Maschine Motor ω (t) 1 c. ω (t) 2

Größe: px
Ab Seite anzeigen:

Download "Maschine Motor ω (t) 1 c. ω (t) 2"

Transkript

1 Aufgabe 1: Modellbildung (20 Punkte) Machine Motor ω (t) 1 c ω (t) 2 r J Ein drehzahlgeregelter Motor gibt die Drehfrequenz ω 1 (t) au und treibt über eine tordierbare Welle mit der Torionteifigkeit c eine Machine an. Die Machine verfügt über die drehfrequenzproportionale Reibung r und da Maenträgheitmoment J und hat die Eingangdrehfrequenz ω 2 (t). Da dynamiche Verhalten de drehzahlgeregelten Motor oll gegenüber dem der Machine vernachläigt werden. a) Berechnen Sie die Übertragungfunktion G() =ω 2 ()/ω 1 (). b) Entwerfen Sie nach dem Betragoptimum einen PI-Regler, der die Drehfrequenz ω 2 (t) regelt und dabei ω 1 (t) al Stellgröße benutzt.

2 Aufgabe 2: Strukturbildreduktion (20 Punkte) Gegeben ei da folgende Strukturbild einer Regeltrecke: Y () 1 - j K - j -? j - - j 6-1? j 6 X() a) Betimmen Sie durch chrittweie Umwandlung de Strukturbilde die Übertragungfunktion G() = X()/Y () der Regeltrecke. b) Für welche Werte von K it die Regeltrecke tabil?

3 Aufgabe 3: Ortkurve, Stabilität nach Nyquit (25 Punkte) Gegeben ei der nachfolgend dargetellte Regelkrei: w(t) - j - K r x(t) a) Geben Sie den Frequenzgang F 0 (jω) de offenen Regelkreie an, und betimmen Sie Real- und Imaginärteil von F 0 (jω). b) Skizzieren Sie die Ortkurve de offenen Regelkreie durch Auwertung de Realund Imaginärteil von F 0 (jω). c) Betimmen Sie mit Hilfe de Nyquit-Kriterium, für welchen Wertebereich von K>0 der gechloene Regelkrei tabil it.

4 Aufgabe 4: Lineariierung - Ein Kraftfahrzeug wird mit der vom Motor aufgebrachten Kraft F (t) angetrieben. Dieer Kraft entgegengerichtet it die Maenträgheitkraft owie der Windwidertand. Die reultierende Fahrzeuggechwindigkeit v(t) itunterberückichtigung aller Einwirkungen auf da Fahrzeug über die zugehörige phyikaliche Modellgleichung mit der antreibenden Kraft F (t) verknüpft. E wird nunmehr die Modellgleichung v(t) = av 2 (t) +bf(t) mit den Parametern a =0.02 [ m ] und b =0.01 [ m N ] voraugeetzt. a) Lineariieren Sie da Sytem um den Arbeitpunkt F 0 = 200 [N] ; v 0 =10[ m ] b) Leiten Sie die Übertragungfunktion G() de um den Arbeitpunkt lineariierten KFZ-Sytem her, wobei folglich gilt: G() = V () F () Die vom Motor aufgebrachte Kraft F (t) in[n] chwankt geringfügig um den genannten Arbeitpunkt, d.h. F (t) = in t c) Betimmen Sie den zugehörigen Verlauf der Fahrzeug-Gechwindigkeit v(t) für v(0) = v 0.

5 Aufgabe 5: FKL, Reglerentwurf (20 Punkte) Ein techniche Sytem mit unbekannter Übertragungfunktion G() wird experimentell vermeen, um eine analytiche Approximation de Übertragungverhalten zu ermöglichen. SINUS- Generator variabel: ω - G() - Ozillokop gemeen: G [db], ϕ G Die (in ω) frequenzabhängige Meßreihe liefert folgende Reultat: Betrag Phae Frequenz ω G (ω) ϕ G (ω) in [db] in [Grad] a) Übertragen Sie die Meßreihen in Betrag- und Phaendiagramme, und betimmen Sie hierau die Übertragungfunktion G() durch Approximation der Frequenzkennlinien durch Standard-Übertragungglieder.

6 b) Unteruchen Sie, ob die approximierte Übertragungfunktion G() zu einem Minimalphaen-Sytem gehört. Da Sytem wird in einen Regelkrei integriert, wobei für den Regler zunächt H() = 1 gilt. W () - m - H() - G() r - E() X() c) Welche bleibende Regelabweichung e(t) = w(t) x(t) ergibt ich in dieem Regelkrei für t zwichen Sollwert w(t) und Itwert x(t) bei Aufchaltung eine Einheitprunge w(t) = σ(t)? E oll nunmehr ein geeigneter Regler H() 1 entworfen werden, o daß die bleibende Regelabweichung beeitigt wird. d) Wählen Sie zur Vermeidung der bleibenden Regelabweichung einen innvollen klaichen Regler-Typ (au: P, PI, PD, PID). Legen Sie die vorhandenen Regler-Parameter odann derart fet, daß ich die Schnelligkeit de Regelkreie, augedrückt durch die Durchtrittfrequenz ω D de offenen Regelkreie, gegenüber der de Kreie für H() = 1 nicht ändert. e) Welche Veränderung der Überchwingweite erwarten Sie bei Einatz de neuen Regler (Kurze Begründung!)?

Regelungstechnik (A)

Regelungstechnik (A) Intitut für Elektrotechnik und Informationtechnik Aufgabenammlung zur Regelungtechnik (A) Prof. Dr. techn. F. Gauch Dipl.-Ing. C. Balewki Dipl.-Ing. R. Berat 08.01.2014 Übungaufgaben in Regelungtechnik

Mehr

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1 Aufgabe : a) Au und K = und T = 2 folgt: Mit und K R = 2, T n = 2 : G S () = K T G S () = 2 G R () = K R T n T n G R () = 2 G 0 () = G R ()G S () = F ω () = / + / = b) Y () = F ω ()W() Die Sprungantwort

Mehr

Regelungstechnik I (WS 17/18) Übung 5

Regelungstechnik I (WS 17/18) Übung 5 Regelungtechnik I (WS 17/18) Übung 5 Prof. Dr. Ing. habil. Thoma Meurer, Lehrtuhl für Regelungtechnik Aufgabe 1. Gegeben it die Übertragungfunktion der Regeltrecke ĝ() = 2 3 +.1 ( + 1). Betimmen Sie mittel

Mehr

2. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

2. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raich Dipl.-Ing. Stephanie Geit Fachgebiet Regelungyteme Fakultät IV Elektrotechnik un Informatik Techniche Univerität Berlin Integrierte Lehrverantaltung Grunlagen er Regelungtechnik

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben.

BSc PRÜFUNGSBLOCK 2 / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Intitut für Me- und Regeltechnik BSc PRÜFUNGSBLOCK 2 / D-MAVT. 0. 2005 REGELUNGSTECHNIK I Muterlöung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfmittel: 20 Minuten 8

Mehr

Diplomhauptprüfung. "Regelung linearer Mehrgrößensysteme" 17. März Aufgabenblätter

Diplomhauptprüfung. Regelung linearer Mehrgrößensysteme 17. März Aufgabenblätter Diplomhauptprüfung "Regelung linearer Mehrgrößenyteme" 7. Mär 008 Aufgabenblätter Die Löungen owie der volltändige und nachvolliehbare Löungweg ind in die dafür vorgeehenen Löungblätter einutragen. Nur

Mehr

Übungsblatt - Stabilität des Standardregelkreises

Übungsblatt - Stabilität des Standardregelkreises Prof. Dr.-Ing. Jörg Raich Dr.-Ing. Thoma Seel Fachgebiet Regelungyteme Fakultät IV Elektrotechnik und Informatik Techniche Univerität Berlin Integrierte Verantaltung Mehrgrößenregelyteme Übungblatt - Stabilität

Mehr

Aufgabe 1: Sprungantwort und Ortskurve

Aufgabe 1: Sprungantwort und Ortskurve Aufgabe 1: Sprungantwort und Ortskurve Gegeben sei ein Übertragungssystem mit der Eingangsgröße u(t) und der Ausgangsgröße x(t): u(t) Übertragungssystem x(t) Der Zusammenhang zwischen Eingangsgröße u(t)

Mehr

Prüfung SS 2002. Regelungstechnik 1. Aufgabe 1: Standardregelkreis (10 P) Prof. Dr.-Ing. K. Wöllhaf

Prüfung SS 2002. Regelungstechnik 1. Aufgabe 1: Standardregelkreis (10 P) Prof. Dr.-Ing. K. Wöllhaf Prüfung SS Aufgabe : Standardregelkrei ( P) Regelungtechnik Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Volltändigkeit überprüfen Nur Blätter mit Namen und Matr.Nr. werden korrigiert. Keine

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Analyse zeitkontinuierlicher Systeme im Frequenzbereich

Analyse zeitkontinuierlicher Systeme im Frequenzbereich Übung 3 Analye zeitkontinuierlicher Syteme im Frequenzbereich Diee Übung bechäftigt ich mit der Analye von Sytemen im Frequenzbereich. Die beinhaltet da Rechnen mit Übertragungfunktionen, den Begriff der

Mehr

5. Das Frequenzkennlinienverfahren

5. Das Frequenzkennlinienverfahren 5. Da Frequenzkennlinienverfahren Beim o genannten Frequenzkennlinienverfahren handelt e ich um ein Reglerentwurfverfahren im Frequenzbereich. Der Reglerentwurf erfolgt dabei auf Bai von Anforderungen

Mehr

3 Bode-Verfahren Bestimmung von K R Anhebung der Phasenreserve durch ein Lead Glied Frequenzgang/Bode Diagramm...

3 Bode-Verfahren Bestimmung von K R Anhebung der Phasenreserve durch ein Lead Glied Frequenzgang/Bode Diagramm... Inhaltverzeichni Regleraulegung mittel Pol-Nulltellen-Kompenation. Eigenchaften der Regeltrecke..................... Betimmung der Reglervertärkung de PID-Regler........ 3.3 Eigenchaften der geregelten

Mehr

Note: Klausur eingesehen am: Unterschrift des Prüfers: Nachname: Vorname: Matrikelnummer: Fach: Studiengang: Bachelor Master Lehramt Sonstiges

Note: Klausur eingesehen am: Unterschrift des Prüfers: Nachname: Vorname: Matrikelnummer: Fach: Studiengang: Bachelor Master Lehramt Sonstiges Sytemtheorie und Regelungtechnik Abchluklauur Prof. Dr. Moritz Diehl und Dr. Jörg Ficher, IMTEK, Univerität Freiburg 6. März 5, 9:-:, Freiburg, George-Koehler-Allee Raum 6 und 6 Seite 4 5 6 7 8 9 Summe

Mehr

Drehzahlregelung eines Gleichstrommotors 1

Drehzahlregelung eines Gleichstrommotors 1 Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Digitale Signalverabeitung Praktikum Regelungtechnik 1 (Zeitdikrete

Mehr

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion Aufgabe 1: Systemanalyse Ein dynamisches System mit der Eingangsgröße u(t) und der Ausgangsgröße y(t) werde durch die folgenden gekoppelten Gleichungen beschrieben, wobei y 1 (t) eine Zwischengröße ist:

Mehr

Einstellregeln nach Ziegler-Nichols Entwurf mit Hilfe von Gütefunktionalen Wurzelortskurven-Verfahren

Einstellregeln nach Ziegler-Nichols Entwurf mit Hilfe von Gütefunktionalen Wurzelortskurven-Verfahren 6. Allgemeine Struktur 6. Gleichungen de egelkreie 6.3 Standardregler 6.4 Entwurf linearer egelungyteme Eintellregeln nach Ziegler-Nichol Entwurf mit Hilfe von Gütefunktionalen Wurzelortkurven-Verfahren

Mehr

Aufgabe 1: Frequenzgang und Bode-Diagramm ( 10 Punkte) ( )

Aufgabe 1: Frequenzgang und Bode-Diagramm ( 10 Punkte) ( ) Aufgabe : Frequenzgang und Bode-Diagramm ( 0 Punte) Gegeben ei ein einface Sytem mit der Übertragungfuntion: Betimmen Sie analytic den Verlauf de zugeörigen Amplitudengange G ( ω) in Dezibel: ( ) G ( ω)

Mehr

Note: Klausur eingesehen am: Unterschrift des Prüfers: Nachname: Vorname: Matrikelnummer:

Note: Klausur eingesehen am: Unterschrift des Prüfers: Nachname: Vorname: Matrikelnummer: Sytemtheorie und Regelungtechnik Abchluklauur Prof. Dr. Moritz Diehl und Jochem De Schutter, IMTEK, Univerität Freiburg 6. März 7, 4:-6:3, Freiburg, George-Koehler-Allee Raum /4 Seite 3 4 5 6 7 8 9 Summe

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 03.09.016 von 10:00 13:00 Uhr Aufgabe 1 3 4 5 Summe Erreichbare Punkte 15 1 14 5 5 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Namen

Mehr

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am Übungen zur Vorleung PN1 Löung Übungblatt 12 Beprechung am 22.1.2013 Aufgabe 1: Gedämpfte Schwingung An einer Feder mit der Federhärte 20 N/m hängt eine Kugel der Mae 100g. Die Kugel wird um 10 cm nach

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Seionprüfung 4.8.9 Regelungtechnik I (5-59-) Prof. L. Guzzella Muterlöung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterchiedlich gewichtet, total 6 Punkte) Um die Note 6 zu

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 12:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 12:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 02.09.2017 von 10:00 12:00 Uhr Aufgabe 1 2 3 4 Summe Erreichbare Punkte 30 30 30 10 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Bitte

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Ein neues Konzept der modellbasierten Regelung ohne Regeldifferenz

Automation-Letter Nr Prof. Dr. S. Zacher. Ein neues Konzept der modellbasierten Regelung ohne Regeldifferenz Automation-Letter Nr. 33 7.07.207 Prof. Dr. S. Zacher Ein neue Konzept der modellbaierten Regelung ohne Regeldifferenz Mit dem Begriff Antiytem-Approach it in [42] eine Schaltung au zwei identichen Blöcken

Mehr

Protokoll: Mechanische Schwingungen

Protokoll: Mechanische Schwingungen Datum: Namen: Protokoll: Mechaniche Schwingungen 1. Definieren Sie: mechaniche Schwingung. Nennen Sie die Vorauetzungen für da Enttehen mechanicher Schwingungen. Geben Sie die phyikalichen Größen zur Bechreibung

Mehr

2. Praktikum. Maximal drei Personen in jeder Gruppe. Matrikelnummer: Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen!

2. Praktikum. Maximal drei Personen in jeder Gruppe. Matrikelnummer: Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Prof. Dr.-Ing. Jörg Raich Dipl.-Ing. Stephanie Geit Behrang Monajemi Nejad Fachgebiet Regelungyteme Fakultät IV Elektrotechnik und Informatik Techniche Univerität Berlin Integrierte Lehrverantaltung Grundlagen

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Optionen eines modellbasierter Reglers nach dem Antisystem-Approach

Automation-Letter Nr Prof. Dr. S. Zacher. Optionen eines modellbasierter Reglers nach dem Antisystem-Approach Automation-Letter Nr. 8 2.0.206 Prof. Dr.. Zacher Optionen eine modellbaierter Regler nach dem Antiytem-Approach Da bedeutende Ziel dieer Arbeit it, da Zuammenwirken zwei reeller trecken Regel- und chattentrecke,

Mehr

Physik I (Mechanik) WS 2004/05 2. Klausur; Orientierungsprüfung Fr , 15:30-17:30 Uhr, Gerthsen Hörsaal / Gaede Hörsaal

Physik I (Mechanik) WS 2004/05 2. Klausur; Orientierungsprüfung Fr , 15:30-17:30 Uhr, Gerthsen Hörsaal / Gaede Hörsaal Studienziel: Übunggruppe: Benoteter Schein erwüncht: Aufgabe Punkte rreichbare Punkte 1 5 Handzeichen 5 5 4 5 5 5 6 5 Geamt Da rreichen von 5 Punkten entpricht 1% der Klauuranforderung! Bitte beachten

Mehr

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

V6.4 - Erzwungene Schwingungen, Resonanz

V6.4 - Erzwungene Schwingungen, Resonanz V6.4 - Erzwungene Schwingungen, Reonanz Michael Baron, Sven Pallu 31. Mai 2006 Zuammenfaung Im folgenden Veruch betrachten wir da Schwingungverhalten eine gedämpften, periodich erregten Ozillator in Form

Mehr

Teilaufgabe Der Schlitten mit der Induktionsspule wird mit einer konstanten Geschwindigkeit v in ein homogenes

Teilaufgabe Der Schlitten mit der Induktionsspule wird mit einer konstanten Geschwindigkeit v in ein homogenes Abchluprüfung Berufliche Oberchule 011 Phyik 1 Technik - Aufgabe I - Löung Teilaufgabe 10 Eine flache Induktionpule it auf einem Schlitten, der ich auf einer horizontalen Unterlage reibungfrei bewegen

Mehr

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am 11.12.212 Löung Blatt 8 Übungen zur Vorleung PN1 Löung zum Übungblatt 8 Beprochen am 11.12.212 Aufgabe 1: Moleküle al tarre rotierende Körper Durch Mikrowellen laen ich Rotationen von Molekülen mit einem

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt 8 Muterlöungen rundlagen de Filterentwurf 3 8. Entwurf eine paiven Filter mit kriticher

Mehr

Übungsklausur Regelungstechnik SS 2014

Übungsklausur Regelungstechnik SS 2014 Übungklauur egelungtechnik SS 04 Aufgabe : Für ein Sytem mit er Übertragungfunktion G S () 5 ( )( 5) oll ein egler imenioniert weren. Die Führungprungantwort arf maximal 8,5% Überchwingen, e oll abei keine

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.218 Arbeitszeit: 15 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Muterlöungen - Laplace-ranformation zeitkontinuierlicher Signale... 3. Berechnung der Laplace-ranformierten

Mehr

2. Laboreinheit - Hardwarepraktikum SS 2005

2. Laboreinheit - Hardwarepraktikum SS 2005 2. Laboreinheit - Hardwarepraktikum SS 2 1. Veruch: Der bipolare Tranitor al Schalter Tranitor (Funktion, Betrieb, etc) idealer und realer Schalter Flankenantieg-, Flankenabfallzeit und Signallaufzeit

Mehr

Beispiel 1 Modellbildung und Identifikation

Beispiel 1 Modellbildung und Identifikation Beipiel Moellbilung un Ientifikation Für eine GaFlutrecke oll ein mathematiche Moell ermittelt weren. Einganggröße er trecke it eine tellpannung u t. Auganggröße er trecke it er momentane GaFlu q. u t

Mehr

Versuch 4. Drehzahlregelung eines Gleichstrommotors

Versuch 4. Drehzahlregelung eines Gleichstrommotors Prof. Dr.-Ing. Jörg Raich Dipl.-Ing. Chritian A. Han Fachgebiet Regelungyteme Fakultät IV - Elektrotechnik und Informatik Techniche Univerität Berlin Veruch 4 Drehzahlregelung eine Gleichtrommotor Inhaltverzeichni

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s) 2. Teilklausur WS 17/18 Gruppe A Name: Matr.-Nr.: Aufgabe 1 (6 Punkte) Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße y: q r u y V (s) P (s) R(s) Auf den

Mehr

Abschlussprüfung Berufliche Oberschule 2014 Physik 12 Technik - Aufgabe I - Lösung

Abschlussprüfung Berufliche Oberschule 2014 Physik 12 Technik - Aufgabe I - Lösung Abchluprüfung Berufliche Oberchule 204 Phyik 2 Technik - Aufgabe I - Löung Ein Motorrad tartet zum Zeitpunkt t 0 0 au dem Silltand herau Der Schwerpunkt von Motorrad und Fahrer befindet ich zu dieem Zeitpunkt

Mehr

Schriftliche Prüfung aus Regelungssysteme am

Schriftliche Prüfung aus Regelungssysteme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungssysteme am 12.10.2018 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

Jan Auffenberg. Die Lösung der Bewegungsgleichung eines einzelnen Pendels liefert wie in Versuch M1 betrachtet die Eigenfrequenz der Pendel zu:

Jan Auffenberg. Die Lösung der Bewegungsgleichung eines einzelnen Pendels liefert wie in Versuch M1 betrachtet die Eigenfrequenz der Pendel zu: Protokoll zu Veruch M: Gekoppelte Pendel. Einleitung Im folgenden Veruch werden Schwingungen von durch eine weiche Feder gekoppelten Pendeln unterucht, deren Schwingungebenen eich ind. Die chwache Kopplung

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 18. 10. 01 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O ja O nein

Mehr

Bestimmung der Reglerparameter aus den Frequenzkennlinien

Bestimmung der Reglerparameter aus den Frequenzkennlinien 1 Kapitel Bestimmung der Reglerparameter aus den Frequenzkennlinien Mit PSPICE lassen sich die Frequenzgänge der Amplitude und der Phase von Regelkreisen simulieren, graphisch darstellen und mit zwei Cursors

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Name: Vorname(n): Matrikelnummer: Bitte... Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.18 Arbeitszeit: 15 min Aufgabe

Mehr

Aufgabenblatt zum Seminar 01 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 01 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 01 PHYS70356 Klaiche und relativitiche Mechanik Phyik, Wirtchaftphyik, Phyik Lehramt, Nebenfach Phyik) Othmar Marti, othmar.marti@uni-ulm.de) 20. 10. 2008 1 Aufgaben 1. Sie ehen

Mehr

Totzeitbehaftete Prozesse in der Automation - Probleme und Lösungen

Totzeitbehaftete Prozesse in der Automation - Probleme und Lösungen Totzeitbehaftete Prozee i der Automatio - Probleme ud Löuge Hauptemiar Techiche Iformatioyteme Burkhard Heel Drede, 7..2008 Ihalt - Wiederholug Totzeit - Problemtellug Löuge:. Regelug mit PID-Regler 2.

Mehr

Reglersynthese nach dem Frequenzkennlinienverfahren REGELUNGSTECHNIK

Reglersynthese nach dem Frequenzkennlinienverfahren REGELUNGSTECHNIK REGELUNGSTECHNIK augeführt am Fachhochchul-Studiengang Automatiierungtechnik für Beruftätige von Chritian Krachler Graz, im April 4 Inhaltverzeichni INHALTSVERZEICHNIS a Bodediagramm... 4 Rechnen mit dem

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/6 Betrahlt man die Katode einer Vakuumfotozelle mit Licht verchiedener Wellenlängen, o werden die in der Tabelle angegebenen Gegenpannungen gemeen, bei denen jeweil gerade kein Fototrom

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (15 Punkte) Ein technisches System sei gegeben durch folgende Differentialgleichung 3.Ordnung: y (t)+6ÿ(t)+12ẏ(t)+8y(t) =2ü(t)+1 u(t)+8u(t). Dieses System wird eingangsseitig

Mehr

HOCHSCHULE RAVENSBURG-WEINGARTEN

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Noper Mathematik Lapace-Tranformation Aufgabe : Betimmen ie mit Hife der Definitiongeichung der Lapace-Tranformation die Bidfunktionen fogender Originafunktionen: f(t) co( ωt) b)

Mehr

Beispiel-Schulaufgabe 2

Beispiel-Schulaufgabe 2 Anregungen zur Ertellung von Aufgaben Aufgaben für Leitungnachweie Die zeichnet ich durch eine augewogene Berückichtigung der allgemeinen mathematichen Kompetenzen au. Aufgaben, deren Bearbeitung in auffallendem

Mehr

Controller design for a position control

Controller design for a position control SIMEC Exercie FH Ravenburg-Weingarten Exercie 7: Controller deign for a poition control In Exercie 5 a model of a poition control with a P-controller wa imulated with Simulink. The control will now be

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) =

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) = 1. Teilklausur SS 18 Betrachten Sie folgendes mathematische Modell mit der Eingangsgröße u, der Ausgangsgröße und dem Zustandsvektor x [ ] dx 1 = Ax + bu = Ax + u = c T x + du = [ 1 0 ] x dt 0 mit unbekannter

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 04.09.000 Lehrtuhl für Fluiddynamik und Strömungtechnik ufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI )... 3)... Beurteilung:... Platz-Nr.:...

Mehr

Versuch 1: Drehzahlregelung eines Gleichstrommotors

Versuch 1: Drehzahlregelung eines Gleichstrommotors Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Grundlagen der Regelungtechnik Sommeremeter 2012 Veruchbechreibung

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 12.12.2008 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4

Mehr

Übungsblatt 12 Physik für Ingenieure 1

Übungsblatt 12 Physik für Ingenieure 1 Übungblatt 12 Phyi für Ingenieure 1 Othmar Marti, (othmar.marti@phyi.uni-ulm.de) 15. 1. 2002 1 Aufgaben für die Übungtunden Spezielle Relativitättheorie 1 Spezielle Relativitättheorie 2 Schwingungen 3

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übungsklausur 6 Bearbeitungszeit: 120 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungblatt 3 PHYS11 Grundkur I Phyik, Wirtchaftphyik, Phyik Lehramt Othmar Marti, othmar.marti@uni-ulm.de 4. 11. 5 und 7. 11. 5 1 Aufgaben 1. Im erten Übungblatt wurde der Fahrplan eine BMW-Maenpunkte

Mehr

Gegeben sei die Operationsverstärker-Schaltung nach Abb. 1.1 mit kffl[0; 1]. Alle OP s sind als. Abbildung 1.1: Operationsverstärkerschaltung

Gegeben sei die Operationsverstärker-Schaltung nach Abb. 1.1 mit kffl[0; 1]. Alle OP s sind als. Abbildung 1.1: Operationsverstärkerschaltung Klauur Impultehnik I & II 08.04.2003 Aufgabe 1: 16 Punkte Gegeben ei die OperationvertärkerShaltung nah Abb. 1.1 mit kffl[0; 1]. Alle OP ind al ideal anzunehmen, d.h. e gilt: Z e!1, Z a! 0, v 0!1. R k

Mehr

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt Karlruher Intitut für Technologie (KIT) Intitut für Analyi Dr. A. Müller-Rettkowki Dipl.-Math. M. Uhl WS 9/ Höhere Mathematik I für die Fachrichtungen Elektroingenieurween, Phyik und Geodäie Löungvorchläge

Mehr

Automatisierungstechnik 1

Automatisierungstechnik 1 Automatisierungstechnik Hinweise zum Laborversuch Motor-Generator. Modellierung U a R Last Gleichstrommotor Gleichstromgenerator R L R L M M G G I U a U em = U eg = U G R Last Abbildung : Motor-Generator

Mehr

8.6.5 Diffusion von Bromdampf ******

8.6.5 Diffusion von Bromdampf ****** 8.6.5 ****** Motivation Die Langamkeit der Diffuion wird mit Hilfe von Bromdampf veranchaulicht. Die quantitative Meung der Diffuion erlaubt die Betimmung der mittleren freien Weglänge und die Meung der

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Heinz Mann f Horst Schiffelgen f Rainer Froriep Einführung in die Regelungstechnik Analoge und digitale Regelung, Fuzzy-Regler, Regler-Realisierung, Software 11., neu bearbeitete Auflage Mit 356 Bildern

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am U Gaz, Intitut fü Regelung- und Automatiieungtechnik 1 Schiftliche Püfung au Contol Stem am 6.11.014 Name / Voname(n): Matikel-Numme: Bonupunkte au den Matlab-Übungen: ja nein 1 3 eeichbae Punkte 7 5 7

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Formelsammlung

Automation-Letter Nr Prof. Dr. S. Zacher. Formelsammlung Automtion-Letter Nr. 5..5 Prof. Dr. S. Zcher Formelmmlung Eine weitere wichtige Größe de Regelkreie it Dämfung S. Zcher, M. Reuter: Regelungtechnik für Ingenieure, Seite 65, Sringer Vieweg Verlg, 4. Auflge,

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Ein modellbasierter Regler nach dem ASA-Prinzip

Automation-Letter Nr Prof. Dr. S. Zacher. Ein modellbasierter Regler nach dem ASA-Prinzip Automation-Letter Nr. 7 2.0.206 Prof. Dr.. Zacher Ein modellbaierter Regler nach dem AA-Prinzip Nach dem Antiytem-Approach [42] wird antelle de konventionellen Regler eine dynamiche chaltung au einer gewünchten

Mehr

Fachhochschule Hannover M1B/M1C

Fachhochschule Hannover M1B/M1C Fachhochchule Hannover MB/MC 7..6 Fachbereich Machinenbau Zeit: 9 min Fach: Phyik im WS 5/6 Hilfmittel: Formelammlung zur Vorleung. In einem Bautellenbereich fahren zwei PKW mit gleicher echwindigkeit

Mehr

7. Reglerentwurf im Frequenzbereich

7. Reglerentwurf im Frequenzbereich H A K O 7 Reglerentwurf im Frequenzbereich In dieem Kapitel werden zwei unterchiedliche Reglerentwurfverfahren im Frequenzbereich dikutiert Da o genannte Frequenzkennlinienverfahren it auf Regelkreie mit

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 7

Regelungs- und Systemtechnik 1 - Übungsklausur 7 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Minuten Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät

Mehr

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels R. Brinkmann http://brinkmann-du.de Seite 1 25.11.213 Bechreibung von Schwingungen. FOS: Die harmoniche Schwingung Veruch: Wir beobachten die Bewegung eine Fadenpendel Lenken wir die Kugel au und laen

Mehr

PHYSIK Gekoppelte Bewegungen 2

PHYSIK Gekoppelte Bewegungen 2 PHYSIK Gekoppelte Bewegungen Gekoppelte Bewegungen auf chiefer Ebene Datei Nr. 93 Friedrich W. Buckel ktober 00 Internatgynaiu Schloß Torgelow Inhalt Grundwien Bewegung ohne äußeren Antrieb (Beipiel )

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

NANO III - MSR. Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers. Themen: Nano III MSR Physics Basel, Michael Steinacher 1

NANO III - MSR. Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers. Themen: Nano III MSR Physics Basel, Michael Steinacher 1 NANO III - MSR Themen: Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers Nano III MSR Physics Basel, Michael Steinacher 1 Ziele 1. Unterschied Steuern Regeln 2. Was ist ein Regelkreis

Mehr

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung.

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung. 9 Schwingungen 9.1 Beipiele und Grundlagen Ruhelage Ruhelage Fadenpendel Ruhelage Federpendel Federpendel Ruhelage orionpendel Charakteritika: Die Bewegung it periodich; d.h. die Bewegung wiederholt ich

Mehr

Übung 12: Bestimmung des Frequenzganges

Übung 12: Bestimmung des Frequenzganges Übung Signale und Systeme Sommersemester Übung :Frequenzgang 5. Juli Übung : Bestimmung des Frequenzganges. Gegeben sei die Übertragungsfunktion eines diskreten Systems: (z ρe jα )(z σe jβ ) (a) Legen

Mehr

( ) 2. Aufgabe 1: Frequenzkennlinien und BODE-Diagramm Z = Verlauf der Betragskennlinie. a) Übergang zum Frequenzgang. b) Betrag des Frequenzganges

( ) 2. Aufgabe 1: Frequenzkennlinien und BODE-Diagramm Z = Verlauf der Betragskennlinie. a) Übergang zum Frequenzgang. b) Betrag des Frequenzganges Aufgbe : requenzkennlinien und BODE-Digrmm Verluf der Bergkennlinie Übergng zum requenzgng T, jω jω Tjω b Berg de requenzgnge jω A ω jω jω A A ω ω Tj Tjω ω Tω Tω c db-kennlinie ω 0log A ω ω 0log Tω ω 0.log

Mehr

Eingebettete Systeme

Eingebettete Systeme Institut für Informatik Lehrstuhl für Eingebettete Systeme Prof. Dr. Uwe Brinkschulte Benjamin Betting Eingebettete Systeme 1. Aufgabe (Regelsystem) 3. Übungsblatt Lösungsvorschlag a) Das Fahrzeug kann

Mehr