( ) = '( ) ( 3) Analysis, Geometrie, Stochastik 1.1. a x x P a (x p ; y p ) x p > 0 Q a (x q ; y q ) x q < 0. Schnittpunkte von f a und g a a

Größe: px
Ab Seite anzeigen:

Download "( ) = '( ) ( 3) Analysis, Geometrie, Stochastik 1.1. a x x P a (x p ; y p ) x p > 0 Q a (x q ; y q ) x q < 0. Schnittpunkte von f a und g a a"

Transkript

1 Lösungen Abitur Leistungsurs themti Seite von 5 P Anlysis, Geometrie, Stochsti. 9 g R, R, >.. P ( p ; y p ) p > Q ( q ; y q ) q < Schnittpunte von und g g und (d -) ( ) ( ; ) P Q ( ; ) g P (; ) y m + n. Ableitungen: ' 9 g 9 ' Anstiege der Tngenten: m ' m g ' g Winel zwischen den Tngenten: 5 5 m m g tnα + m 5 m g α 7,57.. Fläche zwischen und g : A g d d Ableitungen von A(): A' d A '' > ür lle > inimum

2 Lösungen Abitur Leistungsurs themti Seite von 5 inimler Flächeninhlt: A' ( ) entällt, d > in A () + Der Flächeninhlt wird ür in miniml und beträgt dnn FE.. g: 5 + r h: + s r, s R.. Ebene E(g,h): n.. S(; ; -) P ( 5; ; ) E(g,h) n + z d d E(g,h): + z 7 Gleichung der Gerden : : + t.. t R (Ortsvetor: OS ; Richtungsvetor: n ) g: 5 + r h: + s r, s R ( ; ; ) Ein Ecpunt ist der Schnittpunt der Gerden g und h: 5 + r + s 5 r s 5 r + + r r + + r s + s s r + s + A( ;; ) C liegt u der Digonle AC und der Abstnd zu A ist A : OC OA + A + 5 C ( ; ; 5)

3 Lösungen Abitur Leistungsurs themti Seite von 5 Ein weiterer Ecpunt des Prllelogrmms muss Schnittpunt der Gerden h und g (C,Richtungsvetor von g) sein: g': + t t R 5 Schnittpunt h und g : + s + t 5 + s t + ( + t) t t s + t s s s 5+ t D ( ; ; ) OB OA + DC + 5 B ( ; 5; ) Die Ecpunte des Prllelogrmms sind: A( ;; ), B ( ; 5; ), C ( ; ; 5), D ( ; ; ) (Es sind nur drei Ecpunte geordert.) Zeichnung:.. p,5 X Anzhl unveräulicher Pole X ist B 5;,5 -verteilt (binomilverteilt mit n 5 und p,5) Whrscheinlicheiten: PA PX ( ) PX ( ) + PX ( ) + PX ( ) Erwrtungswert: PB P(5 X< ) PX ( 5) + PX ( ) + PX ( 7) 5,75 5,5,75,5,75,,% , 5,75, 5,75, 5,75,5 5, %

4 Lösungen Abitur Leistungsurs themti Seite von 5 E( X) n p 5,5,5 Stndrdbweichung: σ ( X) n p p 5,5,75,5 Der Erwrtungswert sgt us, um welchen Wert Stichprobenwerte im ittel streuen werden. Die Stndrdbweichung gibt n, wie str die Stichprobenwerte um den ittelwert streuen. Im σ -Intervll sind die Stichprobenwerte mit großer Whrscheinlicheit nzutreen. Stichprobenwerte liegen mit hoher Whrscheinlicheit im Intervll [,5,7;,5 +,7] [,;,]. Die Stichprobenwerte sind mit hoher Whrscheinlicheit, 5,, 7 oder... X Anzhl der richtigen Kugeln X ist hypergeometrisch verteilt Whrscheinlicheit: PX ( ), 99% P Anlysis. Augben..,..,.. siehe Augben..,..,.... g + 7 Schnittpunte mit den Koordintenchsen: g ( ) + 7 g P ( ;) P ( ;) P ; Flächeninhlt des Dreiecs P P P : F PP OP Der Flächeninhlt des Dreiecs P P P beträgt FE ln Deinitionsbereich: R, Symmetrie: 9 und

5 Lösungen Abitur Leistungsurs themti Seite 5 von 5.. ( ) ( ) ln ln 9 9 ist eine gerde Funtion G ist ilsymmetrisch zur Ordintenchse Schnittpunte mit den Koordintenchsen: ( ) ln 9 Ableitungen: S und S ( ) und ( entällt) ; ; Es eistiert ein Schnittpunt mit der Ordintenchse, d nicht zum Deinitionsbereich von gehört. 9 ln [ ln ln 9] ' [ ln ln 9] + [ ln ln 9 + ] ln + 9 '' [ ln ln 9 + ] [ ln ln 9 + ] + [ ln ln 9 + ] ln + 9 Etrempunte: '( ) E E e e ln + ln 9 9 e '' ln + + > e e e '' ln + + > e e [ ] e e [ ] 9 e e 9 inimum e 9 e e inimum e 9 e e Pin e 9 ; e e P in e 9 ; e e.. F ln 9 9 Ableitung von F() muss () ergeben: F ln ln ln ln 9 F' ln ln ln ln S ( ; ) 9 ln ' ln + 9 y m +n Berechnung der Tngente: m ' ln + + n n t: y

6 Lösungen Abitur Leistungsurs themti Seite von 5 W Anlysis R,,, R, >.. Schnittpunte mit der Abszissenchse: ( ) Nenner von wird ür gleich Null ür R, >, Verhlten im Unendlichen: lim lim lim ± ± ± Asymptoten: Polsymptoten: und Wgerechte Asymptote: y.. < < Au den Nchweis der Etremstellen mittels der. Ableitung nn verzichtet werden. Ableitungen: ' ( ) ( ) + Etremstellen: ' + ( ) E, E ± ± + + >, d ]; [ Es eistieren zwei Etremstellen... b b R,,, R, >, b R, b > und b Nchweis. ür b: b b b b (d nn durch dividiert werden) b Widerspruch b

7 Lösungen Abitur Leistungsurs themti Seite 7 von 5... Ableitung von n einer Etremstelle: + ''( E) ''( ) + ( ) E Etrempunte: ± ± E, E E E + '' < ( ) + '' > 9 imum 9 inimum 9 P ; 9 P in ;.. b c R,,, b R, b R Berechnung von b und c: b c b c ( ) b c b c b Koeizientenvergleich b c c c b b.. Stmmuntion von : F d d ln ln + c mit c R Flächeninhlt: A d F F ln ln ln + ln ln ln ln Der Flächeninhlt beträgt ln FE.. ( ) ( ) ür Grenzwert: lim lim Bei eistiert eine hebbre Unstetigeitsstelle, eine Lüce.

8 Lösungen Abitur Leistungsurs themti Seite von 5 Sizze: () W Anlysis R,, R, >. π V VE 9 Nullstellen von : und Bestimmung von : π V π d d π π d d π π π π 9 π V VE 9 π π 9 9 entällt, d > Für beträgt ds Volumen des Rottionsörpers π VE. 9

9 Lösungen Abitur Leistungsurs themti Seite 9 von 5. Gesucht ist der Etrempunt von, bei ihm wird der mimle Durchmesser erreicht. Ableitungen: ' ''( E) < E ür lle E imum Etremstelle: ' (Nenner von ) E imler Durchmesser: d 9 Der mimle Durchmesser beträgt. ' 9 LE. Winel der Tngente mit der Abszissenchse: ' tnα α,. S b d π V V π 9 Berechnung von S :.5 b π d π d π ( ) d 9 S ( ) d V V π 9 5 d Die Abszisse S des Schwerpuntes des Rottionsörpers beträgt 9 Zylinder: r ; h 5. Der mimle Durchmesser des Körpers beträgt LE

10 Lösungen Abitur Leistungsurs themti Seite von 5 < Der Zylinder psst nicht hinein, wenn ein Rdius und die Abszissenchse prllel sind. Die Höhe des Zylinders (genuer: die ittellinie) muss u der Abszissenchse liegen. Die Funtion ht ein imum und sonst eine Etremwerte und Wendepunte. Außerdem ist stetig. Deshlb psst der Zylinder hinein, wenn es Funtionswerte ( ) und ( + ) eistieren, ür die gilt: und ( + ). Lösung durch Ausprobieren von Funtionswerten von : (), 57 < zu lein 7, < zu lein 9, > ( 9) < zu lein 5 5, 5 > 7 7, 59 > Der Zylinder psst hinein. Anstz über Lösen einer Gleichung: ( ) Bestimmen einer Nullstelle der Gleichung mit einem Näherungsverhren Gewähltes Näherungsverhren: Newton 9 + ' ( ) '( ) 9 Schätzen von :,,,,+,, 5 Der Zylinder psst hinein. W Anlytische Geometrie A(; ; ), B(; ; -), C(-; ; ), S(; ; ) Pyrmide ABCS mit Grundläche ABC. Dreiec ABC gleichseitig: AB BC CA AB BC CA Dreiec ABC ist gleichseitig. Ebenengleichung E (ABC): AB AC ne E (ABC): + y+ z d A E (ABC) d + + E (ABC): + y+ z

11 Lösungen Abitur Leistungsurs themti Seite von 5 Zeichnung: Unsichtbre Knten: AC, BC, CS. E : y+ 7z+ Gerde h(bs): h(bs): + r mit r R Schnittpunt D von h(bs) mit E : ( r) ( r) ( r) r 9 r [; ] Schnittpunt D liegt u Knte BS r D ( ;9;) Pyrmide ABCS wird in zwei Pyrmiden ABCD und ACDS zerlegt. (Es ist nur die Berechnung des Volumens eines Teilörpers geordert.) VABCD ( AB AC) AD VACDS ( AC AD) AS 7 5 Winel zwischen E und E : E : + y+ z E : y+ 7z+ 7 cosα, 7 α,7

12 Lösungen Abitur Leistungsurs themti Seite von 5. Ein solcher Zylinder eistiert, wenn der Abstnd des Lotes von S u die Ebene E vom ittelpunt des Umreises nicht größer ls der Rdius des Zylinders ist. ittelpunt ( ; y ; z ) des Umreises: A B y y z z + ( ) + ( y ) + ( z ) ( ) + ( y ) + ( z + ) ( ) + ( y ) + ( z ) ( ) + ( y ) + ( z + ) + 9 y + z + + y + + z + y + z y + z A C + y y z z ( ) + ( y ) + ( z ) ( + ) + ( y ) + ( z ) ( ) + ( y ) + ( z ) ( + ) + ( y ) + ( z ) + 9 y + z + + y + z + 9 y z y z E + y + z Gleichungssystem: y + z y z y z + y + z ( ; ;) Rdius des Umreises: r A y z y z y z 9 y z z y z + y + z y y Lot (Fußpunt) F von S u E : E : + y+ z ne (S; n E ): + s mit s R Schnittpunt von mit E : + s + + s + + s s F s ( ; ;) Abstnd des Lotes von S u die Ebene E vom ittelpunt des Umreises: F r Es lässt sich ein gerder Zylinder inden, der die Fläche des Umreises des Dreiecs ABC ls Grundläche ht und die Pyrmide ABCS umsst.

13 Lösungen Abitur Leistungsurs themti Seite von 5. g: + t mit t R S, S g V V V ABCS ABCS ABCS AB AC Volumen der Pyrmide ABCS: VABCS AB AC AS Oder: V V + V + ABCS ABCD ACDS Volumin der Pyrmiden ABCS und ABCS : S S, ABCS,, S S, V AB AC AS y y z z S S, + y + z + y + z S, S, S, S, S, S, V V V und S, S g ABCS ABCS ABCS + y + z + t+ t+ t 5 5t t S S S t t S ( ; ;) + t t S ( ; ; ) Die zwei gesuchten Punte sind S ( ; ;) und ( ; ; ) S. W Stochsti p Nico, p Re ne, 75 Behuptung: ptim,5 Einstz:,5 ür Würe X Anzhl der Treer Y Anzhl der Würe, die dneben gehen X Y. n X ist B ;, -verteilt (binomilverteilt mit n und p,) Whrscheinlicheiten lut Tbelle: PA PY P X B 5,%. ;, ({ }) ;, ({ }) ;, ({}) ;, ({ }) ;, ({ }) ;, ({ }) ;, ({ }) ;, ({ }) ;, ({ }) ;, ({ }) ;, ({ }) PB P X B + B 7 + B + B 9 + B,% PC P < X< 9 B + B 5 + B + B 7 + B 9,9% Linsseitiger Signiinztest: H : p,5 H : p <,5 Y Anzhl der Würe, die dneben gingen X Anzhl der Treer H whr X ist B ;,5 -verteilt (binomilverteilt mit n und p,5) A { ;;...;7} (Y X 7) P( X ) B;,5 ({ }) 7 ;;...;7,79 7,9% Die Irrtumswhrscheinlicheit beträgt 7,9%. Es hndelt sich hierbei um die Whrscheinlicheit, einen Fehler. Art zu begehen, lso um ds Signiinzniveu.

14 Lösungen Abitur Leistungsurs themti Seite von 5. Linsseitiger Signiinztest: H : p,5 H : p <,5 X Anzhl der Treer H whr X ist B ;,5 -verteilt (binomilverteilt mit n und p,5) α,5 A { ;;...; l} P( X ) α ({ l} ) B;,5 ;;...;,5 B ;,5 ({ ;;...;} ),9 B ;,5 ({ ;;...;7} ),79 l Bei,,,,, 5 oder Treern wird Tims Behuptung mit höchstens 5%iger Whrscheinlicheit bgelehnt. (Frgestellung ist irreührend und nicht durchdcht.). A { ;;...;} n p Nico, p Re ne, 75 p Tim,5 D Alle drei Jungen weren höchstens einml dneben. Whrscheinlicheiten: P ( Y ) P ( X 9) B 9 + B,% Nico Nico ({}) ({ }) ({}) ({ }) ({}) ({ }) ;, ;, P ( Y ) P ( X 9) B 9 + B, % Re ne Re ne ;,75 ;,75 P ( Y ) P ( X 9) B 9 + B 5, % Tim Tim ;,5 ;,5 PD PNico ( X 9) PRe ne ( X 9) PTim ( X 9),,, 5, % Die Whrscheinlicheit, dss lle drei Jungen höchstens einml dneben weren, beträgt,%..5. Die Frgestellung sollte lrer ormuliert sein: Es önnte eventuell uch gemeint sein, dss lle Jungen zusmmen höchstens einml dneben weren. E Alle drei Jungen weren zusmmen höchstens einml dneben. PNico ( X ) PRe ne ( X ) PTim ( X ) + PNico ( X 9) PRe ne ( X ) PTim ( X ) PE,5% + PNico ( X ) PRe ne ( X 9) PTim ( X ) + PNico ( X ) PRe ne ( X ) PTim ( X 9) 5 5;75,75, 5 Whrscheinlicheitsverteilung: K 5 B X in %,9,5,79,7 9,55,7 5 X ist B 5;,75 -verteilt. B ( X ) Digrmm: 5;75 Whrscheinlicheitsverteilung von X 5 5 P(X ) in %

15 Lösungen Abitur Leistungsurs themti Seite 5 von 5.5. Bernoulliette der Länge n 5 mit p,75 öglicheiten der Simultion: 5-mliges Ziehen us einer Urne mit Zurüclegen; In der Urne beinden sich blue Kugeln und eine rote Kugel. Als Erolg wird ds Ziehen einer bluen Kugel gewertet. Zullsgröße X ist die Anzhl der insgesmt gezogenen bluen Kugeln. 5-mliges Drehen eines Glücsrdes. Ds Glücsrd ist in Setoren mit den Auschriten,,, 5 eingeteilt. Jeder Setor nimmt 9 des Vollreises ein. Als Erolg wird ds Drehen einer Primzhl gewertet. Zullsgröße X ist die Anzhl der insgesmt gedrehten Primzhlen.. p,9 PY,99 P( X n ) Berechnung von n: P X n,99 Bn;,9 ({ n }) Bn;,9 ({} n ) +,99 n n + n n n n n,9, +,9,99 n n,9,,9,,99 Probieren:,9,+,9,99,9,+,9,995,9,+,9, ,9,+,9,95,99 X ist B n;,9 -verteilt Ein Werer mit der Treerquote 9% muss mindestens vierml weren, dmit er mit mindestens 99% Whrscheinlicheit höchstens einml dneben wirt. D die Abweichungen von,99 bei n sehr gering sind, muss ein Werer mit der Treerquote 9% mindestens vierml weren, dmit er mit 99% Whrscheinlicheit höchstens einml dneben wirt.

lokales Maximum lokales u. globales Minimum

lokales Maximum lokales u. globales Minimum 6 Extrempunte Deinition: Eine Funtion : x (x) ht n der Stelle x ID ein loles (reltives) Mximum/Minimum, wenn die Funtionswerte in einer beliebig leinen Umgebung von x leiner/größer ls n dieser Stelle sind

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

( 0) ( x) ( ) ( ) ( ) ( ) ( ) ( ) Analysis, analytische Geometrie, Stochastik 1.1 1.1.1. Ableitungen: Wendepunkte: = 24 > 0 konkav konvex fa

( 0) ( x) ( ) ( ) ( ) ( ) ( ) ( ) Analysis, analytische Geometrie, Stochastik 1.1 1.1.1. Ableitungen: Wendepunkte: = 24 > 0 konkav konvex fa Lösungen Abitur Leistungskurs Mthemtik 00 www.mthe-schule.de Seite von P Anlsis, nltische Geometrie, Stochstik. f + + R, R.. Ableitungen: f ' + f ''( ) + Wendepunkte: f '' 0.. 0 W f ''' + + 0 ( + ) 0 f

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 008 Mthemtik Aufgbenstellung A1 und A (Whl für Prüflinge) Aufgbenstellung A3 (siehe Extrbltt) (wird durch die Lehrkrft usgewählt)

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin - Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg

Mehr

Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() = Aufgbe : ( VP) Berechnen Sie ds Integrl ( ) 0 4 d Aufgbe : ( VP) Lösen Sie die Gleichung 4e + 6e = 4 Aufgbe

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musterufgben für ds Fch Mthemtik 2012 Impressum Ds vorliegende Mteril wurde von einer Arbeitsgruppe mit Vertretern us den Ländern Byern, Hmburg, Mecklenburg-Vorpommern, Niederschsen, Schsen und Schleswig-

Mehr

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t:

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t: Lösungen Abiur Leisungskurs Mhemik www.mhe-schule.de Seie von 9 P Anlysis = R, ² k.. p = + b+, b, R Ableiungen: k' ( ) = = p' = + b Berechnung der Koeffizienen: ; p =.. S : () p' () k' () + b + = b= =

Mehr

Wie man das Dreieck des Dreiecks löst

Wie man das Dreieck des Dreiecks löst Fch Prüfende Lehrpersonen Essodinm Alitiloh essodinmlitiloh@eduluch Mrkus T Schmid mrkustschmid@eduluch Roel Zuidem roelzuidem@eduluch Klssen Prüfungsdtum Freitg, 25 Mi 2018 Prüfungsduer Erlubte Hilfsmittel

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 005 Aufgbenstellungen A und A (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus.

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus. Mthemti 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 6. August 011 Zeit : 90 Minuten Nme :!!! Doumentieren Sie lle Ansätze und Zwischenrechnungen!!! 1. Linere Funtionen

Mehr

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Grundkurs Mathematik (Sachsen): Musteraufgabe 2 Teil A (ohne Rechenhilfsmittel)

Grundkurs Mathematik (Sachsen): Musteraufgabe 2 Teil A (ohne Rechenhilfsmittel) Grundurs Mathemati (Sachsen): Musteraufgabe Teil A (ohne Rechenhilfsmittel) In den Aufgaben. bis.5 ist von den jeweils fünf Antwortmöglicheiten genau eine richtig. Kreuzen Sie das jeweilige Feld an. x

Mehr

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =

Mehr

Abitur 2012 Mathematik Geometrie VI

Abitur 2012 Mathematik Geometrie VI Seite 1 http://www.biturloesung.de/ Seite Abitur 1 Mthemtik Geometrie VI In einem krtesischen Koordintensystem sind die Punkte A(1 ), B(1 8 ), C(1 ), R( ), S( 8 ) und T ( ) gegeben. Der Körper A B C R

Mehr

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt:

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt: Mthemtik LK M,. Kursrbeit Integrtion Lösung..3 Aufgbe :. Erkläre mit Hilfe der Definition des Integrls den Unterschied zwischen dem Integrl einer Funktion und dem Flächeninhlt der Fläche zwischen dem Grphen

Mehr

Realschulabschluss 2013

Realschulabschluss 2013 Relschulbschluss 0 Bden-Württemberg Mthemtik Musterlösung Whlteil Lösung Diese Lösung wurde erstellt von Corneli Snzenbcher. Sie ist keine offizielle Lösung des Ministeriums für Kultus, Jugend und Sport

Mehr

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Nosper Mathematik 1 Kurvendiskussion. -Lösungen- 4 2 f(x) 3 (x) 2 (x) (x) x = 0,765.

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Nosper Mathematik 1 Kurvendiskussion. -Lösungen- 4 2 f(x) 3 (x) 2 (x) (x) x = 0,765. Pro. Dr.-Ing. Tim J. Nosper Mathematik Augabe : a) 4 () + 4 4 + 8 () + 8 () () 4 Etremstellen: 0,765 0,765,847,847 4 HP,44 / HP,44/ TP 0 / WP 0,86/ 0, WP 0,86/ 0, Seite von Pro. Dr.-Ing. Tim J. Nosper

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Eine Parabel dritten Ordnung die symmetrisch zum Ursprung ist, hat in dem Punkt P( 2 6) eine Tangente, die parallel zur Geraden y = x + 1 ist.

Eine Parabel dritten Ordnung die symmetrisch zum Ursprung ist, hat in dem Punkt P( 2 6) eine Tangente, die parallel zur Geraden y = x + 1 ist. Aufge Eine Prel dritten Ordnung die symmetrisch zum Ursprung ist, ht in dem Punkt P 6 eine Tngente, die prllel zur Gerden y ist Bestimmen Sie die Gleichung dieser Prel Die Funktion f ist durch die Prel

Mehr

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008 Abschlussprüung n Fchoberschulen / Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen im Schuljhr 007/008 Hupttermin: Nch- bzw Wiederholtermin: 009008 Schulrten: Fch: Prüungsduer:

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I

Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I Michel Buhlmnn Mthemtik-Aufgbenool > Normlrbeln, sezielle llgemeine Prbeln I Einleitung: Normlrbeln sind qudrtische Funktionen von der Form: y = + + q (Normlform), y = ( d) + c (Scheitelform), y = (- )(-

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

Die Versiera der Agnesi

Die Versiera der Agnesi Vermischte Aufgben: Anlysis und Geometrie S.. 1 Die Versier der Agnesi Am 16. Mi 014 zeigte Google ls Erinnerung n den 96. Geburtstg der itlienischen Mthemtikerin Mri Getn Agnesi ein sogennntes Doodle.

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Arkus-Funktionen. Aufgabensammlung 1

Arkus-Funktionen. Aufgabensammlung 1 ANALYSIS Arkus-Funktionen Aufgbensmmlung 1 Dtei Nummer 4730 Stnd: 15. November 017 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4730 Aufgbensmmlung Arkusfunktionen Aufgbe 1 (Lösung Seite

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils

Mehr

Teil mit Taschenrechner (ohne CAS)

Teil mit Taschenrechner (ohne CAS) Sächsisches Sttsministerium ür Kultus Schuljhr 0/05 Schritliche Abschlussprüung n Fchoberschulen/ Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen Mthemtik nichttechnische Richtungen

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt In einer zweiten Schle Grund; Die zweite gibt, sie wird zu reich,

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

MONS-TABOR-GYMNASIUM MONTABAUR

MONS-TABOR-GYMNASIUM MONTABAUR MONS-TABOR-GYMNASIUM MONTABAUR Mathemati Leistungsfachanforderungen Kursarbeit 3 M L3 24..2005 Aufgabe I Durch Analysis 2 x f : x x + e ; > 0 ist in R eine Funtionenschar gegeben. Der Graph von f sei G..

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulssungsprüfung Stochstik, 2.0.2 Wir gehen stets von einem Mßrum (Ω, A, µ) bzw. einem Whrscheinlichkeitsrum (Ω,A,P) us. Die Borel σ-algebr uf R n wird mit B n bezeichnet, ds Lebesgue Mß uf R n wird mit

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Mathematik für Informatiker II (Maikel Nadolski)

Mathematik für Informatiker II (Maikel Nadolski) Lösungen zum 7 Aufgbentt zur Vorlesung Mthemti für Informtier II Miel Ndolsi) Abgbe: bis Freitg, den 0Juni 0, 05 Uhr Häufungspunte ) Sei n ) eine reellwertige Folge mit Grenzwert sei b n ) eine beschränte

Mehr

Abiturprüfung Mthemtik Bden-Württemberg (ohne CAS) Pflichtteil Lösungen Aufgbe : Umschreiben der Funktion: f(x) = sin(x) x Ableitung mit Produktregel und Kettenregel: Produktregel: f(x) = u(x) v(x) f (x)

Mehr

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2 Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen

Mehr

Mecklenburg-Vorpommern Wahlaufgaben ohne CAS

Mecklenburg-Vorpommern Wahlaufgaben ohne CAS Abiturprüfung Mecklenburg-Vorpommern Whlufgben ohne CAS Dtei Nr. 75 Stnd. Oktober FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 75 MV Abiturprüfung ohne CAS Vorwort Es wurden drei Gruppen

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Leistungskurs Aufgabenvorschlag Teil 1 für Prüflinge. Aufgabenstellung 1. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Leistungskurs Aufgabenvorschlag Teil 1 für Prüflinge. Aufgabenstellung 1. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Sentsverwltung für Bildung, Jugend und Fmilie Aufgbenvorschlg Teil 1 für Prüflinge Hilfsmittel: nicht für Aufgbenstellung 1 Gesmtberbeitungszeit: Nchschlgewer

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2005 Aufgbenstellungen A1 und A2 (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

Lösungen von Hyperplot

Lösungen von Hyperplot ufgbensmmlung Weitere Lösungen zu Geometrieufgben der Mthemtik-Olympide Zentrles Komitee für die Olympiden Junger Mthemtiker Lösungen von Hyperplot zusmmengestellt von Steffen Polster https://mthemtiklph.de

Mehr

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 6. Mathemati Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathemati-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Lösungen schriftliches Abitur Sachsen Mathematik Grundkurs 2002 Ersttermin = 3

Lösungen schriftliches Abitur Sachsen Mathematik Grundkurs 2002 Ersttermin = 3 Teil A Anlysis gegeben f ( x) x ( x + ) ) - Untersuchung des Definitionsbereiches Mthemtik Grundkurs Ersttermin ( x ) und F( x) ( x R) D f. Beschränkungen des Def.-ber. durch enthltene elementre Funktionen:

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

Schriftliche Reifeprüfung aus Mathematik

Schriftliche Reifeprüfung aus Mathematik Schriftliche Reifeprüfung us Mthemtik 1) Linere Optimierung Ein Händler für Bürortikel füllt für den Schulnfng sein Lger mit Tschenrechnern des Typs Advnced und des Typs Bsic uf. Typ A kostet ihn im Einkuf

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion 0 A I Angbe.0 sei eine gnzrtionle Funktion mit der Ableitungsunktion und ID ID IR.. Geben Sie die Nullstellen der Funktion n, skizzieren Sie den Grphen von und ermitteln Sie die mimlen Monotonieintervlle

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Abitur 2018 Mathematik Geometrie VI

Abitur 2018 Mathematik Geometrie VI Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1. Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

Abiturprüfung Leistungskurs 1997/98

Abiturprüfung Leistungskurs 1997/98 Abiturprüfung Leistungskurs 997/98 Gymnsium Mecklenburg-Vorpommern Schsen Schsen-Anhlt Thüringen Berlin Brndenburg p petec Gesellschft für Bildung und Technik mbh Berlin Autoren für die einzelnen Bundesländer

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Abbildung 1: Achilles und seine Schildkröte.

Abbildung 1: Achilles und seine Schildkröte. PROBEKLAUSUR II MATHEMATIK STUDIENGANG MB THEMA I: FOLGEN UND REIHEN (5 Minuten) Augbe 1 (Grenzwertig)**: Prdoon des ZENO: Achilles läut mit einer Schildkröte um die Wette. Weil Achilles zehnml so schnell

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Ortskurven besonderer Punkte

Ortskurven besonderer Punkte Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.

Mehr

Abiturprüfung 2006 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2006 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 2006 MATHEMATIK ls Grundkursfch Arbeitszeit: 180 Minuten Der Fchusschuss wählt je eine Aufgbe us den Gebieten GM1, GM2 und GM3 zur Berbeitung us. Die Angbe ist vom Prüfling mit dem Nmen zu

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

MW-E Mathematikwettbewerb der Einführungsphase

MW-E Mathematikwettbewerb der Einführungsphase MW-E Mthemtikwettewer der Einführungsphse.Ferur 08 MW-E Mthemtikwettewer der Einführungsphse Hinweis: Von jeder Schülerin zw. jedem Schüler werden fünf Aufgen gewertet. Werden mehr ls fünf Aufgen ereitet,

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

12 Parametrisierte Kurven

12 Parametrisierte Kurven Vorlesung SS 9 Anlysis Prof. Dr. Siegfried Echterhoff 1 Prmetrisierte Kurven In diesem Abschnitt wollen wir intensiver um die Geometrie von prmetrisierten Kurven (Wegen im R n befssen. Zur Erinnerung wiederholen

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6 Geometrie 6. Juni 017 Inltsverzeicnis 1 Zweidimensionle Geometrie Dreidimensionle Geometrie 6 1 1 Zweidimensionle Geometrie In diesem Kpitel wollen wir uns mit einigen einfcen geometriscen Formen bescäftigen

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Fachbereich Mathematik

Fachbereich Mathematik Oberstufenzentrum Krftfhrzeugtechnik Berufsschule, Berufsfchschule, Fchoberschule und Berufsoberschule Berlin, Bezirk Chrlottenburg-Wilmersdorf Fchbereich Mthemtik Arbeits- und Informtionsblätter zum Fch

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache Wirsberg-Gymnsium Grundwissen Mthemtik. Jhrgngsstue Lerninhlte Fkten-Regeln-Beispiele Proportionlität Gehört bei einer Zuordnung zum r-chen der einen Größe ds r-che der nderen Größe, so spricht mn von

Mehr

K2 MATHEMATIK KLAUSUR 1. Gesamtpunktzahl /30 Notenpunkte. (1) Bilden Sie die erste Ableitung der Funktion f mit f(x) = 1 + x ln(2x + 1).

K2 MATHEMATIK KLAUSUR 1. Gesamtpunktzahl /30 Notenpunkte. (1) Bilden Sie die erste Ableitung der Funktion f mit f(x) = 1 + x ln(2x + 1). K MATHEMATIK KLAUSUR NACHTERMIN..6 Aufgabe 3 4 6 7 8 9 Punkte (max 3 3 4 4 Punkte Gesamtpunktzahl /3 Notenpunkte ( Bilden Sie die erste Ableitung der Funktion f mit f(x = + x ln(x +. ( Bestimmen Sie das

Mehr

Rotationsvolumen Ausstellungshalle

Rotationsvolumen Ausstellungshalle Rottionsvolumen Ausstellungshlle In einem Entwurf für eine Ausstellungshlle soll ds Profil der Querschnittsfläche (siehe Zeichnung) im Intervll [, 1] durch die Funktion f() = 7 beschrieben werden. Im Bereich

Mehr

Komplexe Integration

Komplexe Integration Komplexe Integrtion Michel Hrtwig 23. April 2004 Der Unterschied zwischen reeller und komplexer Integrtion Vorbemerkung: Aus Gründen der Anschulichkeit, hbe ich weitgehend uf eine exkte mthemtische Drstellung

Mehr

3. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 3. Mthemtik Olympide 4. Stufe (DDR-Olympide Klsse Sison 963/964 Aufgben und Lösungen OJM 3. Mthemtik-Olympide 4. Stufe (DDR-Olympide Klsse Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr