = < ε erfüllt ist. Da sich bei der Bildug der iverse Werte vo positive Zahle die Ugleichuge umkehre, ist 0 := ε + eie geeigete Wahl, de 0 > = ε = < = ε. 0 ε 2) Die Folge b = ist eie Nullfolge. Begrüdug: Die Folge c = ) N ist streg mooto wachsed ud alle Folgeglieder sid atürliche Zahle. Damit ist b ) N eie Teilfolge der harmoische Folge ud kovergiert gege Null. Bestimmte Divergez Defiitio: Die Folge a ) N divergiert, we sie icht kovergiert, also keie eigetliche) Grezwert hat. Die Folge divergiert gege de ueigetliche Grezwert bzw. falls K R 0 0 a > K bzw. K R 0 0 a < K Ma spricht i diesem Fall vo bestimmter Divergez ud drückt das symbolisch durch a = bzw. a = aus. Beispiele:. Für die arithmetische Folge a = c+ d gilt: a = 2. Für die geometrische Folge b = c q gilt: a = c falls d = 0 falls d > 0 falls d < 0 ubestimmt diverget falls q ud c 0 0 falls q < oder c = 0 c falls q = falls q > ud c > 0 falls q > ud c < 0 30

12 Reihe Defiitio: Für eie Folge a ) N defiiert ma die zugehörige Reihe s ) N als Folge der Partialsumme: s = Kovergiert eie Reihe s ) N gege eie Grezwert S, ka ebe der übliche Notatio s = S auch die Schreibweise =0 a = S verwedet werde. 3.2 Grezwertregel ud Kovergezkriterie Grezwertregel i=0 Satz: Für zwei kovergete Folge a ) N ud b ) N mit de Grezwerte a ud b gilt: a i. a +b ) = a+b 2. a b ) = a b Spezialfall: c b ) = c b) 3. a b ) = a b falls b 0 ud b 0 für alle N) 4. a = a 5. a = a Beweis: Wir beschräke us auf die Herleitug der erste zwei Regel. ) Zu zeige ist, dass ma für jedes ε > 0 ei 0 fide ka, so dass für alle 0 die Ugleichug a +b a+b) < ε gilt. Dazu utzt ma die Dreiecksugleichug ud zeigt da, dass beide Summade jeweils kleier als ε/2 sid: a +b a+b) a a + b b ) < ε 2 + ε 2 = ε Die mit ) gekezeichete Ugleichug leitet ma aus der Kovergez der Ausgagsfolge ab. Dazu setzt ma ε = ε 2 ud erhält 0,a 0,a a a < ε 0,b 0,b b b < ε Offesichtlich gelte beide Ugleichuge für alle > 0 = max 0,a, 0,b ) 2) Zu zeige ist, dass ma für jedes ε > 0 ei 0 fide ka, so dass für alle 0 die Ugleichug a b ab < ε gilt. Der Beweis ist etwas komplizierter, folgt aber dem gleiche Muster wie im erste Fall. Vor Awedug der Dreiecksugleichug wird ei 0-Summad der Form a b+a b eigefügt: a b ab = a b a b+a b ab a b b + b a a ) < ε 2 + ε 2 = ε Zur Begrüdug der Ugleichug ) verwedet ma die Tatsache, dass jede kovergete Folge beschräkt ist. Sei K eie Schrake für a ) N. Ma setzt geeigete Werte ε,ε für 3

13 die Ausgagsfolge ei ud erhält: ε = ε = ε 2K : 0,b 0,b b b < ε ε 2 b +) = 0,b a b b < ε a 2K ε 2 0,a 0,a a a < ε = 0,a b a a < ε b 2 b +) ε 2 Offesichtlich gelte beide Ugleichuge für alle > 0 = max 0,a, 0,b ) Beispiele: ) )) 2+ 3 = + ) ) 2+ 3 = ) + Regel 3) = 2+ 3 ) ) Regel ud 2) + = = = = = )) ) Regel 5) ) 2 3 ) Regel 3) = Regel ud 2) 3 Vergleichskriterium Satz: Sei k N ud a ) N,b ) N,c ) N Folge mit a b c für alle k. Kovergiere die beide äußere Folge gege de gleiche Grezwert c = a = c, da ist auch b = c. Etsprechedes gilt auch für die bestimmte Divergez gege ±. Beispiel: Zu bestimme ist der Grezwert vo a = si2 : Wege 0 si 2 gilt 0 si2. Außerdem ist 0 = ) = 0. ) Daraus folgt: si 2 = 0. 32

14 Satz: Der Grezwert vo a = mit ist. Beweis: Die Herleitug dieses Grezwerts erfolgt über die Hilfsfolge b =. Mit dem Vergleichskriterium wird gezeigt, dass b ) N eie Nullfolge ist, woraus a = folgt. Die Folge b ist vo ute durch 0 begrezt. Eie obere Begrezug ergibt sich aus der folgede Betrachtug: b +) = + ) = = +b ) = + + ) ) 2 ) b + ) b 2 ) = + b b 2 ) b b2 b Wege = 0 ergibt sich aus dem Vergleichskriterium ud der füfte Grezwertregel 0 = b2 = b ud somit a =. Folgerug: Die Limesbildugerhält schwache Ugleichuge, d.h. sid a ) N udb ) N koverget ud a b für 0 ), da a b. Achtug: Dies gilt icht für starke Ugleichuge. Mootoiekriterium Satz: Jede mooto wachsede fallede), beschräkte Folge a ) N ist koverget. Beweis: Ist a ) N mooto wachsed, da ist a = sup{a N} der Grezwert der Folge: Gegebe sei ei ε > 0 ud zu zeige ist, dass ei 0 existiert, so dass für alle 0 die Ugleichug a a < ε gilt. Da a eie obere Schrake für alle Glieder der Folge ist ud die Folge mooto wächst, reicht es zu zeige, dass ei 0 mit a 0 > a ε existiert. Ei solches 0 muss es aber gebe, de aderfalls wäre a ε eie obere Schrake für alle a, ei Widerspruch zur Voraussetzug, dass a die kleiste obere Schrake ist. Ist a ) N mooto falled, da ist a = if{a N} der Grezwert der Folge Begrüdug aalog). Beispiele: ) Die geometrische Folge a = c q kovergiert für c 0 ud 0 q < gege 0. Begrüdug: Die Folge a ist mooto falled ud mit 0 a c beschräkt. Daraus folgt die Kovergez gege das Ifimum a der Mege {a N}. Dieser Grezwert a muss gleich Null sei, de a 0 ist offesichtlich ud aus a > 0 würde a q > a folge wege q > ). 33

15 Da gäbe es ei a < a q ud folglich wäre a +2 = a q 2 < a q q2 = aq < a, ei Widerspruch dazu, dass a eie utere Schrake für alle a ist. 2) Die geometrische Reihe s = c q kovergiert für q < gege c q. Begrüdug: Die bekate Formel für die geometrische Summe c q = c q+ q sich leicht mit vollstädiger Iduktio beweise. Folglich ist s = c q+ q ) q+ ) = c q) = c q lässt 3) Die zur Folge Begrüdug: Die Reihe 2 ) N gehörige Reihe kovergiert. s = = ist mooto wachsed, de s + s = +) 2 > 0. 2 = s + k= ) = ) ) ) ) ) ) k 2 = 2 < 2 Teleskopsumme) Damit wurde die Kovergez der Reihe achgewiese, ohe de kokrete Grezwert zu kee. Mit etwas mehr Aufwad ka ma zeige, dass die Reihe gege π2 6 kovergiert. Cauchy-Kriterium Satz: Eie Folge a ) N ist geau da koverget, we ) ε > 0 0,m 0 a a m < ε Der Beweis, dass die Bedigug ) otwedig ist, erfolgt ach dem izwische) übliche Schema. Ma setzt ε = ε 2,erhält ausdergrezwertdefiitio ei 0,sodassfüralle,m 0 der Abstad vo a bzw. a m ) zum Grezwert a kleier als ε ist ud leitet mit der Dreiecksugleichug die Bedigug ) ab. Zum Beweis, dass die Bedigug ) hireiched ist, zeigt ma zuerst, dass aus ) die Beschräktheit vo a ) N folgt ud betrachtet da eie Hilfsfolge b ) N, die wie folgt defiiert ist: b = supa,a +,...) Da die Mege, vo dee das Supremum gebildet wird, immer kleier werde, ist die Folge b ) N mooto falled, vo ute beschräkt durch ifa 0,a,...) ud damit koverget. Es bleibt zu zeige, dass b = b auch der Grezwert vo a ) N ist. Für ei gegebees 34

16 ε > 0 wird ε = ε 3 gesetzt: Bedigug *) : 0 m, 0 a a m < ε b = b : > 0 b b < ε b = supa,a +,...) : 2 > a 2 b < ε Dreiecksugleichug: : 2 a b a a 2 + a 2 b + b b < 3ε = ε Eie wichtige Awedug des Cauchy-Kriteriums besteht im Nachweis der Kovergez der alterierede harmoische Reihe. Die harmoischereihe s = = i ist icht koverget, sie divergiert gege : s 2 = > }{{} }{{} 2 } {{ } 4 = = +2 2 Im Gegesatz dazu kovergiert die alterierede harmoische Reihe 2 } {{ } 2 s = i+ i = i= Zum Beweis ka ma die Differeze s m s für m > utersuche ud mit vollstädiger Iduktio ach m die folgede zwei Eigeschafte achweise:. s m s 0 ist gerade 2. s m s + Mit der zweite Eigeschaft ist das Cauchy-Kriterium erfüllt ud folglich kovergiert die Reihe. Diese Beweisidee ka auch dazu verwedet werde, eie verallgemeierte Aussage über alterierede Reihe abzuleite. Satz: Ist eie Nullfolge a ) N mooto wachsed oder falled), da kovergiert die alterierede Reihe s = ) a. 3.3 Die Eulersche Zahl e ud die Expoetialfuktio I diesem Abschitt wird die Eulersche Zahl e als Grezwert eier spezielle Reihe eigeführt ud die Gleichheit mit dem Grezwert eier adere Folge gezeigt. Aus dem Zusammespiel dieser beide Grezwerte ergebe sich iteressate Eigeschafte vo e, isbesodere als Basis der Expoetialfuktio ud des atürliche Logarithmus. Satz: Reihe s = k! = ! +...+! kovergiert. 35

17 Begrüdug mit dem Mootoiekriterium: ) Die Reihe ist streg mooto wachsed, de s + s = +)! > 0. 2) Die Reihe ist vo obe durch 3 beschräkt:! s k= 2 k = + 2 = + 2 < Defiitio: Die Eulersche Zahl e ist defiiert als Satz: Die Folge a = ) k ) + ) kovergiert gege e. ) 2,7828 k! Vor dem Beweis soll die Bedeutug dieser Folge für atürliche Wachstumsprozesse a eiem Beispiel erläutert werde. Eie Kapitalalage soll i eiem Jahre mit eiem fiktive Zissatz vo 00% verzist werde. Was ist der Uterschied zwische eier eimalige Verzisug ach Ablauf des Jahres, eier moatliche Verzisug mit 00 2 % udeier tägliche Verzisug mit %? Der Faktor der Kapitalvermehrug bei -facher Aufzisug wird durch das Folgeglied a = + ) beschriebe. Beweis: = jährliche Aufzisug a = 2 = 2 moatliches Aufzisug a 2 = 2,63 = 365 tägliche Aufzisug a 365 = 2,74 Mootoie a a = + + ) ) = +) ) ) ) = +) ) 2 = 2 ) 2 = ) 2 ) = Fürdiemit )gekezeichete UgleichugwurdedieBeroulli-Ugleichug h) h mit h = 2 verwedet. Damit ist c mooto wachsed. 36

18 Beschräkug: Wir zeige c e für alle N. c = + = ) k) k! e ) k Für die mit ) gekezeichete Ugleichug wurde die folgede Abschätzug verwedet k) ) k )... k +) = k!... k! Kovergezgegee: NachdemMootoiekriterium kovergiert diefolge a ) N gege eie Grezwert a e. Im Folgede wird a s N für jede feste Wert N N gezeigt. Daraus folgt die Ugleichug a s e ud letztlich. a = e a = + ) = N N a k) k k! N N ) = ) k) k ) N N k! N ) ) = Die Expoetialfuktio als Grezwert k! ) 2 )... k ) N Satz: Für jedes x R existiert der Grezwert N )) N = k! + x ) N k! = s N Auf de Beweis, der große Ählichkeit mit dem Beweis des letzte Satzes hat, wird hier verzichtet. Die Existez dieser Grezwerte erlaubt die Defiitio der reelle) Expoetialfuktio ud der achfolgede Satz ebefalls ohe Beweis) zeigt die Übereistimmug dieser eue Defiitio mit de scho vorher eigeführte Poteze mit ratioale Expoete. Defiitio: Die Expoetialfuktio exp : R R wird für jedes x R durch expx) = + x ) defiiert. Satz: Für beliebige x,y R gilt expx+y) = expx) expy), d.h. für alle ratioale Zahle q Q gilt expq) = e q. Folgerug : Es gilt exp0) = ud für alle x R ist expx) = exp x). 37

19 Folgerug 2: Die Expoetialfuktio exp ist streg moto wachsed, d.h. aus x < y folgt expx) < expy), ud expx) > 0 für alle x R. Damit ist exp eie bijektive Fuktio vo R ach R +. Die Umkehrfuktio ist der atürliche Logarithmus l : R + R. Der Zusammehag zwische Expoetialfuktio ud atürlichem Logarithmus lässt sich wie folgt charakterisiere: la = b expb) = e b = a isbesodere ist a = expla) = e la Das Expoetialgesetz expx + y) = expx) expy) impliziert für die Umkehrfuktio die Regel la b) = la+lb. Ma ka de atürliche Logarithmus auch utze, um eue Expoetialfuktioe für beliebige Base a > 0 ud ihre Umkehrfuktioe log a defiiere: a x = e la ) x := e la) x ud a b = c log a c = b Isbesodere ka ma aus e lb = b = a log a b = e la log a b die Regel I verallgemeierter Form lautet sie: log a b = la lb ableite. log a b = log ca log c b für alle a,b,c > Grezwerte ud Stetigkeit vo Fuktioe Grezwerte vo Fuktioe Defiitio: Es seie I R ei Itervall a I bzw. a {± } f : I\{a} R bzw. f : I R falls a {± }) eie Fuktio Da gilt: Die Fuktio f hat i a de Grezwert c, falls für jede Folge x I mit dem Grezwert a die Folge der etsprechede Fuktioswerte de Grezwert c hat, d.h.: fx ) = c Die Fuktio f hat i a de liksseitige Grezwert c, falls fx ) = c für jede Folge x I mit dem Grezwert a ud der Eigeschaft x < a. Die Fuktio f hat i a de rechtsseitige Grezwert c, falls fx ) = c für jede Folge x I mit dem Grezwert a ud der Eigeschaft x > a. Zur Notatio verwedet ma: x a fx) = c für de Grezwert fx) = c für de liksseitige Grezwert ud x a 38

20 fx) = c für de rechtsseitige Grezwert. x a+ Da ma mit dieser Defiitio die Grezwerte vo Fuktioe auf Grezwerte vo Zahlefolge zurückgeführt hat, übertrage sich auf atürliche Weise auch die bekate Grezwertsätze ud Kovergezkriterie. Satz: Aus x a fx) = c ud x a gx) = d folgt x a fx)±gx)) = c±d x a fx) gx)) = c d fx) x a gx) = c d falls d 0) Spezialfall: x a b fx)) = b d für b R) Bei de Aweduge kommt es hauptsächlich darauf a, die richtige Termuformuge vorzuehme: x x x x ) x +x x x+) = x x = x + x x+ x x x x = x 0 x+ x = x 0 = x 0 x+ ) x++ ) x x++ x+ x x+ = x 0 = x 0 x+ = 2 x x x+ Satz Vergleichskriterium): Seie f, g ud h Fuktioe mit gx) fx) hx) für alle x I ud a I,so dass gx) = hx) = c x a x a da ist auch Awedug: Berechug des Grezwerts six x 0 x fx) = c x a. Ma vergleicht i der folgede Grafik die Flächeihalte des kleie Dreiecks, des Kreisauschitts ud des große Dreiecks. 39

21 cosx six x π }{{ 2 } kleies Dreieck 2π tax }{{ 2 } großes Dreieck Nu ka de Limes für die beide äußere Werte bestimme: Damit folgt aus dem Vergleichskriterium: x 0 cosx = = x 0+ x 0+ cosx x six = x 0+ cosx x six cosx x si x) = x 0+ Schließlich erhält ma aus der Kehrwertbetrachtug: x six = six x 0 x = x x 0 six = Stetigkeit Defiitio: Es sei I R ei Itervall ud f : I R eie Fuktio. Die Fuktio f heißt stetig im Pukt x 0 I, we x x0 fx) = fx 0 ). Liegt x 0 Rad vo I, wird ur der eiseitige Limes betrachtet. Satz: Eie Fuktio f ist stetig i x 0 geau da, we ) ε > 0 δ > 0 x I x x 0 < δ fx) fx 0 ) < ε) Beweis ): Für jede Folge a ) N mit dem Grezwert x 0 muss fa ) = fx 0 ) gezeigt werde. Das bedeutet formal ε > fa ) fx 0 ) < ε. Für das gegebee ε betrachtet ma das δ > 0 aus der Bedigug ) ud verwedet es i der Grezwertdefiitio vo a = x 0 : 0 0 a x 0 < δ Offesichtlich hat ma damit das gesuchte 0 gefude, de für alle 0 gilt a x 0 < δ ud aus der Bedigug ) folgt fa ) fx 0 ) < ε. Beweis ), idirekt: Ma begit mit der Negatio der Bedigug ) ud muss daraus die Existez eier Folge a ) N mit dem Grezwert x 0 ableite, so dass die Folge fa )) N icht gege dem Grezwert fx 0 ) kovergiert. ) : ε > 0 δ > 0 x I x x 0 < δ ud fx) fx 0 ) ε) Die Folge a ) N wird durch das folgede Argumet kostruiert: a : Setze δ = x a I x x 0 < δ ud fx) fx 0 ) ε) a : Setze δ = x a I x x 0 < δ ud fx) fx 0 ) ε) 40

22 Damit ist x 0 a = x 0 da a x 0 < ), aber fa ) fx 0 ) ε für alle N ud damit ist f icht stetig i x 0. Bemerkug: Ist f i x 0 icht defiiert, aber x x0 fx) R existiert, da ka ma die Defiitio vo f auf x 0 erweiter durch fx 0 ) := x x0 fx). Eie solche Erweiterug wird stetige Fortsetzug der Fuktio f im Pukt x 0 geat. Beispiele: a) Bei ratioale Fuktioe sid behebbare Lücke im Defiitiosbereich scho per Kovetio ausgeschlosse: fx) = x2 x = x ) x+) x wird gekürzt zu x+ Damit ist f) = 2. b) gx) = six x ist auf R\{0} defiiert ud ka durch g0) := auf R fortgesetzt werde. c) hx) = x 2 + x 2 ist auf R\{0} defiiert. Wege x 0 x 2 + x 2 = 2 muss ma zur stetige Fortsetzug h0) := 2 setze. Die folgede Sätze sid wieder eifache Kosequeze aus etsprechede Grezwertbetrachtuge. Satz: Sid f ud g stetig auf I, da sid auch f +g, f g ud f g stetig auf I f g stetig i alle x 0, für die gx 0 ) 0 Satz: Ist eie Fuktio f : I R stetig auf I, eie Fuktio g : D R stetig auf D ud ist gd) I, da ist die Fuktio hx) := fgx)) stetig auf D. Folgeruge: Polyome sid auf R stetig. Ratioale Fuktioe px) qx) mit ggtpx),qx)) = sid stetig i alle x R mit qx) 0. Satz: Für jede auf eiem abgeschlossee Itervall [a, b] stetige Fuktio f gilt: Schrakesatz: K R x [a,b] fx) < K Satz vom Miimum ud Maximum: x 0,x [a,b] x [a,b] fx 0 ) fx) fx ) 4

23 Zwischewertsatz: Gleichmäßige Stetigkeit: c fx 0 ) c fx ) x [a,b] fx) = c ε > 0 δ > 0 x,x [a,b] x x < δ fx) fx ) < ε) Asymptote Defiitio: Asymptote eier Fuktio Kurve) y = fx) sid Gerade der folgede Form: a) Die durch x = a defiierte Gerade ist eie vertikale Asymptote, we fx) = ± oder fx) = ± x a x a+ b) Die durch y = c defiierte Gerade ist eie horizotale Asymptote, we fx) = c oder fx) = c x x c) Die durch y = ax + b defiierte Gerade ist eie schräge Asymptote, we a 0 ud fx) ax b) = 0 oder fx) ax b) = 0 x x Diese drei Arte vo Asymptote köe auch bei ratioale Fuktioe auftrete. Es sei fx) = px) qx) eie ratioale Fuktio wobei ggtpx), qx)) = vorausgesetzt wird. a) Ist b eie Polstelle vo fx), da ist x = b vertikale Asymptote. We b ei k-facher Pol ud k gerade, da sid rechtsseitiger ud liksseitiger Grezwert gleich. We b ei k-facher Pol ud k ugerade, da habe rechtsseitiger ud liksseitiger Grezwert etgegegesetztes Vorzeiche. b) Sei = Gradpx)) ud m = Gradqx)) Ist m >, da ist y = 0 eie horizotale Asymptote vo fx). Ist m =, da ist y = a b m eie horizotale Asymptote vo fx). Ist = m+, da ist die Gerade eie schräge Asymptote vo fx). y = a b m x+ b m a a b m b 2 m Die Formel für die horizotale ud schräge Asymptote folge aus der Polyomdivisio, d.h. die Geradegleichuge sid der gazratioale Quotiet aus der Polyomdivisio. 42

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Grenzwerte von Folgen und Funktionen

Grenzwerte von Folgen und Funktionen Kapitel 3 Grezwerte vo Folge ud Fuktioe 3. Grezwerte vo Folge Defiitio: Eie Folge ist formal gesehe) eie Abbildug vo N oder N + ach R, d.h. jedem N wird ei a R zugeordet. Abweiched vo der fuktioale Notatio

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Kapitel 3 Folgen von reellen Zahlen

Kapitel 3 Folgen von reellen Zahlen Wolter/Dah: Aalysis Idividuell 4 Kapitel 3 Folge vo reelle Zahle Wir befasse us i diesem Abschitt mit Zahlefolge, die u.a. zur Eiführug ud 3/0/0 Behadlug des für die Aalysis äußerst wichtige Grezwertbegriffes

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C " a " a 1. c D lim. R. Plato 27

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C  a  a 1. c D lim. R. Plato 27 R. Plato 7 II Aalysis 4 Folge 4. Kovergez vo Folge Differeziatio ud Itegratio sid grudlegede mathematische Kozepte, dee ifiitesimale Prozesse zu Grude liege. Die geaue Beschreibug solcher Prozesse erfordert

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80 KAPITEL 3 Zahlereihe 3. Geometrische Reihe......................... 7 3.2 Kovergezkriterie......................... 72 3.3 Absolut kovergete Reihe.................... 80 Lerziele 3 Eigeschafte der geometrische

Mehr

Folgen und Reihen. Inhaltsverzeichnis. A. Mentzendorff Geändert: August 2008

Folgen und Reihen. Inhaltsverzeichnis. A. Mentzendorff Geändert: August 2008 A. Metzedorff Geädert: August 008 Folge ud Reihe Ihaltsverzeichis Folge. Der Folgebegriff.................................... Arithmetische ud geometrische Folge......................3 Mootoe ud beschräkte

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +..

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +.. 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5.4 begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Analysis Übungen Hausaufgaben für 4. April

Analysis Übungen Hausaufgaben für 4. April Aalysis Übuge Hausaufgabe für 4. April Reihe sg 1. AN 8.2. c), AN 8.9. a). 2. Beweise die otwedige Bedigug für die Kovergez eier Reihe: we a koverget ist, da lim a = 0. (I der Praxis: we lim a 0, da ist

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis, Woche 2 Reelle Zahle A 2. Ordug Defiitio 2. Ma et eie Ordug für K, we. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a, b, c K

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

6.3 Folgen und Reihen

6.3 Folgen und Reihen 63 Folge ud Reihe Folge sid ichts aderes als Fuktioe f vo der Mege N {,,, 3, } der atürliche Zahle oder vo eiem ihrer Edabschitte N m { m, m +, m +, } i irgedeie Mege Ma schreibt i diesem Fall meist f

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich. Lösuge. Es gibt drei Lösuge.. Lösug: Ato ist traurig ud er trikt keie Likör. Bruo isst Torte ud ist besorgt. Christa ist icht übel ud sie macht Purzelbäume.. Lösug: Ato ist traurig ud trikt keie Likör.

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Konvergente Folgen. Kapitel Reelle Folgen und Reihen. Motivation: Ein einem Kreis K einbeschriebenes (regelmäßiges) n-eck E n 19/11/99.

Konvergente Folgen. Kapitel Reelle Folgen und Reihen. Motivation: Ein einem Kreis K einbeschriebenes (regelmäßiges) n-eck E n 19/11/99. Kapitel Kovergete Folge.0 Reelle Folge ud Reihe Motivatio: Ei eiem Kreis K eibeschriebees (regelmäßiges) -Eck E 9//99 approximiert die Fläche des Kreises: =6 Fläche (E ) Fläche(K) falls 0. Die mathematisch

Mehr

Lösungen zum Thema Folgen und Reihen

Lösungen zum Thema Folgen und Reihen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Lösuge zum Thema Folge ud Reihe Lösug zu Aufgabe 1. a) (a ) N ist eie arithmetische Folge mit d = 11 ud damit ist a 75 = 7 + (75 1)

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2017

HM I Tutorium 2. Lucas Kunz. 3. November 2017 HM I Tutorium 2 Lucas Kuz 3. November 2017 Ihaltsverzeichis 1 Theorie 2 1.1 Reelle Zahle.................................. 2 1.2 Itervalle..................................... 2 1.3 Beträge.....................................

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

6. Folgen und Grenzwerte

6. Folgen und Grenzwerte 56 Adreas Gathma 6. Folge ud Grezwerte Wie scho am Ede des letzte Kapitels ageküdigt wolle wir u zur eigetliche Aalysis, also zur lokale Utersuchug vo Fuktioe komme. Der zetrale Begriff ist dabei der des

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr