HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7"

Transkript

1 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang aufreene Fragen sin zu beanworen. 3. Sellen Sie ie Differenzialgleihung ieses Shwingungsvorganges auf, wenn eine onsane äußere Kraf wir. Wie sin ie Ablingonsane, ie Eigenreisfrequenz ω efinier un was sag er Dämpfungsgra D aus? 3. Lösen Sie ie Differenzialgleihung (ennehmen Sie ie Daen aus er Tabelle) für ie folgene Anfangsbeingungen x() un v() v, wobei so besimm weren soll, ass sih er Kriehfall ergib. 3.3 Besimmen Sie en Zeipun max, an em y h () en maximalen Wer erreih. Sellen Sie x p (), x h () un x() mi Hilfe von Maha in [ 5 max ] graphish ar. in N/m m in g in N D v in m/s Die beien Sizzen sellen ie Problemsellung inlusive Freishni ar. Die Kraf F ann von beliebiger Ar sein. (In iesem Teil er Aufgabe is F von er Form onsan m x F() x x x F rafgeseuere angefahe Shwingung Freishni. Teil: Die Bewegungsgleihung ergib sih aus em Freishni zu (F() (onsan)): x'' x' x Maha ann leier ie gängige Bezeihnung für ie Ableiung nah er Zei (mi Pun) nih arsellen; aher x un x (erhäl man shnell über STRG F7) x'' x' x erhäl man urh Division mi Rolan Pihler 4

2 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 mi ω (Eigenreisfrequenz) un (Ablingoeffizien) x'' x' ω x Die DGL lieg nun in er Tehni üblihen Shreibweise vor. Der Dämpfungsgra D gib Ausunf arüber, wie sih as shwingfähige Sysem verhäl ω ω > as heiß D > sare Dämpfung (Kriehfall) ω as heiß D aperioisher Grenzfall ω < as heiß < D < shwahe Dämpfung (Shwingfall) Zuers besimm man ie allgemeine Lösung er homogenen Gleihung mi Hilfe es Ansazes e λ Ansaz: e λ eλ e λ ( ) λ exp λ ( ) λ exp λ In DGL eingesez liefer as folgene Gleihung: λ λ ω eλ λ λ ω auflösen, λ araus folg, a e λ für enlihe λ un is. ω ω Eine ewas anere Shreibweise liefer: λ ω un λ ω Die allgemeine Lösung x h () ha nun folgenes Aussehen, wobei er Ausru uner er Wurzel > sein muss (Kriehfall); ie beien Konsane C un C sin noh unbesimm Rolan Pihler 4

3 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie 3 von 7 ω x h ( ) C e ω C e Die pariuläre Lösung erhäl man urh en Ansaz a, er sih aus er Sörfunion is onsan ergib. Einsezen in ie DGL liefer: a a ω a auflösen, a x h ( ) ω C e ω C e Lösung er DGL (ohne Anfangsbeingungen) Durh ie Anfagsbeingungen weren ie Konsanen C un C berehne; es gil:. Anfangsbeingung: x(). Anfangsbeingung: v() v. Anfangsbeingung ω C e C e ω glei, 4 C C C. Anfangsbeingung ω C e C e ω v C.. ω C.. ω v C glei, 3. Rolan Pihler 4

4 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie 4 von 7 Das Gleihungssysem für C un C wir nun gelös Vorgabe C C C ω C. ω v Suhen( C, C ) glei, 3.. ω.5. ω. v.. ω v.5. ω Ersezen von C un C urh ie gefunenen Were liefer nun folgene Funion:. C.5 ω C e ω C e. C.5.. ω. v ω.5 exp ω. ω Rolan Pihler 4

5 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie 5 von 7 Die homogene Lösung soll nun graphish argesell weren. : N m :.5g Daen von Feer un Masse v :.3 m s Anfangsgeshwinigei ω : ω 6Hz Berehnung er Eigenreisfrequenz D :.5 Annahme, ami Kriehfall einri D ω auflösen, glei, 5 N mg s auflösen, glei, g s Berehnung von : s Definiion von un für raphishe Darsellung : g s v x h ( ).5 exp. v. ω :.5 exp.. ω. ω : s,.s...5s x h ( ) mm s Rolan Pihler 4

6 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie 6 von 7 graphishe Darsellung er pariulären Lösung: :.5N Angabe für : mm s Berehnung für en Zeipun max, in em ie Auslenung x h () en größen Wer annimm. Dazu bile man ie erse Ableiung von x h () un sez iese null v.5 exp. v. ω.5 exp.. ω. ω max :. ln ω ω. ω ω max.36s Rolan Pihler 4

7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie 7 von 7 Darsellung von x(), x h () un x p () in einem Graphen für s max :.. ω. v ω.5 exp.. ω. ω : s,.s.. 5 max x h ( ) x h ( max ) ,,, max zurü zur Saraei Rolan Pihler 4

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Insiu für Mehanishe Verfahrensehnik und Mehanik Bereih Angewande Mehanik Tehnishe Mehanik III (Dnaik) 31.8.1 Bearbeiungszei: 1 h 3 in Aufgabe 1 (7 Punke) g v Ein Raushiff der Masse söß zu Zeipunk = einen

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

6. Die spezielle Relativitätstheorie

6. Die spezielle Relativitätstheorie . Die spezielle Relaiiäsheorie.. Inerialsysee und Galilei-Transforaionen Die spezielle Relaiiäsheorie erweier die Newonshe Mehanik für Inerialsysee auf Siuaionen i sehr hohen Geshwindigkeien, wie sie in

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten 6. Flüe un Zuornungen Fluß In ieem Kapiel weren Bewerungen von Kanen al maximale Kapaziäen inerpreier, ie üer iee Kane pro Zeieinhei ranporier weren können. Wir können un einen Graphen al Verorgungnezwerk

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052 FERMACELL Gipsaser-Plaen Bemessung von Wanaeln nach DIN 05:004-08 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Grunsäzliche

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

80 Isolation 0.0. Das Diagramm zeigt den Temperaturverlauf im Stab.

80 Isolation 0.0. Das Diagramm zeigt den Temperaturverlauf im Stab. Wäreleiung in ruhenden Soffen 45 x x C 0,00 50,00 0,0 05,07 0,3 9,76 0,6 8,53 0,9 74, 0, 67,5 0,5 6,74 0,8 57,44 0,3 54, 0,34 5,98 0,37 50,66 0,40 50,3 Teeraur in C 40 W 0 00 80 Isolaion 60 40 0 0.0 0

Mehr

Distributivgesetz anwenden und üben

Distributivgesetz anwenden und üben LS 05 Terme, Variablen, Gleihungen 18 LS 05 Distributivgesetz anwen un üben Zeit Lernaktivitäten Material Kompetenzen 1 EA 15 Die S vereutlihen sih as Distributivgesetz geometrish un entwikeln ihre persönlihe

Mehr

Arbeitsheft Organische Redoxreaktionen Inhalt Jakob 1 Inhaltsverzeichnis: Seite: Vorkenntnisse:

Arbeitsheft Organische Redoxreaktionen Inhalt Jakob 1 Inhaltsverzeichnis: Seite: Vorkenntnisse: Arbeitsheft Organishe Reoxreaktionen Inhalt Jakob Inhaltsverzeihnis: Seite: Vorkenntnisse: Bestimmung er OZ bei organishen Molekülen Arbeitsheft Reoxreaktionen Verbrennung von Kohlenwasserstoffen. Oxiation

Mehr

2. Schärfentiefe des Mikroskops

2. Schärfentiefe des Mikroskops Seie 3 Prakikum Nr. 11 urclic-mikrskp. Scärfeniefe des Mikrskps.1 Gemerisc-pisce Scärfeniefe Wird ein Objek mi Tiefenausdenung fgrafier (der auf eine Masceibe abgebilde), s is nur ein ebener Scni durc

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Seminar: Quantitatives Risikomanagement Grundlegende Konzepte des Risikomanagements. 2.1. Risikofaktoren und die Verlustverteilung.

Seminar: Quantitatives Risikomanagement Grundlegende Konzepte des Risikomanagements. 2.1. Risikofaktoren und die Verlustverteilung. Prof: Hanspeer.Scmili Bereuung: Julia Eisenberg Sun,Fang Seminar: Quaniaives Risikomanagemen Grunlegene Konzepe es Risikomanagemens 2.. Risikofakoren un ie Verlusvereilung 2.. Allgemeine Definiion Wir

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 04/05 Thomas Maier, Alexaner Wolf Lösung Optische Abbilungen Aufgabe : Vergrößerungslinse Mit einer (ünnen) Linse soll ein Gegenstan G so auf einen 3m entfernten

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E Übungen zum ABI 8 Geomerie (Lineare Algebra) - Lösung eie von 7 Aufgaben incl Lösungen: Aufgabe G Gegeben sind eine Ebenenscar E :( + ) x+ x + ( ) x+ + = mi, eine Ebene E: x+ x + = und der Punk P( ) (a)

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad

D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad 00 13 Mechanische harmonische Schwingungen T Schwingungsdauer = 1/ f, Dauer einer vollen Schwingung, J Trägheismomen des die Drehschwingung ausführenden Körpers, bezogen auf seine Drehachse, dann gelen

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Versuch Operationsverstärker

Versuch Operationsverstärker Seie 1 1 Vorbereiung 1.1 Allgemeines zu Operaionsversärkern Ein Operaionsversärker is ein Versärker mi sehr großer Versärkung. Er wird in der Regel gegengekoppel berieben, so dass auf Grund seiner großen

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A Innenrm-Lsrennshler H 22 Ein- oer Dreiolige sührng Bemessngs-Snnng 12, 25 n 8,5 Bemessngs-Srom n 12 Inhl: DRIESCHER - Innenrm-Lsrennshler n Lsshler- Siherngs-Kominion H 22 nh EN 60265-1 n EN 62271-105

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

5 Versicherung auf mehrere Leben

5 Versicherung auf mehrere Leben Versicherung auf mehrere Leben 59 5 Versicherung auf mehrere Leben Zie: nassen der bekannen ehoden, um Lebensversicherungen auf zwei oder mehrere Leben kakuieren zu können. Beisiee: Renenversicherung auf

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10... Stirnahnräer, gerae verahnt, Übersicht Stirnahnräer: Aetalhar gespritt gerae verahnt, Stirnahnräer: POM weiß, gefräst gerae verahnt, Stirnahnräer: POM schwar, gefräst gerae verahnt, Stirnahnräer: Kunststoff

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1 Windenergie Grundsäzlich gil: - Energie-Erhalung E ges = E + E +... = cons. - (physikalische) Arbei bezeichne den Prozeß der Umwandlung einer Energieform E in eine andere E ; Energie bedeue auch Arbeisvermögen

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

Elektrochemische Doppelschicht

Elektrochemische Doppelschicht Luwig Pohlmann PC III - Elektrochemie SS 5 Elektrochemische Doppelschicht. Helmholtz-Moell: Moell es Plattenkonensators. Gouy-Chapman-Theorie: iffuse Doppelschicht 3. Stern-Theorie: Kombination von Helmholtz-

Mehr

Hilfsrelais HR 116. Bilfinger Mauell GmbH

Hilfsrelais HR 116. Bilfinger Mauell GmbH Bilfinger Muell GmH Hilfsrelis HR 11 Die Hilfsrelis ienen zur glvnishen Trennung, Kontktvervielfhung un Trennung zwishen Hilfs- un Steuerstromkreisen. Bilfinger Muell GmH Inhltsverzeihnis Inhlt Seite Anwenung

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10... Stirnzahnräer, gerae verzahnt, Üersicht Stirnzahnräer: Azetalharz gespritzt gerae verzahnt, mit Nae Stirnzahnräer: POM gefräst gerae verzahnt, mit Nae Stirnzahnräer: Kunststoff mit Kern aus Stahl un Eelstahl,

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Sigma I. Optimiertes Design! Jahre Garantie

Sigma I. Optimiertes Design! Jahre Garantie Optimiertes Design! Sigma I Umfangreihe Flexiilität Das Sigma I wure als Freiflähengestell für en Einsatz von Laminaten sowie auh für gerahmte Moule entwikelt. Sigma I Prouktatenlatt Freilan Hervorragene

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 3. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 47 Sand 7. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

5 Erzwungene Schwingungen mit harmonischer Belastung

5 Erzwungene Schwingungen mit harmonischer Belastung 4 Teil I.5 Haronische Belasung Einassenschwinger 5 Erzwungene Schwingungen i haronischer Belasung Bei den erzwungenen Schwingungen i haronischer Belasung kann die Lasfunkion auf der rechen Seie der Bewegungsgleichung

Mehr

Autogene Milchzahntransplantation

Autogene Milchzahntransplantation Ein Falleriht Autogene Milhzahntransplantation Dirk Nolte et al. Die autogene Milhzahntransplantation ist eine relativ unekannte Methoe es Einzelzahnersatzes, ie erstaunlih gute klinishe Ergenisse liefert.

Mehr

Superauflösende nichtlineare Femtosekundenlaserlithographie. Elena Fadeeva, Jürgen Koch, Boris N. Chichkov

Superauflösende nichtlineare Femtosekundenlaserlithographie. Elena Fadeeva, Jürgen Koch, Boris N. Chichkov Superauflösene nichtlineare Femtosekunenlaserlithographie Elena Faeeva, Jürgen Koch, Boris N. Chichkov Lithography Ol Greek: writing in stone Konventionelle Photolithographie Licht Maske Schicht Photoresist

Mehr

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet.

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet. Lösungen Abiu Leisungsus Mahemai Seie von 9 P Analyische Geomeie. Dasellung de Veoen: BE + FG = BH. C F = AF AF + F = C AF + FC = AC AC FC = AF A ( ;;) B ( ; 4; ) C ( ;; ) D ( ;;) E ( ;;) F ( ; 4; ) G

Mehr

Klausur 4 Kurs 12Ph2 Physik-e

Klausur 4 Kurs 12Ph2 Physik-e 007-06-1 Kausur 4 Kurs 1Ph Physik-e Lösung Version 007-07-03 1 Eräutern Sie, warum bei er Wehsespannung ie Sheitespannung immer größer as ie effektive Spannung ist un berehnen Sie ie Sheitespannung für

Mehr

NORM für das Kanalnetz Juli 2012. Hydraulische Berechnung von Abwasserkanälen für Kreisprofile und Eiprofile

NORM für das Kanalnetz Juli 2012. Hydraulische Berechnung von Abwasserkanälen für Kreisprofile und Eiprofile NORM für das Kananez ui 01 Hydrauische Berechnung on bwasserkanäen für Kreisprofie und iprofie Regeba 0 Sachgebie: Hydrauische Berechnungen Schagwörer: bwasserkana, Hydrauik, Kreisprofi, iprofi 1 nwendungsbereich

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonometrische Datenanalyse" Duisburg

P. v. d. Lippe Häufige Fehler bei Klausuren in Einführung in die ökonometrische Datenanalyse Duisburg P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonomerische Daenanalyse" Duisburg a) Klausur SS 0 Klausuren SS 0 bis SS 03 akualisier 9. Augus 03. Sehr viele Teilnehmer rechnen einfach

Mehr

Analoge Modulationsverfahren und Rundfunktechnik

Analoge Modulationsverfahren und Rundfunktechnik naloge Modulaionsverahren und Rundunkehnik Begleimaerial zum Buh Grundlagen der digialen Kommunikaionsehnik Überragungsehnik ignalverarbeiung Neze Carsen Roppel E-Mail: roppel@h-smde Fahbuhverlag Leipzig,

Mehr

II. Wertvergleich von Zahlungsströmen durch Diskontierung

II. Wertvergleich von Zahlungsströmen durch Diskontierung Unernehmensfinanzierung Winersemeser 20/2 Prof. Dr. Alfred Luhmer II. Wervergleich von Zahlungssrömen durch Diskonierung Gegenwarswere und Zukunfswere Kalkulaionszinsfuß Bewerung konsaner Zahlungssröme:

Mehr

allein von t bzw. τ ab ( Kap. 4.0) und nicht von der Verweilzeit - Verteilung ( ) [s. Kap. 5.5.3.3]

allein von t bzw. τ ab ( Kap. 4.0) und nicht von der Verweilzeit - Verteilung ( ) [s. Kap. 5.5.3.3] 14.7.9 Tehnishe Chemie I - 173 5. Verweilzei - Vereilung und Vermishung in koninuierlih beriebenen idealen und realen Reakoren 5..1 Einführung In koninuierlihen Reakoren sind - Umsaz - Ausbeue - Selekiviä

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Software Engineering - Georg Kuschk Mitschrift06 --- 02.12.2005 ---

Software Engineering - Georg Kuschk Mitschrift06 --- 02.12.2005 --- Sofware Engineering - Georg Kuschk Mischrif6 ---..5 --- 5..c) Berag Preis Fahrkare null *keine Fahrkare gewünsch* T *in sekunen* while (rue) { if (gerücke Tase Kurzsrecke) hen Fahrkare Kurzsrecke Preis

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Insiu für Mehnishe Verfhrensehnik und Mehnik Bereih Angewnde Mehnik Tehnishe Mehnik III (Dnik) Aufge..3 Bereiungszei: h 3 in (8 Punke), q g + - E h Gegeen:, q, E, g,, v, h Ein Plenkondensor (Höhe h) is

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

Aufgabensammlung: Winkelfunktionen

Aufgabensammlung: Winkelfunktionen Gewereshule Aufgaensalung: Aufgaensalung Allgemeine Aufgaen 1 Ermitteln Sie ie gesuhten Größen mithilfe von rehtwinkligen Dreieken. 1 a Gartentüre Breite l es Tores. 4 Regelmäßige Vieleke 4 a Vierkant

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei

Mehr

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse 4.4 Durchflussmessung Durchflussmesser Mengenmessung: esimmung es Soffvolumens oer Masse Durchfluss, olumen, Zei Durchflussmesser 3 Schwebekörperverfahren 4 Konisches Rohr Schwebekörper Für Gase un Flüssigkeien

Mehr

Übungsheft. Das. Deutsch2. Rechtschreib- und Grammatiktraining. Mein Deutschmeister-Pass. Stefanie Drecktrah. Name: Klasse:

Übungsheft. Das. Deutsch2. Rechtschreib- und Grammatiktraining. Mein Deutschmeister-Pass. Stefanie Drecktrah. Name: Klasse: Rechtschrei- un Grammatitrainin Stefanie Drectrah Deutsch2 Das Üunsheft Name: Klasse: Mein Deutschmeister-Pass Deutschmeister Seite Datum Anzahl er richti elösten Aufaen Wie leicht fiel mir as? 1 8 2 20

Mehr

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar:

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar: echeckgeneraor mi Schmi-rigger echeckgeneraor mi Schmi-rigger Eine Anwendng des Schmi-riggers als Mlivibraor sell der echeckgeneraor nach Bild dar U sa 0 Bild -U sa- C echeckgeneraor mi inverierendem Schmi-rigger.

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

Zunächst ein paar Fragen zu Ihrer Person:

Zunächst ein paar Fragen zu Ihrer Person: Zunähst ein paar Fragen zu Ihrer Person: Sehr geehrte Damen un Herren! Wir laen Sie herzlih zu ieser Gesunheitsefragung ein, a uns Ihre Gesunheit wihtig ist. Darum führen wir ei itworks as Projekt (f)itworks

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form Hans Peter Reutter: Invention 1 Baroker Kontrapunkt Invention: iealtypishe ( akaemishe ) Form Bis zum Ene er Barokzeit sin ie Bezeihnungen für polyphone Formen eigentlih ziemlih austaushbar: Fuge, Rierar,

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr