Tabellarische Und Grafische Zusammenfassung 1-Dimensionaler Daten Daten. Quantitativ

Größe: px
Ab Seite anzeigen:

Download "Tabellarische Und Grafische Zusammenfassung 1-Dimensionaler Daten Daten. Quantitativ"

Transkript

1 Tabellarce Und Grafce Zuammenfaung -Dmenonaler Daten Daten Qualtatv Quanttatv Aupräg a Ab. kettabelle Auprägung Ab. /. keten Stab- Dagramm Kre- Dagramm : f / Dkret kettabelle Auprägung Ab. /. keten Kumulerte keten Stab-Dagramm Kre-Dagramm Vertelungfunkton (Treppenfunkton) Stetg Klaerte kettabelle Klaen, Klaen-Breten / -tten Ab. /. keten Kumulerte keten Klaen-Dcte Htogramm Vertelungfunkton (Kumulatve ketpolygon) Dcte-Htogramm Polygon (ketpolygon) Geglättete Polygon (Dcte-Funkton) Aupräg a Ab. f / Kum rel F Kla. K Kla.- tte m Kla- Brete d Ab. f / Kum. rel F Klaen- Dcte f f / d " f Kumulatve ketpolygon $ f Klaendcte f Klaendcte # Dcte

2 aßalen (Kennalen) Lageparameter (Datenree mt Elementen) ttelwert : (Artmetce ttel) Empfndlc gegenüber Aureßer ur für quanttatve erkmale a : Anal der Auprägungen a m : Anal der Klaen t ungerade edan: ed Ordne de Elemente der Größe nac Da Element n der tte t der edan t gerade Der ttelwert au den beden Elementen n der tte t der edan Retent gegenüber Aureßer odu: od Da Elemente da am äufgten vorkommt Gut geegnet für nomnalkalerte erkmale.4 & ' & &

3 aßalen (Kennalen) Streuparameter (Datenree mt Elementen) Varan: ² Standardabwecung: ( ) ( a ) : Anal der Auprägungen a ( m ) : Anal der Klaen : ttelwert Spannwete: R R ma mn mn : Da klente Element der Datenree ma : Da größte Element der Datenree Quartlabtand: Q Q Q 3 Q Q : Da 5-Quantl Q 3 : Da 75-Quantl Ordne de Elemente der Größe nac Betmme den edan De tte der unteren Datenälfte t Q De tte der oberen Datenälfte t Q 3 Untere Hälfte Obere Hälfte n Q Q 3 a Q edan n a.995 ' n a n a

4 Tabellarce Und Grafce Zuammenfaung -Dmenonaler Daten Daten omnalkalert Kardnalkalert (etrc) Kontngentabelle Zwe erkmale Auprägungen Ab. /. keten Randäufgketen Z Kontngentabelle der Bedngten keten keten bgl. der Randäufgketen der Spalten oder der Zelen Wertetabelle ( ; y )-Wertepaare Streu-Dagramm Stab-Dagramm Stab-Dagramm der bedngten keten y Kontngentabellen können auc für alle anderen Datentypen verwendet werden, wenn man dee auf nomnalkalerte Daten erabett. Kontngentab. der Ab.. a b k k + Kontngentab. der Bed.. keten bgl. der Randäufgket der Spalten, - Y & X Kontngentab. der.. b k a f k f f + "

5 Zuammenanganalye -Dmenonaler Daten Zuammenanganalye weer nomnalkalerter erkmalen X und Y n Kontngentabellen Unabänggket von X und Y Stärke der Abänggket von X und Y Wenn für alle erkmal-auprägungen- Paare ( a ; b k ) glt: k e k bw. f k f f k χ Der χ²-koeffent R C k ( e ) k e k k Erwartete keten für de Unabängg von X und Y e k k groß wenn X und Y von enander abängen klen wenn X und Y von enander unabängg nd Je mer de ewelgen e k - c von den k -Werten unterceden, um o größer t de Abänggket von X und Y Wenn X und Y unabängg nd, reultert aufgrund von tattcen Zufallcwankungen nct mmer eakt χ². En großer actel de χ²-koefenten al Zuammenangmaß t, da be ener Zuname der Dmenon der Kontngentabelle der Wert von χ² auc unmmt. Zuammenanganalye -Dmenonaler Daten Zuammenanganalye weer kardnalkalerter (metrcer) erkmalen X und Y Rctung de Zuammenang von X und Y y De Punktwolke verläuft dann von lnk oben nac rect unten De Kovaran: y : ttelwert der -Werte negatv ( ) ( y y ) Ungeegnet al aß für de Stärke de Zuammenang, da e bgl. der Eneten der erkmale tegt oder nkt. y : ttelwert der y-werte potv De Punktwolke verläuft dann von lnk unten nac rect oben. Stärke und Rctung de Zuammenang von X und Y Der Korrelatonkoeffent: r Gegennnger lnearer Zuammenang r : Standardabwecung der -Werte negatv It r, o legt ken lnearer Zuammenang wcen X und Y vor. y y y : Standardabwecung der y-werte potv Glecnnger lnearer Zuammenang It r nae be oder, dann legen de Punkte fat auf ener Geraden

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale Mefacntegale Mae ene Quade: M wenn de Quade nomogen t: (,, ) M (,, ) M N M N N (,, ) M lm (,, ) (,, ) dd d N Integal de Funkton (,, ) üe da olumen. Mefacntegale mt kontanten Integatongenen Integaton mefac

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Beispiel zur Aufgabe 1a der Hausübung

Beispiel zur Aufgabe 1a der Hausübung Bespel ur Aufgabe a der Hausübung Ges.: Aufnehmbares Moment M Rds be vorgegebener Bewehrung 30 A 0 30 35 5 N Ed 0 M Ed M Eds M Rds! M Ed M Eds N Eds N Ed ε + ε c σ σ c d Baustoffe: Beton C 5/30 f 0,85

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Pyramidenvolumen Was haben Treppenkörper mit Intervallschachtelung zu tun?

Pyramidenvolumen Was haben Treppenkörper mit Intervallschachtelung zu tun? Pyramdevolume Was abe Treppekörper mt Itervallscactelug zu tu? Gegebe st ee Pyramde mt der Grudkate a = 5 ud der Höe = 8. De Höe st äqudstat Tele egetelt ud der Pyramde sd 3 Quader ebescrebe. 1) Berece

Mehr

KINDERGARTEN & SCHULFOTOGRAFIE Unser Angebot für das Schuljahr 2013/2014

KINDERGARTEN & SCHULFOTOGRAFIE Unser Angebot für das Schuljahr 2013/2014 1230W en, An Bau mgar n er r 125/6/0/003 +43/676/843108200 of f e@pr odu u d o eu www pr odu u d o eu KI NDERGART EN-und S CHUL F OT OGRAF I E S hul j ahr2013/ 2014 KINDERGARTEN & SCHULFOTOGRAFIE Uner

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

3 g-adische Ziffernentwicklung reeller Zahlen

3 g-adische Ziffernentwicklung reeller Zahlen 1 3 g-adche Zffernentwcklung reeller Zahlen In deem Kaptel e tet 2 g N und Z g = {0, 1, 2, 3,..., g 1} N. Motvaton: Wr wollen jede potve reelle Zahl x > 0 n der Ba g 2 dartellen (g-adche Dartellung von

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik Grundlagen sportwssenschaftlcher Forschung Deskrptve Statstk Dr. Jan-Peter Brückner jpbrueckner@emal.un-kel.de R.6 Tel. 880 77 Deskrptve Statstk - Zele Beschreben der Daten Zusammenfassen der Daten Überblck

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

III. Theorie des Haushalts

III. Theorie des Haushalts Pro. Dr. Fredel Bolle Vorlesung "Mkroökonome" WS 008/009 III. Theore des Haushalts 86 Pro. Dr. Fredel Bolle Vorlesung "Mkroökonome" WS 008/009 III. Theore des Haushalts 87 III. Theore des Haushalts Unternehmung

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Endmensonale Häfgketsvertelng Sete 1 Glederng des Krses: I II Allgemene Grndlagen Statstsche Analyse enes enzelnen Merkmals Analyse/Beschrebng enes enzelnen Merkmals Zel: Verdchtng (Komprmerng) ener nüberschabaren

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Messung und Modellierung von Nebensprechstörungen auf

Messung und Modellierung von Nebensprechstörungen auf Messung und Modellerung von ebensprechstörungen au xdl-kanälen Alred Voglgsang ITG Dsussonsstzung Messverahren der EMV 5.0.003 Glederung. Atuelle Ausgangsstuaton. ebensprechen au xdl-kanälen 3. mulaton

Mehr

DATENBLATT. Etikett (Mini 20 ml) Kurz-Info: Dateigröße: 105 x 135 mm. Breite: 105 mm / Höhe: 135 mm (zzgl. 7 mm Beschnitt) Endformat: 119 x 149 mm

DATENBLATT. Etikett (Mini 20 ml) Kurz-Info: Dateigröße: 105 x 135 mm. Breite: 105 mm / Höhe: 135 mm (zzgl. 7 mm Beschnitt) Endformat: 119 x 149 mm DATENBLATT Deses Datenblatt soll Ihnen helfen Ihr ndvduelles Etkett selbst zu erstellen. Es dent Ihnen als Vorlage bzw. gbt Ihnen alle wchtgen Informatonen über Format/Größe des Etketts, Farbmodus, Auflösung

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Statistische Regressionsmodelle

Statistische Regressionsmodelle Statstsche Regressonsmodelle Tel II: Verallgemenerte Lneare Modelle Werner Stahel Semnar für Statstk, ETH Zürch März 2005 / Ma 2008 Zweter Tel der Unterlagen zu enem Kurs über Regressonsmodelle, gehalten

Mehr

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj.

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj. A. (Bespel) Welce Arbet wrd gelestet, wenn kg Wasser be o C (n der Küce) verdampft? ( l (H O) = 953,4 kg/m³, g (H O) =,5977 kg/m³ ) Der Vorgang läuft be dem konstanten Druck p =,3 bar ab. Da der Druck

Mehr

Erzeugung mit einer rotierenden flachen Spule

Erzeugung mit einer rotierenden flachen Spule 2. Snuförmge Wechelpannung De elektromagnetche Indukton t ene der Grundlagen unerer technchen Zvlaton. Der Strom, der au der Steckdoe kommt, t bekanntlch en Wecheltrom. De hn verurachende Wechelpannung

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

Übungen zur Einführung in die Geometrie. SS /28. Mai / Exkursionswoche Blatt 6

Übungen zur Einführung in die Geometrie. SS /28. Mai / Exkursionswoche Blatt 6 Übunen zur Enfürun n de Geometre 00 7./8. Ma / Eursonswoce Blatt 6 De Aufaben 1 und sollten auc mt EUKLID bearbetet werden. 1. Hnterenanderausfüren on Geradenspeelunen De Geraden f, und berenzen a) en

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007 Übung/Tutorate Statstk II: Schleßende Statstk SS 7 Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt

Mehr

Schneller. Kompakter. Leistungsfähiger. Kleine, universelle Schwenkeinheit SRU-mini

Schneller. Kompakter. Leistungsfähiger. Kleine, universelle Schwenkeinheit SRU-mini SRU-mn Pneumatsch Schwenkenheten Mnaturschwenkenhet Schneller. Kompakter. Lestungsfähger. Klene, unverselle Schwenkenhet SRU-mn Lechte und schnelle Mnaturschwenkenhet mt velfältgen Optonen we Fluddurchführung,

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorthmche Bonformatk HMM Algorthmen: Forward-Backward Baum-Welch Anwendung m equenzalgnment Ulf Leer Wenmanagement n der Bonformatk Formale Defnton von HMM Defnton Gegeben Σ. En Hdden Markov Modell t

Mehr

zz da n B. (3.79) 3.7 TRANSFORMATORTHEORIE

zz da n B. (3.79) 3.7 TRANSFORMATORTHEORIE 3.7 TANSFOATOTHEOE E re quanttatve Beobatungen über den usammenang wsen etabänggen eletrsen Feldern und magnetsen Feldern wurden berets von ael Faraday m Jare 83 durgefürt. Er untersute erbe das Veralten

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Vorlesung zur Methode der kleinsten Quadrate (MkQ) für Bauingenieurstudenten im Hauptstudium *

Vorlesung zur Methode der kleinsten Quadrate (MkQ) für Bauingenieurstudenten im Hauptstudium * Veröffentlchung_42.nb 1 Vorlesung ur Methode der klensten Quadrate (MkQ) für Baungeneurstudenten m Hauptstudum * Irene Slavk H1L, Mrko Slavk H2L H1L Technsche Unverstät Dresden Fakultät Forst-, Geo-, Hydrowssenschaften

Mehr

Querkraftschub in Profilen

Querkraftschub in Profilen uerkrftcu n Proflen Wr wollen e Vertelung er uerkrftcupnnung n enem ckwngen un enem ünnwngen Profl etrcten. Al Bepel wr en T-Profl erngeogen. Dckwnge Profl, Wntärke un uercnttmeungen n glecer Größenornung

Mehr

Statistische Methoden für Bauingenieure WS 13/14

Statistische Methoden für Bauingenieure WS 13/14 Statstsche Methoden ür Baungeneure WS 3/4 Enhet 3: Bvarate Zuallsvarablen Unv.Pro. Dr. Günter Blöschl Bezechnungen... Zuallsvarable... Realsaton konkrete Werte Momente Grundgesamthet Mttelwert,Varanz Stchprobe

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

tö 10, 20 1 30 40 50 60 1

tö 10, 20 1 30 40 50 60 1 Funktonen 200 Herzschläge pro Mnute ' 60 -+ 20, 80 r t r ~- T T 40, Zet n Mn. tö 0, 20 30 40 50 60 Das Dagramm zegt de Pulsfrequenz von Svenja bem Geländelauf. Les de Pulsfrequenz nach 0; 20; 30;... Mnuten

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

B ü r o S o f t w a r e

B ü r o S o f t w a r e B ü r w a r e EINFACH - CLEVER - ARBEITEN Alle Büraugaben m Handumdrehen erledgen. Beres 6.500 Klen- und Melberebe verrauen au b! b Inrmansbla www.bs.a www.b.de ee 1 vn 7 M b haben e jeden Vrgang m Gr

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes Statstk Defnton: Entwcklung und Anwendung von Methoden zur Erhebung, Aufberetung, Analyse und Interpretaton von Daten. Telgebete der Statstk: - Beschrebende (deskrptve) Statstk - Wahrschenlchketsrechnung

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Musterklausur Wirtschaftsmathematik und Statistik. Zusatzstudium für Wirtschaftsingenieur

Musterklausur Wirtschaftsmathematik und Statistik. Zusatzstudium für Wirtschaftsingenieur Musterklausur Wrtschaftsmathematk und Statstk Zusatzstudum für Wrtschaftsngeneur Telnehmer (Name, Vorname): Datum:.2006 Prüfer: Böhm-Retg Matrkelnummer: REGELN 1. Zum Bestehen der Klausur snd mndestens

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

NETTO PREISLISTE SELFIE KONZEPT

NETTO PREISLISTE SELFIE KONZEPT 4c Stcker Indvduelles Logo aus Slcon Materal angebracht am Stel, Größe etwa 4x5 cm. 3,64 3,52 3,47 3,40 0,20 0,17 0,14 0,11 Mndestbestellmenge 2.000 Stück - - - 0,50 Lecht zu bedenen: n den Audo Anschluss

Mehr

ETG-Labor 1.Sem Spannungsquelle. Spannungsquelle R L

ETG-Labor 1.Sem Spannungsquelle. Spannungsquelle R L Spannungsquelle 1 Lernzel: Nach Durchführung der Übung kann der Studerende: De Kenngrößen ener realen Spannungsquelle benennen und dese messtechnsch erfassen Mt Hlfe der Spannungskompensatonsmethode klenste

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Transistor als Schalter

Transistor als Schalter Elektrotechnsches Grundlagen-Labor II Transstor als Schalter Versuch Nr. 5 Erforderlche Geräte Anzahl Bezechnung, Daten GL-Nr. 1 Doppelnetzgerät 198 1 Oszllograph 178 1 Impulsgenerator 153 1 NF-Transstor

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Konzept der Chartanalyse bei Chart-Trend.de

Konzept der Chartanalyse bei Chart-Trend.de Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Strömungstechnik Formelsammlung. Andreas Zimmer SS 98

Strömungstechnik Formelsammlung. Andreas Zimmer SS 98 Strömungstecnk ormelsammlung Anreas Zmmer SS 98 Inaltserzecns. Hyrostatk...4. Kolbenruck...4. Hyraulsce Presse...4.3 Scwereruck...4.4 Gesamtruck...4.5 Druckkraft...4.6 Wankräfte...4.7 Kommunzerene Gefäße...4.8

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

F A C H H O C H S C H U L E W E D E L. Seminararbeit Informatik

F A C H H O C H S C H U L E W E D E L. Seminararbeit Informatik F A C H H O C H S C H U L E W E D E L Semnararbet Informatk n der Fachrchtung Wrtschaftsnformatk Themenberech Künstlche Intellgenz Thema Nr. 3 Dskrmnanzanalyse Engerecht von: Erarbetet m: Patrck Wolf Wedeler

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

Risikomanagement. Vortrag in der Seminarreihe Statistische Mechanik der Finanzmärkte im WS 07/08. Simon Hertenberger

Risikomanagement. Vortrag in der Seminarreihe Statistische Mechanik der Finanzmärkte im WS 07/08. Simon Hertenberger Rskomanagement Vortrag n der Semnarrehe Statstsche Mechank der Fnanzmärkte m WS 07/08 Smon Hertenberger Inhaltsverzechns Grundlagen Was st Rsko? 3 Gründe des Rskomanagements 3 Rskomanagement als Prozess

Mehr

Qualitative Evaluation einer interkulturellen Trainingseinheit

Qualitative Evaluation einer interkulturellen Trainingseinheit Qualtatve Evaluaton ener nterkulturellen Tranngsenhet Xun Luo Bettna Müller Yelz Yldrm Kranng Zur Kulturgebundenhet schrftlcher und mündlcher Befragungsmethoden und hrer Egnung zur Evaluaton m nterkulturellen

Mehr

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände

3.2 Systeme des Bestandsmanagements. Wie kommt es zu Lagerbeständen? 3.2.1 Klassisches Bestellmengenproblem. Gründe für Lagerbestände 3. Systeme des Bestandsmanagements Was st Bestandsmanagement? Grob gesagt, wrd m Bestandsmanagement festgelegt, welce Mengen enes Produktes zu welcem Zetpunkt zu bestellen snd Herdurc wrd der Bestand enes

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Erstes Kirchhoffsches Gesetz

Erstes Kirchhoffsches Gesetz Amaterfnkkrs Landesverband Wen m ÖVSV Erstellt: 2010-2011 Letzte Bearbetng: 20. Febrar 2016 Themen 1 2 3 4 5 Erstes s Gesetz 3 2 1 4 5 2 + 3 + 5 =? Erstes s Gesetz 3 2 1 4 5 2 + 3 + 5 = 1 + 4 Zwetes s

Mehr

2 Halbleitersensoren SC-T100 / SC-M1000 / SC-L25 / SC-D300 / SC-D800

2 Halbleitersensoren SC-T100 / SC-M1000 / SC-L25 / SC-D300 / SC-D800 Sensoren analog (Komponenten) Features Applcatons enfach und kostengünstg Prozessüberwachung Sensoren für Lcht, Druck, Weg, Temperatur, Beschleungung, Schall, Magnetfeld Entwcklung, Schule, Ausbldung sowe

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr