= und J' als der Erwärmungsrate pro Einheitsmasse (und damit Q' natürlich zunehmend mit der Höhe z):

Größe: px
Ab Seite anzeigen:

Download "= und J' als der Erwärmungsrate pro Einheitsmasse (und damit Q' natürlich zunehmend mit der Höhe z):"

Transkript

1 Lineare Wellenherie für eine ruhene Amsphäre Wir gehen n en linearisieren Bewegungsgleichungen in sphärischen Krinaen für ie Sörungen aus, un seen eine ruhene Amsphäre raus,.h. u0 0, wmi auch er hrinale Temperaurgraien erschwine. Des weieren sei ie Amsphäre reibungsfrei,.h. ie Anriebserme F ' F' 0. Weierhin seen wir λ ur einfacheren Beeichnung ie Brun-Vaisala-Frequen N R θ0 exp{ κ /} (6.) ein. Inies, beeuen, wenn nich aners beschrieben, wieer ie parielle Ableiung nach ieser Größe. Man ann nun ie 3. Bewegungsgleichung nach θ' auflösen un in en. aupsa einseen: Φ' θ ' (6.) R exp{ κ / } R exp ( Φ' ) bw., mi Q' ( J' c p ) exp{ κ /} { κ /} w' θ 0 Q' (6.3) un J' als er Erwärmungsrae pr Einheismasse (un ami Q' naürlich unehmen mi er öhe ): R J' Φ ' w'n Q' exp{ κ /} κ (6.4) wmi man eine Variable einspar, s aß as Gleichungssysem je nch laue: acs u' λ u' f' Φ' 0 acs λ ' Φ' fu' 0 a acs ρ ( ' cs ) ( ρ w' ) 0, (6.5a), (6.5b), (6.5c) κ Φ ' w'n J'. (6.5) Für en einfachsen Fall se man en eiungserm auf er rechen Seie n 6.5 gleich 0, es geh ami nur um freie, nich erwungene Wellen un nich mehr.b. um Geeien. VI-

2 Man ha nun as Prblem er Separierung er Variablen,.h. er öhen- un er hrinalen bw. Zeiabhängigei. Man se hierfür: u' e U()u (, λ,) ' e Φ ' e U() (, λ,) U() Φ(, λ,) un (6.6) w' e W()w (, λ,) Dies ann man machen, a man mi (6.6) nur fesleg, aß ie hrinalen Winsörungen un as Gepenial ie gleiche Verialsruur haben müssen. Man ann iese Beiehung einseen, un ür abei ie Expnenialfunin gleich heraus. Die ersen beien Gleichungen (6.5a,b) änern sich nich (bw. ihre Sruur nich): u f Φ 0 acs λ fu Φ 0 a, (6.7a), (6.7b) aber sie sin je unabhängig n er öhe. Den 3. Term er Kninuiäsgleichung (6.5c) spalen wir nach em Einseen n W un em Küren er Expnenialfunin nach er Pruregel flgenermaßen auf: e Ww e Ww W Ww ρ e e w ρ ρ ρ (6.8) ρ0 ρ0 mi ρ 0 ρs exp( /), s aß man ie Diche un ie Expnenialfunin üren ann: ρ ρ e Ww e Ww Ww W w e un ies als in ie Kninuiäsgleichung (6.5c) einse: U u U Ww W cs w a cs λ acs bw., jeweils Terme usammengefass: Ww ( ) 0 u W W U acs λ ( cs ) w 0 W w, (6.9), (6.0) Wir önnen ies als "usammengefasse Kninuiäsgleichung" beeichnen. (6.) VI-

3 Der. aupsa (6.5) wir, nach weimaligem Differenieren es Gepenials aus (6.6) nach un (einfach u bewerselligen, weil ie öhen- un Zeiableiung separier sin, s aß nur U n, un nur Φ n abhäng), un anach Küren er Expnenialfunin u: U U Φ N Ww 0. (6.) Man erinnere sich, aß in unserem Fall in (6.5) J' 0. Um eine Verbinung wischen U un W herusellen, ann man sich ie usammengefasse Kninuiäsgleichung (6.) ansehen. Dabei sin nur ie U un W enhalenen Aneile n abhängig, un müssen aher ieselbe eriale Sruur haben (". Term -. Term"). Weierhin is über ie Ampliuen, w,... nch nichs fesgeleg. Daher ann man hne Verlus er Allgemeinhei anseen: W W U (6.3) un erhäl nach Einseen in en umgewanelen aupsa (6.): W W Φ N Ww 0 4, (6.4) er, wenn man se: w Φ ( gh) (6.5) W N W 0 4 gh. (6.6) Dies is ie eriale Sruurfunin, ie Aufschluss über ie eriale Wellenlänge un Sruur er Welle ergib. Zur Lösung brauch man nch ensprechene Ranbeingungen. Die in (6.5) eingeführe Größe h is ie äquialene Tiefe. Se man für W eine Sinusfunin W sin(π/λ ) an, s ergib sich ie eriale Wellenlänge λ aus er Sruurfunin: 4π N sin( π / λ ) sin( π / λ ) 0 gh 4 bw. λ 4π λ (6.7) N gh 4 für h < 4N /g. Wenn er Nenner negai wir, insbesnere wenn h negai is, önnen sich ie Wellen nich erial ausbreien. Man ann en Ausruc gh weierhin erwenen, um ie usammengefasse Kninuiäsgleichung (6.) nch ewas einfacher u schreiben. Erse man w urch Φ / gh (aus 6.5), un ür urch U bw. en ensprechenen Ausruc in W (nach 6.3), s erhäl man: u Φ ( cs ) ( gh) 0. (6.8) acs λ VI-3

4 Das Prblem is je einerseis ie Besimmung n h, un anererseis is über ie hrinale Sruur nch nichs beann. Man mach aher einen Ansa für ie hrinalen Geschwinigeien swie as Gepenial: u,, i( ) [ û,, Φ ] e λ Ωσ Φ. (6.9) ier is Ω ie Winelgeschwinigei er Ere (siehe Abschni 5..), ie (ganahlige) nale Wellenahl, σ as Verhälnis er Kreisfrequen er angeseen Welle un erjenigen er Errain (als eine reine Zahl), un ie Perie rüc sich ami urch T π/ωσ (/σ in Tagen) aus. Diese Beiehung se man nun in ie hrinalen Gleichungen (6.7a,b) ein, un erse ami u un in (6.8). Dies führ ur Laplace schen Geeiengleichung. Der Weg is ein wenig langwierig: (6.7a) Ωσiû Ω sin iφ 0, acs (6.0a) (6.7b) Φ Ωσi Ω sinû 0. a (6.0b) ier is f Ωsin erwene wren. Die Expnenialfunin aus (6.9) wure gleich geür. Man beache, aß im leen Term in (6.0a) eine Ableiung seh, a Φ $ nich n λ abhäng. Man lös (6.0b) nach $u auf: σi Φ û, (6.) sin aω sin un se ies in (6.0a) ein, mi er Abürung µ sin: Ωσ µ iσ Φ i Ωµ Φ 0. (6.) aµ acs Der. Term in (6.) is psii wegen i -. Auflösen n (6.) nach $ un anach Einseen in (6.) ergib ein Gleichungssysem für ie meriinale Sruur er Geschwinigeissörung: (6.3a einseen in iµ σ Φ Φ, (6.3a) Ωa ( ) σ µ µ cs σ σ Φ Φ û Φ. (6.3b) 6.) Ωa( σ µ ) µ cs aωµ Wie man an (6.3) sieh, ha ie meriinale Kmpnene nur imaginäre, ie nale Kmpnene nur reale Aneile. Wenn man als ies in (6.9) bw. (6.6) einse, fine man aß u un um 90 gegeneinaner erse sein müssen. Dies ensprich er irularen Plarisain, welche man in mileren Breien.B. bei en halbägigen Geeien fine. VI-4

5 Die Beiehungen (6.3a,b) seen wir nun in ie umgefrme Kninuiäsgleichung (6.8) ein. ierin seh er Ausruc /(cs), er bei er Ableiung aufwenig is. Wir nehmen unächs (6.3a): Nr.: cs ( cs ) B A B B iµ cs σ Φ Φ mi Ωa( σ µ ) µ cs B A B B iµ cs σ Φ σ cs Φ Φ µ Φ Ωa( σ µ ) µ µ cs cs ( sin cs ) i cs µ Ωa ( σ µ ) cs µ µ ( ( σ µ ) µ cs B 4448 µ cs σ Φ Φ ( ) cs σ µ µ (man beache, aß im. Term er. Klammer er leen Zeile weimal "-" ein "" ergib) Nunmehr weren ie Ausrüce (6.3a,b) uner Zuhilfenahme ieser Nebenrechnung (aufgespale immerhin 0 Terme!) in ie Kninuiäsgleichung (6.8) eingese. Man mach abei Gebrauch an, aß alle Expnenialfuninen (aus 6.9) beim Ableien sehen bleiben, un ami herausgeür weren önnen. Das beeue, aß Ableiungen nach λ einen Far i Ableiungen nach einen Far -Ωσi ergeben. Man erhäl als mi Küren n /a (aus 6.8): iσ σ Φ Φ ( ) Φ i cs Ωa σ µ µ cs Ωaµ cs iµ cs σ Φ iµ cs σ Φ iµ cs Φ iµ cs Φ cs Ωa( σ µ ) µ Ωa( σ µ ) µ Ωa cs ( σ µ ) cs ( σ µ ) iσ cs Φ iσµ Φ iσµ cs Φ Ωaµ ( σ µ ) Ωaµ ( σ µ ) Ωa cs ( σ µ ) i cs iµ iµ cs Φ Φ Φ Ωa cs ( σ µ ) Ωa cs ( σ µ ) Ωa cs ( σ µ ) iωσa 0 gh cs cs cs ( cs ) Φ u λ ( gh) (6.4) VI-5

6 Zum weieren Umsellen wir je mi (iσ/ωa) geür, weierhin wir /cs in ie Klammer swie /(σ -µ ) r ie Klammer gegen. Dami wir (6.4) mi γ 4Ω a gh u: ( ) σ Φ cs σ µ Φ Φ Φ µ Φ Φ ( σ µ ) cs cs σµ cs µ σcs µ cs γφ 0. cs Φ µ Φ µ cs Φ µ cs Φ Φ µ Φ µ ( σ µ ) σ cs σ( σ µ ) Φ (6.5) Wie man sieh, heben sich er 5. un 8. Term swie er 7. un. Term in er Klammer jeweils auf. Zur weieren Vereinfachung subsiuier man: bw.: cs sin cs cs cs µ sin µ cs sin, µ µ. sin sin, (6.6) Wir schreiben ami (6.5) um, un erhalen (uner Verwenung n cs -sin ) eine Gleichung, in er ein Ausruc mi cs mehr rmm: ( σ µ ) Φ µ σ Φ µ µ Φ ( σ µ ) Φ ( µ ) σµ ( ) µ µ Φ µ Φ ( σ µ ) σ σ( σ µ ) Φ γφ 0. Φ Φ µ Φ µ σ (6.7) Wenn man (6.7) s usammenfass, ass Ableiungen gleicher Ornung n Φ $ usammen geschrieben weren: µ Φ$ ( µ )( σ µ ) ( σ µ ) σ ( σ µ ) ( σ µ ) ( σ µ ) µ µ ( µ ) µ µ σµ σ ( σ µ ) σ µ ( µ ) ( σ µ ) Φ$ Φ$ (6.8) γφ$ 0. VI-6

7 Die erse Zeile wir umgeschrieben, inem man erwene: ( σ µ ) ( ) ( σ µ ) µ σ µ µ ( σ µ ) ( σ µ ) Weierhin ann man in er. Zeile n (6.8) en. Term in er Klammer mi σ swie en 4. Term in er Klammer mi µ erweiern. Dann heben iese beien Terme sich gerae mi em. Term in er Klammer gegenseiig auf. Weierhin ann man schreiben: µ µ σ µ µ µ ( ) ( ) ( ) σ µ ( σ µ ) σ µ µ. µ µ ( µ ) ( σ µ ). (6.9) Die reche Seie in (6.9) ensprich genau em 3., 5. un 6. Term in er Klammer er. Zeile in (6.8). Smi wir (6.8), nach Mulipliain mi (-): σ µ σ ( ) µ Φ$ µ Φ$ µ σ µ ( σ µ ) ( σ µ ) ( µ )( σ µ ) ( σ µ ) Φ$ γφ$ 0. (6.30) Dies ann, inem man as Gepenial uner ie Differeniale ieh, geschrieben weren als ie Lapalace sche Geeiengleichung: wbei er Operar ( sin L ) sin ( σ sin ) L Φ γφ 0 (6.3) sin σ sin σ σ ( σ sin ) ( ) sin sin n er nalen Wellenahl un er Frequen σ abhäng. Dami is ie Laplace'sche Geeiengleichung ein Eigenwerprblem mi en Eigenweren γ 4Ω a gh (eigenlich γ n 4Ω a gh ). Wenn un σ fesgeleg weren, gib es n Eigenfuninen Θ n (σ,) u en Eigenweren γ n (un ami en ensprechenen h n ). Die Funinen Θ n (σ,) weren ugh-funinen genann un sin abellier. Dami nimm nun ie Sörung es Gepenials ie Frm er ugh-funinen an, un man ann sich ie Sörungen er rinalgeschwinigei wieer berechnen (un war muss man prinipiell über ie einelnen Men summieren). In manchen Fällen ann h negai weren, ies führ ann u Wellen, ie sich nich ausbreien önnen. VI-7

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik MK.7.05 B5_T_A MK_Loes.xmc Abschlussprüfung an Fachoberschulen in Bayern Mahemaik mi 05 Analysis A Ausbilungsrichung Technik.0 Gegeben sin ie reellen Funkionen f a : x --> x x x Definiionsmenge D fa R

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

5.6: SM: Stoßkurzschluss Seite 1

5.6: SM: Stoßkurzschluss Seite 1 5.6: SM: Soßkurzschluss Seie 1 Soßkurzschluss Die Ausgangsanornung es reiphasigen Klemmenkurzschlusses is in Bil 5.6-1 argesell. Eine leerlaufene Synchronmaschine wir zum Zeipunk mi allen rei Anschlussklemmen

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

10 Gleichspannungs-Schaltvorgänge RL-Reihenschaltung

10 Gleichspannungs-Schaltvorgänge RL-Reihenschaltung GleichspannungsSchalvorgänge eihenschalung Seie von 6 222 Prof. Dr.Ing. T. Harriehausen Wolfenbüel.9.2. Beziehung zwischen en lemmengrößen einer konsanen Inukiviä Die Abhängigkei zwischen en lemmengrößen

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Freie Schwingung - Lösungsfälle

Freie Schwingung - Lösungsfälle Freie Schwingungen Seie von 6 Peer Schüller peer.schueller@bbw.gv.a Freie Schwingung - Lösungsfälle Maheaische / Fachliche Inhale in Sichworen: Differenialgleichung.Ornung i onsanen Koeffizienen, Schwingung

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung KW /15 Prof. Dr. R. Reifarh, Dr. J. Glorius Übungen zur Experimenalphysik II Aufgabenbla 3 - Lösung Aufgabe 1: a) Die Laung q im Volumen V beräg: q = ρ(r) V = ρ(r)4πr r = 4πAr 3 r Für ie Laung Q erhalen

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 ABSTANDSBERECHNUNGEN. a) Abstand eines Punktes von einer Geraden

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 ABSTANDSBERECHNUNGEN. a) Abstand eines Punktes von einer Geraden Mahemaik: Ma. Schmi Wolfan Arbeisbla 1. Semeser ARBEITSBLATT 1 ABSTANDSBERECHNUNGEN a) Absan eines Punkes von einer Geraen Für ie nun folenen Aufabensellunen ib es jeweils eine anze Mene an unerschielichen

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt Übungen zur Ingenieur-Mahemaik III WS 7/8 Bla 7..7 Aufgabe 9: Berechnen Sie ie Länge zweier Kurven auf er Eroberfläche (im Kugelmoell, ie S. Peersburg ( N, O mi Anchorage in Alaska ( N, 5 W verbinen. Lösung:

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte)

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Phsik III WS 204/205 Prof Dr A Shnirman Blatt 3 Dr B Narohn Lösung Brewster-Winkel: 20 Punkte

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010 Prüfung Grunprinzipien er Versicherungs- un Finanzmahemaik Aufgabe : (5 Minuen a Gegeben sei ein einperioiger Sae Space-Mark mi rei Zusänen, er aus rei Werpapieren besehe, einer sicheren Anlage zu % sowie

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Die Anfangsbedingungen der Bewegung für die beiden Luftfahrzeuge werden wie folgt gewählt: Eurofighter zum Zeitpunkt t 0 im Koordinatenursprung

Die Anfangsbedingungen der Bewegung für die beiden Luftfahrzeuge werden wie folgt gewählt: Eurofighter zum Zeitpunkt t 0 im Koordinatenursprung Hoe Srseie Ipressu Kon Gäsebuch Augbe: Leien Sie ie Winelgeschinigeien un -beschleunigungen einer DIRCM- Lserzielverolgungseinrichung gegen IR-gelene Flugörper vo Tp IRIS-T her, ie zb gegen ein Kplugzeug

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Lebensdaueruntersuchungen an Energiesparlampen

Lebensdaueruntersuchungen an Energiesparlampen Wilfrie Rohm Leensauerunersuchungen Seie von 6 Wilfrie Rohm wrohm@aon.a Leensauerunersuchungen an Energiesparlampen Link zur Beispielsüersich Mahemaische / Fachliche Inhale in Sichworen: Weiullvereilung,

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 4 08.11.01 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nena Balanesković Die Lagrange Methoe zweiter Art, Symmetrien un Erhaltungsgrößen 1. y r x Gegeben sei

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Drehfeldmagnete. Schaltung. Drehmomentänderung. Sonderausführung

Drehfeldmagnete. Schaltung. Drehmomentänderung. Sonderausführung RHMAGNT rehfemanee ie rehfemanee sin rehsrommooren mi Käfiäfer in Sonerasführn. Sie sin eerisch so asee, ass sie bei ihrer Bemessnssannn n bei rehzah 0 ( fesebremse Wee ) ihr rößes rehmomen ( Sisansmomen

Mehr

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Prof. Dr. Schön un Dr. Eschrig Wintersemester 004/005 Aufgabe 38 6 Punkte Für ϕ = 0 gilt: e ϑ = e x cos ϑ e z sin ϑ un e r = e x sin ϑ + e z cos

Mehr

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen).

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen). Jees ystem strebt zwei Zielen entgegen:.) Minimum er Energie.) Maximum er Entropie Minimum er pot. Energie Maximum er Entropie atsächliche erteilung: Minimum er reien Energie Dem Wettstreit zwischen beien

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Musterlösung Analysis 3 - Funktionentheorie

Musterlösung Analysis 3 - Funktionentheorie Musterlösung Analysis 3 - Funktionentheorie 3. Mär Aufgabe : Zum Aufwärmen (i) Betrachte ie Lauranterlegung von f : C C, f() = sin un eige mit Hilfe er Zerlegung, ass ie Singularität bei = hebbar ist.

Mehr

Physik für Wirtschaftsingenieure

Physik für Wirtschaftsingenieure Phsik fü Wischafsingenieue Chisophe Diemaie, Mahias Mändl ISBN 3-446-373-8 Lesepobe Weiee Infomaionen ode Besellungen une hp://www.hanse.de/3-446-373-8 sowie im Buchhandel Mechanik Bild. Bewegung eines

Mehr

7 Das lokale Ito-Integral

7 Das lokale Ito-Integral 7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3 für Physier WS 5/6 Reihen Zeigen Sie, dass die folgenden Reihen onvergieren und die angegebenen Summen haben. Dabei is f die -e Fibonacci-Zahl a + = 4 Wir fassen die gegebene Reihe als Grenzwer der Folge

Mehr

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mahemaik der Universiä Hamburg WiSe 26/27 Dr. Hanna Peywand Kiani Hörsaalübung 3 Differenialgleichungen I für Sudierende der Ingenieurwissenschafen Lineare Differenialgleichungssyseme Die ins

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

Grundlagen Algebra. Bruchgleichungen

Grundlagen Algebra. Bruchgleichungen Bruchgleichungen EL / GS -.0.05 - _Bruchgl.mc Definition: Eine Gleichung, bei er eine Variable x auch im Nenner vorkommt, ohne ass man sie kürzen kann, heißt Bruchgleichung. Bezeichnung: Gleichungen, ie

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Akuarielle und finanzmahmaische Bewerung I Xiaoying Xu Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof Schmidli,

Mehr

IIR-Filter. Prof. Dr. C. Clemen. y(n) x(n) IIR-Filter. t Xd(f) Yd(f) Hd(f) f f A. f A /2

IIR-Filter. Prof. Dr. C. Clemen. y(n) x(n) IIR-Filter. t Xd(f) Yd(f) Hd(f) f f A. f A /2 Fachhochschule ugsburg Fachbereich Elekroechik Pro. Dr. C. Cleme.8.3 IIR-Filer achricheüberragugsechik.8.3 IIR-Filer ei Verweug vo rekursive Mehoe ur erechug es geilere usgagssigals aus em Eigagssigal

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof. Dr. P. Rech // Marius Radermacher, M.Sc. DOOR Aufgabe 33 Versicherungsechnik Übungsbla 10 Abgabe bis um Diensag, dem 20.12.2016 um 10 Uhr im Kasen 19 Der

Mehr

Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten

Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten Transformation der Koordinaten: Die Transformation von kartesischen in Kugelkoordinaten ist gegeben durch

Mehr

Schaltwerksanalyse-Übungen

Schaltwerksanalyse-Übungen Schaltwerksanalyse-Übungen Übung : Gegeben ist folgene Schaltung, eren Funktion zu bestimmen ist. c Ergänzen Sie as folgene Signal-Zeit-iagramm. c ie Lösung kann sehr zeitaufwenig sein, wenn man keine

Mehr

Multiple Regression: Übung 1

Multiple Regression: Übung 1 4. Muliple Regression Ökonomerie I - Peer Salder 1 Muliple Regression: Übung 1 Schäzung einer erweieren Konsumfunkion für die Schweiz Wir unersuchen die Abhängigkei der Konsumausgaben der Schweizer Haushale

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 9 UNIVERSITÄT KARLSRUHE Blatt 5 Priv-Doz Dr D Kaelka Dipl-Math W Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe : Wir betrachten eine Markovkette in

Mehr

2. Kinematik punktförmiger Körper

2. Kinematik punktförmiger Körper . Kinemaik punkförmier Körper Beschleuniun: Körper werden als Massenpunke idealisier. Beweun im -dimensionalen Raum d( ) a( ) ɺ ( ) ɺɺ ( ) d Konenion: : Zei [s] (,y,) : Or [m] : Geschwindikei [m/s] a :

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase 600 Mechanik er Koninua 60 ee Körper 60 lüigkeien un Gae um wa geh e? Bechreibung von Bewegungen (phy. Verhalen e nich-arren Körper (elaich, plaich Koninuum Hyro- un Aeroynamik Komparimenale Moellierung

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

5. Schwingungen und Wellen 5.1. Schwingungen Freier gedämpfter harmonischer Oszillator

5. Schwingungen und Wellen 5.1. Schwingungen Freier gedämpfter harmonischer Oszillator 5. Schwingungen und Wellen 5.. Schwingungen 5... Freier gedämpfer harmonischer Osillaor a) Wiederholung freier ungedämpfer harmonischer Osillaor, keine Reibung d Bewegungsgleichung: m d Lösung: sin d k

Mehr

Editierabstand und der 4-Russen-Trick

Editierabstand und der 4-Russen-Trick andou für das Seminar über lgorihmen bereu von Prof. r. elmu l, U-erlin Ediierabsand und der 4-Russen-Trick Marco Träger 3.06.011 1 Ediierabsand in O(n m) 1.1 efiniionen Σ endliches lphabe S, T Σ endliche

Mehr

df (r) A(r) = dm(r)ω2 r Dabei wurde nur m(r) = ρ(r) V eingesetzt. Für das ideale Gas gilt pv = nrt mit m(r) = n M. Also weiter mit nrt = m(r) V

df (r) A(r) = dm(r)ω2 r Dabei wurde nur m(r) = ρ(r) V eingesetzt. Für das ideale Gas gilt pv = nrt mit m(r) = n M. Also weiter mit nrt = m(r) V 3 Lösungen Lösung zu 53. ie Lösung ist ganz einfach: E kin = 1 mv und p = mv folgt m = 1.391 10 5 kg. araus folgt dann eine olmasse von m mol = 1.391 10 g 6.0 10 3 mol 1 = 83.77 g. Also handelt es sich

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Mahemaik: Mag. Schmid Wolfgang Arbeibla 7. Semeer ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Im Raum möche man naürlich nich nur Geraden ondern auch Flächen darellen. Diee Flächen bezeichne man al

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

Aufgabe 1: n (2) n (1)

Aufgabe 1: n (2) n (1) Aufgabe 1: In er mechanischen Verfahrenstechnik weren häufig analytische Funktionen, wie ie RRSB- Verteilung (Rosin-Rammler-Sperling-Bennett) benutzt, um Partikelgrößenverteilungen zu beschreiben. Sin

Mehr