mit der Anfangsbedingung y(a) = y0

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "mit der Anfangsbedingung y(a) = y0"

Transkript

1 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen. Wr betracten m folgenden Dfferentalglecungen. Ordnung mt der Anfangsbedngung y(a) = y0 () y = f (, y) und setzen voraus, dass m Intervall [a,b] ene endeutg bestmmte Lösung estert. Jede Dfferentalglecung des Typs () legt bekanntlc en Rctungsfeld fest. Der Grap der gesucten Funkton y = F() soll durc den Punkt (a, y0) geen und n jedem Punkt de vorgescrebene Stegung annemen. Gesuct st en Näerungswert für den Funktonswert F(b). Wr untertelen das Intervall n n Intervalle der Brete = (b a)/n mt den Telpunkten = a, = 0,,,..., n. De Näerungswerte für de Funktonswerte F() werden mt y =,, 3,., n bezecnet, wobe y(0) = y(a) = y0 glt. Im Folgenden werden Lösungsverfaren scrttwese verbessert.. Das Euler-Caucy-Verfaren (768) Geometrsce Idee: Ersetze an der Stelle a = 0 de Lösungskurve durc de Tangente. Der y-wert der Tangente y an der Stelle st en braucbarer Näerungswert für den.a. unbekannten Funktonswert F(). In den folgenden Intervallen setzen wr das Verfaren analog fort. Vom Punkt (0,y0) ausgeend erält man so ene Punktfolge (, y) = 0,,,, n. Der Wert yn st ene Näerung für den Funktonswert F(n) = F(b). Recnersce Durcfürung 0 = a, y(0) = y(a) = y0, = n ( b a) y = y f (, y ) = = 0,,.., n -. dffgl_num 3..03/bu

2 Illustraton des Verfarens an enem Bespel ( ) e y' = y mt y(0) = und b =.5 dffgl_num 3..03/bu

3 3 eakte Lösung: y = ( ) e Das Bespel zegt, dass de Metode von Euler nct ser genau st, vor allem dort, wo sc de Stegung stark verändert. Mt jedem Scrtt entfernt man sc von der Lösungskurve zu ener benacbarten Kurve, de ener andern Anfangsbedngung entsprct, so dass sc de Feler akkumuleren. Zwar kann der Feler deser Metode durc fortlaufende Halberung der Scrttwete verklenert werden. Im Gegenzug nmmt aber mt dem eröten Recenaufwand de Bedeutung der Rundungsfeler zu. Um de Genaugket des Euler-Verfarens abzuscätzen, wurde en Bespel gewält, dessen genaue Lösung angegeben werden kann. In den beden letzten Spalten st der globale Feler aufgefürt. Daraus kann der Quotent q aufenanderfolgender Feler berecnet werden. Es st zu erkennen, dass sc be ener Halberung der Scrttwete auc der Feler albert. Deses Resultat kann auc ergeletet werden, ndem man de Lösungsfunkton n ene Taylorree entwckelt. dffgl_num 3..03/bu

4 4 Lokaler Feler der Euler-Metode Nac Taylor glt: F ( ) ( ) ( ) ( ) ( c) F = F 0 = F 0 F 0 und damt für den lokalen Feler: F ( ) ( ) ( c) e = F y = Da den ersten beden Termen gerade de Eulersce Näerung entsprct, st der lokale Feler der Euler-Metode proportonal zu, der globale Feler proportonal zu. Be ener Halberung der Scrttwete wrd auc der Feler ungefär albert. Wr sagen: De Euler- Metode at de Ordnung. Verallgemenerung Glt für den Feler ener Metode mt der Scrttwete ungefär p ( ) = c e dann esst der Eponent p de Ordnung der Metode. Für de Scrttwete / erält man damt e = c p c = p p e = ( ) p Hat also ene Metode de Ordnung p so bedeutet des, dass be ener Halberung der Scrttwete der Feler durc p dvdert wrd. Bldet man we m Bespel den Quotenten e( ) q = e aufenanderfolgender Feler, so sollte sc ungefär ene Potenz von ergeben. Der zugeörge Eponent von st dann gerade de gesucte Ordnung p d.. wegen q = p glt p =log q. Übungsaufgaben: a) Anfangswertproblem: = y e Anfangswert: y(0) = Intervall [0, 0.] y Scrttwete: = 0.05 bzw Verglec mt der eakten Lösung: y = ( ) e y y y eakt ( = 0.05) ( = 0.05) y b) Anfangswertproblem: y = Anfangswert: y() = 4 Intervall [, 6] Scrttwete: = 0.5 y(6) =.09 Verglec mt der eakten Lösung: 8 y = dffgl_num 3..03/bu

5 5. De Metode von Heun geometrsce Idee: Bestmme zunäcst aus y nac Euler enen * provsorscen Wert y für y. * () y = y f (, y ) Im Intervall [, /] wrd de Lösung durc de Tangente m Punkt (, y) mt Stegung f(, y) appromert, m Intervall [ /, ] durc de Gerade mt Stegung f(, y ) Recnersce Durcfürung: 0 = a, y(0) = y(a) = y0, n ( b a) m = f (, y ) * () y = y f (, y ) = y m = * = f (, y m ) * =, = 0,,,, n - * () y y ( f (, y ) f (, y )) = y ( m m ) = dffgl_num 3..03/bu

6 dffgl_num 3..03/bu 6

7 7 Ordnung des Verfarens von Heun Wendet man m Musterbespel das Verfaren von Heun an, so erkennt man, dass be ener Halberung der Scrttwete der Quotent q aufenanderfolgender der Feler ungefär durc 4 = dvdert wrd. Das Verfaren von Heun at also de Ordnung. Übungsaufgabe Anfangswertproblem: y = y Anfangswert: y(0) = 0 Intervall [0, ] Scrttwete: = 0.5 scrttwese alberen Gesuct: y() Verglec mt der eakten Lösung: y = ( ) e n = /n y() y eakt = e Feler e() e e ( ) ( ) Bestmmt man zelenwese den Wert bedeutet, dass für den Feler glt: e 0.45 ( ) ( ) e, so stablsert sc de Folge be Des dffgl_num 3..03/bu

8 8 3. Das Verfaren von Runge-Kutta (90) Es andelt sc um en Verfaren, das sowol relatv enfac als auc für en bretes Anwendungsgebet ausrecend genau st. Dazu werden aus den Werten von f(, y) ver verscedene Stegungen ermttelt, je en Wert an den beden Intervallgrenzen und zwe wetere n der Intervallmtte. ( y ) ( y ) ( y ) ( y ) m = f, Stegung am lnken Intervallende m = f, m Stegung n der Intervallmtte nac Euler mt Stegung m m3 = f, m Stegung n der Intervallmtte nac Euler mt Stegung m m4 = f, m 3 Stegung am recten Intervallende nac Euler mt Stegung m3 Aus desen ver Werten wrd ene mttlere Stegung m berecnet m ( m m3) m4 m = 6 Mt den Abkürzungen k = m ergbt sc damt für den näcsten Näerungswert (3) y k = y ( k k3) k 6 4 Falls f nct von y abängt, glt k = f ( ) ( ) ( ) k = k3 = f k4 = f und Glecung (3) verenfact sc zu f ( ) 4 f f ( ) y y = 6 d.. das Gegenstück zum Verfaren von Runge-Kutta st das Verfaren von Smpson (70-76) zur Näerungsberecnung enes bestmmten Integrals (entsprecend st das Gegenstück des Verfarens von Heun de Trapezregel). dffgl_num 3..03/bu

9 9 Für de Recnung verwenden wr folgendes Scema y f (, y) k = f (, y) 0 0 y f 0 (, y 0 0 ) k 0 y0 k f ( 0, y0 k) k 0 y0 k f ( 0, y0 k ) k 3 y f ( y ) k 0 0 k , k Daraus ergbt sc der Näerungswert an der näcsten Stützstelle = 0 zu k ( k k3) k4 y = y 0 k mt k = 6 dffgl_num 3..03/bu

10 0 In der Tabelle st zu erkennen, dass bem Verfaren von Runge der Quotent q aufenander folgender Feler ungefär durc 6 = 4 dvdert wrd, wenn de Scrttwete albert wrd. Das Verfaren von Runge-Kutta at also de Ordnung 4. Es kann nämlc gezegt werden, dass sc das Verfaren lokal von der Taylorentwcklung der Lösung durc Terme unterscedet, de proportonal zu 5 snd. Damt st der globale Abbrucfeler öcstens ene Konstante mal 4 Fazt: Halbert man de Scrttwete, so wrd der Feler - bem Eulerverfaren ungefär albert Eulerverfaren: Ordnung - bem Verfaren von Heun ungefär durc 4 getelt Heun: Ordnung - bem Verfaren von Runge-Kutta ungefär durc 6 getelt Runge-Kutta: Ordnung 4 dffgl_num 3..03/bu

11 Übungsaufgabe: Anfangswertproblem: y = y e Anfangswert: y(0) = Intervall [0, 0.] Scrttwete: = 0.05 Gesuct y(0.) Verglec mt der eakten Lösung: y = ( ) e und mt der Eulermetode. y(euler) y(runge-kutta) y eakt = e Das Bespel zegt de Überenstmmung der Näerungslösung nac Runge-Kutta mt der eakten Lösung. Aufgabe: Zwscen enem Feld und ener geradlngen Strasse von 4 m Brete legt en Graben von 3 m Brete. En grosser Sten, der sc n 8 m Entfernung vom Strassenrand befndet, soll von enem Tra n den Graben gezogen werden. Dazu wrd am Tra, der n der Strassenmtte rollt en Sel 5 m Länge befestgt. a) Auf welcer Kurve bewegt sc der Stenblock? b) In welcer Entfernung von Grabenrand befndet sc der Sten, wenn der Tra 0 m gerollt st? c) Welce Dstanz muss der Tra zurücklegen, bs der Fels n den Graben fällt? Lösung: a) Zu Begnn befndet sc der Tra m Ursprung des Koordnatensystems. Der Sten befndet sc zu desem Zetpunkt m (-5, 0). Zu enem späteren Zetpunkt befndet sc der Sten m Punkt (, y). Da das Kabel de Rctung der Kurventangente at glt de Dfferentalglecung y y =. Gesuct st de Lösung, welce de Anfangsbedngung y(-5) = 0 erfüllt 65 y dffgl_num 3..03/bu

12 Näerungswese Bestmmung der Kurve der Kurve, de der Stenblock zurücklegt. Skzze:. b) Gesuct st der Kurvenpunkt mt den Koordnaten (, y), der vom Punkt (0,0) den Abstand 5 at, für den also glt: ( 0) y ) = 5. Dazu wurde n der Tabelle de Spalte Abstand engefügt. Lneare Interpolaton ergbt den Wert 5 für y = 0.69, was enem Abstand von m vom Grabenrand bedeutet. dffgl_num 3..03/bu

13 3 c) Gesuct st der Kurvenpunkt (, y) für den de y-koordnate klener oder glec 5 st. des st der Fall für 5.5. Zu desem Wert st noc gemäss der Skzze n der Aufgabenstellung der Wert zu adderen 65 y Der Tra st also ungefär 40 m vom Startpunkt entfernt. dffgl_num 3..03/bu

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Gründe für Lagerbestände. 3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem.

Gründe für Lagerbestände. 3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. 3. Systeme des Bestandsmanagements Was st Bestandsmanagement? Grob gesagt, wrd m Bestandsmanagement festgelegt, welce Mengen enes Produktes zu welcem Zetpunkt zu bestellen snd Herdurc wrd der Bestand enes

Mehr

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände 3. Systeme des Bestandsmanagements Was st Bestandsmanagement? Grob gesagt, wrd m Bestandsmanagement festgelegt, welce Mengen enes Produktes zu welcem Zetpunkt zu bestellen snd Herdurc wrd der Bestand enes

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Bayessche Netzwerke. von Steffen Otto. Proseminar: Machine Learning

Bayessche Netzwerke. von Steffen Otto. Proseminar: Machine Learning Bayessce Netzwerke von Steffen Otto Prosemnar: Macne Learnng Bayessce Netzwerke Inaltsverzecns 1 Enletung... 3 2 Bayessce Netzwerke... 3 2.1 Allgemene Struktur... 3 2.2 Datenerebung zum Aufstellen enes

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

14 Auch teilen will gelernt sein Brüche

14 Auch teilen will gelernt sein Brüche Auc telen wll gelernt sen Brüce Ft. Sommerparty Zu desem Kaptel gbt es fertge Unterrctsmateralen für das Offene Lernen unter: ttp: //www.besseresbuc.at te Sara und Tom geben ene Sommerparty. Dazu aben se

Mehr

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj.

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj. A. (Bespel) Welce Arbet wrd gelestet, wenn kg Wasser be o C (n der Küce) verdampft? ( l (H O) = 953,4 kg/m³, g (H O) =,5977 kg/m³ ) Der Vorgang läuft be dem konstanten Druck p =,3 bar ab. Da der Druck

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Kernphysik I. Kernkräfte und Kernmodelle: Deuteron

Kernphysik I. Kernkräfte und Kernmodelle: Deuteron Kernpysk I Kernkräfte und Kernmodelle: Deuteron Wederolung: Ladungsunabänggket der Kernkräfte Neutronen und Protonen aben nct nur fast de glece Masse, sondern snd auc n rer Kernwecselwrkung änlc. Des set

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Blatt 8. WKB; Trägheitsmomente starrer Körper - Lösungsvorschlag

Blatt 8. WKB; Trägheitsmomente starrer Körper - Lösungsvorschlag Fakultät für Pysk der LMU Müncen Lerstul für Kosmologe, Prof. Dr. V. Mukanov Übungen zu Klassscer Mecank T1) m SoSe 11 Blatt 8. WKB; Trägetsmomente starrer Körper - Lösungsvorsclag Aufgabe 8.1. WKB-Näerung

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

IT Governance Kontrolle und Steuerung von Operationellen Risiken mit Hilfe eines Neuronalen Netzes im CoBIT-Frame

IT Governance Kontrolle und Steuerung von Operationellen Risiken mit Hilfe eines Neuronalen Netzes im CoBIT-Frame IT Goernance Kontrolle und Steuerung on Operatonellen Rsken mt Hlfe enes Neuronalen Netzes m CoBIT-Frame Zusammenfassung Ene Netzstruktur n Form enes Modfed Restrcted Boltzmann Netzes wrd über alle Standard-Prozesse

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Quantitative Bewertung des RFID-Einsatzes in der Lagerhaltung auf Basis von Lagerhaltungsmodellen

Quantitative Bewertung des RFID-Einsatzes in der Lagerhaltung auf Basis von Lagerhaltungsmodellen Georg-August-Unverstät Göttngen Insttut ür Wrtscatsnormatk Proessor Dr. Mattas Scumann Platz der Göttnger Seen 5 37073 Göttngen Teleon: 49 55 39-44 33 49 55 39-44 4 Telea: 49 55 39-97 35 www.w.wso.un-goettngen.de

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Kapitel 1. Grundlagen der Fehleranalyse

Kapitel 1. Grundlagen der Fehleranalyse Kaptel Grundlagen der Fehleranalyse B... (Fehlerarten): Von den Fehlerquellen ausgehend unterscheden wr dre unterschedlche Fehlerarten: () Engangsehler Dese entstehen durch a) Modellerungsehler (Z.B. wenn

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Tabellarische Und Grafische Zusammenfassung 1-Dimensionaler Daten Daten. Quantitativ

Tabellarische Und Grafische Zusammenfassung 1-Dimensionaler Daten Daten. Quantitativ Tabellarce Und Grafce Zuammenfaung -Dmenonaler Daten Daten Qualtatv Quanttatv Aupräg a Ab. kettabelle Auprägung Ab. /. keten Stab- Dagramm Kre- Dagramm : f / Dkret kettabelle Auprägung Ab. /. keten Kumulerte

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Übungen zur Einführung in die Geometrie. SS /28. Mai / Exkursionswoche Blatt 6

Übungen zur Einführung in die Geometrie. SS /28. Mai / Exkursionswoche Blatt 6 Übunen zur Enfürun n de Geometre 00 7./8. Ma / Eursonswoce Blatt 6 De Aufaben 1 und sollten auc mt EUKLID bearbetet werden. 1. Hnterenanderausfüren on Geradenspeelunen De Geraden f, und berenzen a) en

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

Versuchs-Datum: Semester: Gruppe: Testat:

Versuchs-Datum: Semester: Gruppe: Testat: Labor: Elektrsce ascnen 1 Fakultät E Labor: Elektrsce ntrebstecnk Versuc E1-6: Glecstrommascne Versucs-Datum: Semester: Gruppe: Protokoll: Testat: Berct: Datum: 1. Versucszel Be desem Versuc sollen Se:

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Augmented Reality - 3D Wahrnehmung + perspektivische Abbildungen

Augmented Reality - 3D Wahrnehmung + perspektivische Abbildungen Augmented Realt - 3D Warnemung + perspektvsce Abbldungen Intellgente Mensc-Mascne-Interakton - IMMI SS 2 Prof. Dder Strcker Dder.Strcker@dfk.de De Vorlesung am 7.6 fndet m Raum Zuse am DFKI statt 2 Übersct

Mehr

8. Mathematische Begriffe der Thermodynamik. Basel, 2008

8. Mathematische Begriffe der Thermodynamik. Basel, 2008 8. Mathematsche Begre der Thermodnamk Basel, 2008 1. Enührung 8. Mathematsche Begre der Thermodnamk 2. Zustandsunktonen mehrerer Varabeln 3. Totales Derental 4. Homogene Funktonen 5. Mengen-Angaben 6.

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Datenaufbereitung und -darstellung III

Datenaufbereitung und -darstellung III Datenafberetng nd Darstellng 1 Glederng: Zel der Datenafberetng nd Darstellng Datenverdchtng Tabellen nd grafsche Darstellngen Darstellng nvarater Datenmengen (Abschntt 4.4 Darstellng mltvarater Daten

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Vorlesung Reaktionstechnik SS 09 Prof. M. Schönhoff/ PD Dr. Cramer

Vorlesung Reaktionstechnik SS 09 Prof. M. Schönhoff/ PD Dr. Cramer Vorlesung Reaktonstehnk SS 9 Prof. M. Shönhoff/ PD Dr. Cramer 2.7.29 Musterlösungen zu Übungsaufgaben 2 vorzurehnen am Mo, 2.7.9 Aufgabe 5.) En Rohrbündelreaktor soll für de Durhführung ener Gasreakton

Mehr

DCEL: Eine Datenstruktur für ebene Unterteilungen

DCEL: Eine Datenstruktur für ebene Unterteilungen DCEL: Ene Datenstrutur für ebene Unterteungen (Lteratur: deberg et a., Kate 2) 1 Ebene Unterteungen =(V,E) engebetteter, anarer ra eder Ece v von st en Punt (v) zugeordnet eder Kante e={u,v} von st ene

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm

Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm Montageanletung Energesäule mt dre Leerenheten, Höhe 491 mm 1345 26/27/28 Energesäule mt Lchtelement und dre Leerenheten, Höhe 769 mm 1349 26/27/28 Energesäule mt sechs Leerenheten, Höhe 769 mm, 1351 26/27/28

Mehr