3. Numerische Lösung der Halbleiter-Gleichungen

Größe: px
Ab Seite anzeigen:

Download "3. Numerische Lösung der Halbleiter-Gleichungen"

Transkript

1 3. Numersce Lösung der Halbleter-Glecungen 3. Dskretserung der Posson-Glecung De Dskretserung von (3.) dv (ε grad ψ) st en Standardproblem der numerscen Matematk. Für rectwnklge d-gtter kann en Fünf-Punkte-Stern angewandt werden, der zu ser scnellen Algortmen sowol bem Aufstellen als auc bem Lösen der Glecungen fürt. Im allgemeneren Fall nct-rectwnklger Dreecksgtter werden Fnte-Element-Metoden (FEM) engesetzt. Da es sc um enen streng monotonen Operator andelt st de Jacob-Matr symmetrsc postv defnt und de Konvergenz der numerscen Verfaren st damt enfacer zu bewesen. Spezfsc st de numersce Integraton des Ladungsdctenterms. De Matrelemente aben de Form ~ ' mj= ( ρ, g j ) = ( ρ g, g j ) mt ρ := ~ ~' ρ = ρ g ψ wobe ~ ρ ene Appromaton von ψ durc ρ baserend auf den (b-)lnearen FEM-Bassfunktonen st. Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete / 0

2 Wält man de Quadraturpunkte n den Ecken der Rect- oder Dreecke so ergbt sc mj= 0 für j und (3.) ~ ' m = ρ ( ) ω sup( q ) ω st dmensonsabängg: ω = 0,5 / 0,5 / 0,5 für / / 3 Raumdmensonen 3. Räumlce Dskretserung der endmensonalen Kontnutätsglecungen Der snguläre Störungscarakter der Kontnutätsglecungen erfordert besondere Tecnken be der Dskretserung. Standarddskretserungen füren zu oszllatorscen Effekten auf grobmascgen Gttern. Dese Stabltätsprobleme können an folgendem Modellbespel analysert werden: (3.3) d d d d + a p = R mt dψ a = d In gewssen Berecen reduzert sc der Dfferentaloperator auf de Dfferentalglecung. Ordnung: d a d Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete / 0

3 Be der Dskretserung mt symmetrscen Dfferenzenquotenten ergbt sc für große a : (3.4) δ a m mt und m δ ( ) ( f = f + ) f ( ) = ( f ( + ) + f ( )) f ( ) De Wurzeln der assozerten carakterstscen Glecung snd n desem Fall ak und a Letztere st zwscen und, falls de Gtterwete gewsse Bedngungen n Abänggket von a erfüllt. k+ Somt st (3.4) ken stabler Integrator. Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 3 / 0

4 Der enfacste Fall enes stablen Integrators st das mplzte Euler-Verfaren: Wr betracten ene Famle von Dfferenzenverfaren, de für ser große Werte von a gegen das mplzte Eulerverfaren konvergert. Beacte: Damt snd dese Verfaren von a abängg! Unter Verwendung des Durcscnttsoperators mt enem Dskretserungsverfaren der Form (3.5) δ [ δ + a M ( a) ] p = R bzw. unter Verwendung von M ( a) m + = s( a) δ : s( a) δ + a + a m p = δ R Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 4 / 0

5 eralten wr n den Grenzfällen das mplzte Euler-Verfaren. Nac obger Defnton muss für s(a) gelten: (3.6) lm s( a) =, s(0) = 0, lm s( a) = a a De enfacste Wal für s(a) st (3.7) s(a)= sgn(a) Dese Wal fürt auf de sog. Gegenstrom-Dfferenzen-Metode (upwnd dfferences). Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 5 / 0

6 Gbt es Varanten von s(a), de auf stable und genaue Appromatonen füren? En Ansatz dafür st ene Wal, be der de Basslösungen des omogenen kontnuerlcen und des omogenen dskreten Problems überenstmmen. Für konstante Koeffzenten snd und e -a Basslösungen der kontnuerlcen Glecungen. a Durc de Wal (3.8) s( a) = cot a snd des auc Basslösungen der dskreten Glecungen. Des entsprct dem Dfferenzenverfaren a (3.9) δ γ δ + a m p = R mt γ(z) = z cot z Damt erzelt man deutlc genauere Appromatonen unseres Testproblems. Man kann bewesen, dass deser Ansatz optmale Felerscranken lefert, d.. de Felerscätzer snd nsb. unabängg von Abletungen der Koeffzenten. Z.B. st mt p( k ) als Lösung des kontnuerlcen Problems und p k Lösung der Standard-Dfferenzenglecungen am Punkt k folgende Abscätzung möglc: (3.0 ) p p ) C sup a C ( sup a k ( k ) Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 6 / 0

7 wongegen wr für de letzte Dfferenzenappromaton (3. ) p p( ) C k k 3 zegen können. C, C und C 3 snd Konstanten unabängg von den Koeffzenten und der Wal von. Obwol (3.0) ene Scranke n st kann sup a ser groß werden n Abänggket von a. Teoretsc st damt der Feler nct enscränkbar. Somt st de Abscätzung (3.) n desem Verglec, trotz reduzerter Ordnung n, das bessere Resultat. En alternatver Ansatz fürt ebenfalls auf de obge Dskretserung: Dazu betracten wr de Glecung für Φ = : (3.) u ( f u ) = q R p f st ene stark varerende Funkton, de klene und ser große Werte annmmt. (3.) st en selbstadjungerter Operator und en Stand-Dfferenzenverfaren fürt zu enem stablen Integrator für große Werte von f. Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 7 / 0

8 Allerdngs gbt es noc enen besseren Ansatz: Wr betracten den Fall mt verscwndender Generatons- /Rekombnatonsrate: (3.3) ( f u ) = 0 Somt st f u = const. = : C und wr eralten C u( + ) u( ) = + f ( t) dt Nun st en Dfferenzenverfaren der Form (3.4) fˆ u = u fˆ uk = u = q R k+ k k k+ k k k+ k k k + l + = l + l, ˆ (3.5) f f ( t) dt ( ), l = k k en Ansatz, der überenstmmende Lösungen mt den kontnuerlcen Glecungen für R = 0 bestzt. De Wal (3.6) fˆ f ( ) oder + = l+ l ˆ (3.7) f ( f ( ) + f ( ))/ = l+ l+ l mt fürt auf konventonelle Dfferenzenglecungen. (3.5) stellt en armonsces Mttel der Funkton f dar. Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 8 / 0

9 In ersten ngeneurmäßgen Ansätzen wurde de Wal pyskalsc begründet, da f enem Letwert und f - enem Wderstandswert entsprct. De Integraton für de Berecnung von (3.5) kann.a. nct eakt ausgefürt werden. Ene numersce Quadratur mt der Mttelpunktsregel fürt weder auf (3.6), de Anwendung der Trapezregel auf (3.7). Für enen eponentellen Integranden, f = e -a, gbt es bessere Formeln: l l+ at (3.8) e dt = ( ) l + l a( ) a( l ) e l+ e a( ) a( Ersetzt man das Integral n (3.5) durc dese Quadraturformel und wecselt de Varable entsprecend we m vorgen Abscntt, so erält man genau das m letzten Abscntt entwckelte Dfferenzen-Verfaren! l+ l ) Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 9 / 0

10 De obge Vorgeenswese at nteressante Aspekte: Wr aben zuerst das Integral über f - berecnet unter Berücksctgung der Egenscaften von f. En anderer Ansatz war de Verwendung enfacer Quadraturformeln mt velen Knotenpunkten. Für de Halbleter- Glecungen bedeutet des, dass das Gtter für de Posson- Glecung vel fener gewält wrd als für de Kontnutäts- Glecungen. De Integrale über e ψ und e -ψ können berecnet werden one de Anname, dass ψ lnear st auf dem Gtter der Kontnutäts-Glecungen [Slotboom, Dressen]. (3.4-8) können als Spezalfall der Generalzed Fnte Element Metod von Babuska und Osborn nterpretert werden. Damt st das Problem der Dskretserung der Kontnutäts- Glecungen n ener Raumdmenson praktsc gelöst. Leder st kene der obgen Vorgeenswese auf zwe- oder dredmensonale Dskretserungen erweterbar. Kap. 3.-: Numersce Lösung der Halbleter-Glecungen Sete 0 / 0

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Kernphysik I. Kernkräfte und Kernmodelle: Deuteron

Kernphysik I. Kernkräfte und Kernmodelle: Deuteron Kernpysk I Kernkräfte und Kernmodelle: Deuteron Wederolung: Ladungsunabänggket der Kernkräfte Neutronen und Protonen aben nct nur fast de glece Masse, sondern snd auc n rer Kernwecselwrkung änlc. Des set

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Teore und Numerk von Dfferentalglecungen mt MATLAB und SIMULINK K Taubert Unverstät Hamburg SS8 Partelle Dfferentalglecungen 3 EINFÜHRENDE BEISPIELE Zwe typsce partelle Dfferentalglecungen werden n Iren

Mehr

Finite Differenzen. Tino Kluge. January 17,

Finite Differenzen. Tino Kluge.   January 17, Enletung Explztes Fntes... Implzte Fnte... Startsete Ttelsete Fnte Dfferenzen Tno Kluge tno.kluge@hrz.tu-chemntz.de http://www.mathfnance.de/semnars/sdgl.html January 17, 2002 Sete 1 von 15 Vollbld Schleßen

Mehr

Versuchs-Datum: Semester: Gruppe: Testat:

Versuchs-Datum: Semester: Gruppe: Testat: Labor: Elektrsce ascnen 1 Fakultät E Labor: Elektrsce ntrebstecnk Versuc E1-6: Glecstrommascne Versucs-Datum: Semester: Gruppe: Protokoll: Testat: Berct: Datum: 1. Versucszel Be desem Versuc sollen Se:

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Blatt 8. WKB; Trägheitsmomente starrer Körper - Lösungsvorschlag

Blatt 8. WKB; Trägheitsmomente starrer Körper - Lösungsvorschlag Fakultät für Pysk der LMU Müncen Lerstul für Kosmologe, Prof. Dr. V. Mukanov Übungen zu Klassscer Mecank T1) m SoSe 11 Blatt 8. WKB; Trägetsmomente starrer Körper - Lösungsvorsclag Aufgabe 8.1. WKB-Näerung

Mehr

Computational Physics I gelesen von Prof. Thomas Pertsch im WS 2013/14 an der Friedrich-Schiller-Universität Jena

Computational Physics I gelesen von Prof. Thomas Pertsch im WS 2013/14 an der Friedrich-Schiller-Universität Jena Skrpt Computatonal Pyscs I, FSU-Jena, Prof. T. Pertsc, CP_Skrpt_WS0/4,..0 Computatonal Pyscs I gelesen von Prof. Tomas Pertsc m WS 0/4 an der Fredrc-Scller-Unverstät Jena Skrpt Computatonal Pyscs I, FSU-Jena,

Mehr

Lorenzattraktor:

Lorenzattraktor: 3 3 3 ) ( c b a 7... Lorenattraktor: D glecngssstem as Modell ür Bescrebng der Ltrklaton n der Erdatmospäre. We be der logstscen Parabel esteren we Attraktoren, wscen denen de Lösngskrve caotsc wecselt.

Mehr

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände 3. Systeme des Bestandsmanagements Was st Bestandsmanagement? Grob gesagt, wrd m Bestandsmanagement festgelegt, welce Mengen enes Produktes zu welcem Zetpunkt zu bestellen snd Herdurc wrd der Bestand enes

Mehr

Bei der Sickerwasserbewegung an Staubauwerken wird das Potentialnetz für die Lösung der nachfolgenden 3 Aufgaben benötigt:

Bei der Sickerwasserbewegung an Staubauwerken wird das Potentialnetz für die Lösung der nachfolgenden 3 Aufgaben benötigt: Untersckerung von Staubauwerken, vergl. 04 Be der Sckerwasserbewegung an Staubauwerken wrd das Potentalnetz für de ösung der nacfolgenden 3 Aufgaben benötgt: Bestmmung des Sckwasserverlustes Q, Beurtelung

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj.

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj. A. (Bespel) Welce Arbet wrd gelestet, wenn kg Wasser be o C (n der Küce) verdampft? ( l (H O) = 953,4 kg/m³, g (H O) =,5977 kg/m³ ) Der Vorgang läuft be dem konstanten Druck p =,3 bar ab. Da der Druck

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Gründe für Lagerbestände. 3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem.

Gründe für Lagerbestände. 3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. 3. Systeme des Bestandsmanagements Was st Bestandsmanagement? Grob gesagt, wrd m Bestandsmanagement festgelegt, welce Mengen enes Produktes zu welcem Zetpunkt zu bestellen snd Herdurc wrd der Bestand enes

Mehr

Augmented Reality - 3D Wahrnehmung + perspektivische Abbildungen

Augmented Reality - 3D Wahrnehmung + perspektivische Abbildungen Augmented Realt - 3D Warnemung + perspektvsce Abbldungen Intellgente Mensc-Mascne-Interakton - IMMI SS 2 Prof. Dder Strcker Dder.Strcker@dfk.de De Vorlesung am 7.6 fndet m Raum Zuse am DFKI statt 2 Übersct

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gauslng, M.Sc. C. Hendrcks, M.Sc. Sommersemester 1 Bergsche Unverstät Wuppertal Fachberech C Mathematk und Naturwssenschaften Angewandte Mathematk / Numersche Analyss Enführung

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Numerische Methoden II

Numerische Methoden II umersche Methoden II Tm Hoffmann 23. Januar 27 umersche Bespele umersche Methoden zur Approxmaton von Dervatpresen: - Trnomsche Gttermethode - Implzte Fnte Dfferenzen - Explzte Fnte Dfferenzen - Crank-colson

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Die Hamilton-Jacobi-Theorie

Die Hamilton-Jacobi-Theorie Kaptel 7 De Hamlton-Jacob-Theore Ausgearbetet von Rolf Horn und Bernhard Schmtz 7.1 Enletung Um de Hamlton schen Bewegungsglechungen H(q, p q k = p k H(p, q ṗ k = q k zu verenfachen, führten wr de kanonschen

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I:

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I: Numerik I Prof.Dr.G.Wittum Teil I: Gewönlice Differentialgleicungen Sommersemester 2005 INHALTSVERZEICHNIS 1 Inaltsverzeicnis 1 Numerik gewönlicer Differentialgleicungen 2 1.1 Einleitung....................................

Mehr

Lineare Optimierung Einführung

Lineare Optimierung Einführung Kaptel Lneare Optmerung Enführung B... (Dre klasssche Anwendungen) Im Folgenden führen wr de ersten dre klassschen (zvlen) Anwendungen der lnearen Optmerung an: BS... (Produktonsplanoptmerung) En Betreb

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ).

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ). 5 Interpolaton 5.1 De Lagrangesche Interpolatonsaufgabe Mt È n bezechnen wr den Raum der reellen Polynome vom Grad n. Gegeben seen n+1 verschedene Stützstellen x j Ê, j = 0,...,n, und n + 1 ncht notwendg

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

3 Elastizitätstheorie

3 Elastizitätstheorie 3 Elastztätstheore Für en elastsches Medum nmmt man enen spannungsfreen Referenzzustand an, der n Eulerkoordnaten durch x = Ax, t) gegeben st. Abwechungen werden beschreben durch de Verschebung ux, t)

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell Modellerung von Hydrosystemen Numersche und daten-baserte Methoden BHYWI-22-21 @ 2018 Fnte-Elemente-Methode Selke-Modell Olaf Koldtz *Helmholtz Centre for Envronmental Research UFZ 1 Technsche Unverstät

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

f s, x(s) ds max f s, x(s) f s, y(s) ds exp L s t0 L t t 0 ) ds

f s, x(s) ds max f s, x(s) f s, y(s) ds exp L s t0 L t t 0 ) ds 8 1 Fxpunktsätze 2. Nach Defnton von M glt xt p 0 X b für alle t [t 0 c, t 0 + c], d.h. xt Q für alle t [t 0 c, t 0 + c]. Also lefern 1.18 1 und de Egenschaften des Integrals cf. Folgerung??.?? T p0 x

Mehr

I) Mechanik 1.Kinematik (Bewegung)

I) Mechanik 1.Kinematik (Bewegung) I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

Zwei Sätze von Joseph Wolstenholme. Johann Cigler

Zwei Sätze von Joseph Wolstenholme. Johann Cigler Zwe Sätze von Joseh Wolstenholme Johann Cgler Vor enger Zet sandte mr Herr P., en hlosohsch gebldeter älterer Mann, enge Bemerkungen zu enem Resultat von Joseh Wolstenholme, das er folgendermaßen formulerte:

Mehr

ERZEUGENDE FUNKTIONEN. In diesem Kapitel werden ganz speziell diejenigen diskreten Wahrscheinlichkeitsverteilungen

ERZEUGENDE FUNKTIONEN. In diesem Kapitel werden ganz speziell diejenigen diskreten Wahrscheinlichkeitsverteilungen KAPITEL 9 ERZEUGENDE FUNKTIONEN In desem Kaptel werden ganz spezell dejengen dskreten Wahrschenlchketsvertelungen behandelt, deren Träger de natürlchen Zahlen snd. Dabe geht es auch um de Zufallsvarablen,

Mehr

Taylor-Entwicklung der exakten Lösung und Verfahrensfehler

Taylor-Entwicklung der exakten Lösung und Verfahrensfehler Lösug ud Verfaresfeler Ngaleu Poutceu Paul Fracs Fracsc@upb.de 8.6.4 Semar Numerk 1 Lösug ud Verfaresfeler Beobactug, Defto ud Notato Beobactug Notato Taylor-Etwcklug Defto ud Bespele Satz ud Bewes Verfaresfeler

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am U Graz, Insttut egelungs- und Automatserungstechnk Schrftlche Prüfung aus Systemtechnk am 4.. 5 Name / Vorname(n): Kenn-Matr.Nr.: Bonuspunkte: 4 errechbare Punkte 4 5 7 5 errechte Punkte U Graz, Insttut

Mehr

5.3.3 Relaxationsverfahren: das SOR-Verfahren

5.3.3 Relaxationsverfahren: das SOR-Verfahren 53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx

Mehr

Temperaturabhängigkeit der Beweglichkeit

Temperaturabhängigkeit der Beweglichkeit Temperaturabhänggket der Beweglchket De Beweglchket nmmt mt zunehmender Temperatur ab! Streuung mt dem Gtter! Feldabhänggket der Beweglchket Für sehr hohe Feldstärken nmmt de Beweglchket n GaAs ab! Feldabhänggket

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

Intertemporale Diversifikation im VAR-Ansatz

Intertemporale Diversifikation im VAR-Ansatz Mannemer Manuskrpte zu Rskoteore, Portfolo Management und Verscerungswrtscaft Nr. 46 Intertemporale Dversfkaton m VAR-Ansatz Erklärung "paradoxer Pänomene" be langen Prognosezeträumen von ELKE EBERTS Mannem

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Übung 11. Endogene Wachstumstheorie - Das Romer-Modell II

Übung 11. Endogene Wachstumstheorie - Das Romer-Modell II Unverstät Ulm 89081 Ulm Germany Tno Conrad, M.Sc. Insttut für Wrtschaftspoltk Fakultät für Mathematk und Wrtschaftswssenschaften Ludwg-Erhard-Stftungsprofessur Wntersemester 2018/19 Übung 11 Endogene Wachstumstheore

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

Grundlagen der numerischen Strömungsmechanik, WS 2011/12

Grundlagen der numerischen Strömungsmechanik, WS 2011/12 Lehrstuhl für Aerodynamk und Strömungsmechank Prof H-J Kaltenbach Assstenz: E Lauer Grundlagen der numerschen Strömungsmechank, WS / Lösung zu Übung 5 Aufgabe : Fnte-Elemente-Verfahren De Dfferentalglechung

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Diplomvorprüfung DI H 04 VD : 1

Diplomvorprüfung DI H 04 VD : 1 Dplomvorprüfung DI H 04 VD : Aufgabe : Bewesen Se (zum Bespel mt Hlfe der Dfferentalrechnung) de folgende Glechung: ln(snh(x) + cosh(x)) + ln(cosh(x) snh(x)) 0, für alle x R. Es gbt (mnd.) 2 Möglchketen:.

Mehr

konvergiert punktweise, wenn es l : U C C gibt derart, dass konvergiert gleichmäßig, wenn es l : U C C gibt derart, dass

konvergiert punktweise, wenn es l : U C C gibt derart, dass konvergiert gleichmäßig, wenn es l : U C C gibt derart, dass Funktonentheore, Woche 4 Konvergenz und Folgen 4. Glechmäßge Konvergenz Ene Zahlenfolge {α n } n N C konvergert, wenn es en l C gbt derart, dass ε > 0 N ε N : n > N ε = α n l < ε. Auch zu Folgen von Funktonen

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Bayessche Netzwerke. von Steffen Otto. Proseminar: Machine Learning

Bayessche Netzwerke. von Steffen Otto. Proseminar: Machine Learning Bayessce Netzwerke von Steffen Otto Prosemnar: Macne Learnng Bayessce Netzwerke Inaltsverzecns 1 Enletung... 3 2 Bayessce Netzwerke... 3 2.1 Allgemene Struktur... 3 2.2 Datenerebung zum Aufstellen enes

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

AWP für Diff gleichungen höherer Ordnung in IR:

AWP für Diff gleichungen höherer Ordnung in IR: d d j j j j,,, j j 7..8. AWP für Dff glecngen öerer Ordnng n IR: Gegeben ene Bedngng für de j-te Abletng der salaren Fnton mt Anfangswerten Umformleren n Dff glecng erster Ordnng m IR j : Defnere daz Vetorfnton

Mehr

Statistik der Extremwertverteilungen

Statistik der Extremwertverteilungen KAPITEL 6 Statstk der Extremwertvertelungen In desem Kaptel beschäftgen wr uns mt statstschen Anwendungen der Extremwertvertelungen. Wr werden zwe verschedene Zugänge zur Modellerung von Extremwerten betrachten.

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr