Bandstrukturen II: NFE-Ansatz

Größe: px
Ab Seite anzeigen:

Download "Bandstrukturen II: NFE-Ansatz"

Transkript

1 Bandstrukturen II: NFE-Ansatz Quantenchemische Rechenmethoden: Grundlagen und Anwendungen Caroline Röhr, Universität Freiburg M+K-Kurs,

2 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, mit periodischem Potential der Rümpfe 2-dimensionaler Fall Allgemeines Beispiel: Squarium Exkurs: Reziprokes Gitter, k-raum 3-dimensionaler Fall, reale Metalle Allgemeines Beispiel: Metalle Zusammenfassung

3 Literatur Lehrbücher der Festkörperphysik: Ch. Kittel: Festkörperphysik, Oldenbourg. G. Grosso, G. P. Parravicini: Solid State Physics, Academic Press. R. M. Martin: Electronic Structure, Cambridge.

4 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, mit periodischem Potential der Rümpfe 2-dimensionaler Fall Allgemeines Beispiel: Squarium Exkurs: Reziprokes Gitter, k-raum 3-dimensionaler Fall, reale Metalle Allgemeines Beispiel: Metalle Zusammenfassung

5 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, potentialfrei: Ansatz Modell 1D Kiste der Länge L kein Potential im Kasten Eigenwertproblem der Energie vergleichweise einfach, da nur kinetische Energie der Elektronen zu berücksichtigen Ĥψ(x) = Eψ(x) aus der kinetischen Energie p = m ev und E = 1 2 mev2, d.h. E = p2 2m e folgt für die Schrödingergleichung ˆp 2 2m e ψ(x) = Eψ(x) bzw. mit dem Impulsoperator ˆp = i d dx bleibt als Eigenwertproblem: 2 d 2 atomare ψ(x) = Eψ(x) 2m e dx2 Einheiten ψ(x) = Eψ(x)

6 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, potentialfrei: Lösungen des Eigenwertproblems mit der Randbedingung 0 x L (L = Kastenlänge ) Eigenwerte: E Quadrat der Quantenzahl n 2 E n = h2 n 2 8m el 2 mit k = ± 2π L n wird die Lösung unabhängig von der Kastenlänge L: E = 2 k 2 2m e atomare Einheiten E = 1 2 k2 Eigenfunktionen: (Wellenfunktionen sin x und cos x bzw. e ikx ) ψ n = e ikx = cosk nx + i sin k nx mit k n = ± 2π L n = ±2π λ n

7 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, potentialfrei: graphische Darstellung der Lösungen Ψ Eigenfunktionen n=1 x n=2 x n=3 x n=7 x Eigenfunktionen stehende Wellen mit der Quantenzahl n = Zahl der Bäuche

8 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Vergleich mit Wellengleichung/Bedeutung von k Vergleich der Lösung mit der allgemeinen Wellengleichung zeigt, dass k n = 2π λ n k... ψ n = e iknx = cos k nx + i sin k nx y = cos 2π λ x normierte Quantenzahl k n 1 λ n Einheit einer reziproken Länge k = 1D Vektor reziproke Länge k Impuls der Elektronen (p = k), da E = p2 2m e {z } hinein = 2 k 2 2m e {z } Ergebnis

9 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Energie-Eigenwerte (rechts) Ψ Eigenfunktionen n=1 E x n=2 x Bandstruktur Fermi energie k Fermipunkt k n=3 x Zustandsdichte E N(E)dE n=7 Fermi punkt E-Eigenwerte (rechts) x Fermi energie Plot: E k = Bandstruktur (hier E k 2 ) E DOS Zustandsdichte (DOS) = Zahl der E-Niveaus im Energie-Intervall Besetzung nach Pauli-Prinzip maximale Energie = Fermienergie E F k max = k F = Fermipunkt

10 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Fermi-Energie, Impuls und Wellenlängen der VE E F und k F Fermienergie E F: maximale Energie der Elektronen Fermipunkt k F: maximales k = Impuls der Elektronen typische Werte von E F bei k F E F: 1.5 bis 15 ev v 1 % der Lichtgeschwindigkeit c λ (de-broglie-wellenlänge) 100 pm in der Größenordnung der Atomabstände Streuung an Kern/Rumpf-Potentialen

11 Teilchen im Kasten, mit periodischem Potential der Rümpfe Teilchen im Kasten: mit periodischem Potential der Rümpfe λ Gitterabstände Beugungseffekte qualitativ: für λ = 2a d.h. wegen k = 2π λ bei k = π a ) günstige und ungünstige Coulomb-WW Bandlücke (Bsp: n = 7) ungünstig Ψ Ψ 2 Ψ 2 E E L/2 a günstig Ψ Ψ 2 Ψ Ψ 2 L/2 L/2 a Ψ L/2 π π a 2 k a Bandstruktur ψ 2 Aufenthaltswahrscheinlichkeit für e DOS Gesamt zustandsdichte bei λ = 2a zwei Fälle unterscheidbar: 1. unten: günstig (Coulomb, Kompensation der Ladung der Kerne durch e ) E güngstier als im potentialfreien Fall 2. oben: ungünstig E höher als im potentialfreien Fall

12 Teilchen im Kasten, mit periodischem Potential der Rümpfe Teilchen im Kasten: mit periodischem Potential der Rümpfe π π 2π π π 2π a a a a a a reduziertes Schema erweitertes Zonenschema Bandstruktur (Plot E gegen k, rechts) gestrichelt = potentialfreie Parabel π durch Potentiale: Energie/Band-Lücke bei a Zahl der e bei k = π a 2e /EZ für Beispiel oben: Annahme: L = 7 Å und a = 1 Å Kiste enthält 7 Atome bzw. 1 Atom/EZ n = 7 14 e 2e = ein gefülltes AO/EZ

13 Teilchen im Kasten, mit periodischem Potential der Rümpfe Darstellungen der Bandstruktur π π 2π π π 2π a a a a a a reduziertes Schema erweitertes Zonenschema 2π π π 2π a a a a k periodisches Zonenschema erweitertes Zonenschema direkte Auftragung von k reduziertes Schema in kleinste Einheit im reziproken (1. BZ, Wigner-Seitz-Zelle) zurückgefaltet jedes Band = 2 e /EZ periodisches Zonenschema aneinandergesetzte reduzierte Schemata für elektronische Transporteigenschaften V

14 Teilchen im Kasten, mit periodischem Potential der Rümpfe Mathematisches zum Zurückfalten 1. BZ K g = K + k 0 a* k = g K K π π 2π π π 2π a a a a a a reduziertes Schema erweitertes Zonenschema k = g K K k = g K Definition eines reziproken Gitters mit Gittervektoren K (1D: reziproke Linie mit Gitterpunkten alle 2π a ) jeder beliebige reziproke Vektor g wird ausgedrückt als: n: Bandindex g = K + k n k-raum ist zentrosymmetrisch (1D: nur Betrag entscheidend) alle k n in der Wigner-Seitz-Zelle (1. BZ)

15 8 Bandstrukturen II: NFE-Ansatz Teilchen im Kasten, mit periodischem Potential der Rümpfe Vergleich mit LCAO der 1s-Kette (vgl. I, Hückel) antibindend λ=2a, k= π /a E E antibindend nicht bindend bindend nichtbindend nichtbindend bindend λ =, k=0 bindend DOS 0 k Bandstruktur π/a COOP LCAO-Lösung, nur für 2 e /Atom (LC von nur 1s-AO) E k = α + 2β coska α: Coulomb -Integral; β Austausch -Integral; a: Atomabstand E cos k, für k zwischen π a und + π a π π 2π π π 2π a a a a a a reduziertes Schema erweitertes Zonenschema

16 2-dimensionaler Fall Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, mit periodischem Potential der Rümpfe 2-dimensionaler Fall Allgemeines Beispiel: Squarium Exkurs: Reziprokes Gitter, k-raum 3-dimensionaler Fall, reale Metalle Allgemeines Beispiel: Metalle Zusammenfassung

17 2-dimensionaler Fall Allgemeines Generelles 1. BZ Γ K g = K + k a* k b* E = f(k x und k y), d.h. 2 Quantenzahlen k = g spannt reziproke Fläche auf Falten analog 1D-Fall: g = K + k n (n: Bandindex) kn liegen in der 1. Wigner-Seitz-Zelle (1. BZ) 1. BZ: begrenzt durch Mittelsenkrechte zwischen Γ und K maximales E im k-raum: Fermilinie, potentialfrei: Kreis

18 2-dimensionaler Fall Beispiel: Squarium Squarium: Quadratische Anordnung von Kernen real: reziprok: E Fermi linie A a Fermilinie B E E kx ky π a 1. BZ π a kx A B 1. BZ Γ T X T M Σ Γ k B A DOS 3 2 S 1 Γ T B A M T X A 2. BZ 3. BZ B hier schicker

19 2-dimensionaler Fall Beispiel: Squarium NFE/LCAO-Vergleich E E 3 2 M Γ T X T M Σ Γ k B A DOS S 1 Γ T B A E T X k y Γ M X k x E p x p y p z s Γ X M Γ

20 Exkurs: Reziprokes Gitter, k-raum Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, mit periodischem Potential der Rümpfe 2-dimensionaler Fall Allgemeines Beispiel: Squarium Exkurs: Reziprokes Gitter, k-raum 3-dimensionaler Fall, reale Metalle Allgemeines Beispiel: Metalle Zusammenfassung

21 Exkurs: Reziprokes Gitter, k-raum Reziprokes Gitter I real periodisch Raumgruppe reziprok nicht periodisch Punktgruppe (Laueklasse) b 0 Wigner Seitz Zelle Elementar zelle a b* 0 a* Definition des reziproken Gitters: aa = 1 usw. und ab = 0 usw. d.h. a b, c usw. Wegen 0 1 x B C r = xa + yb + zc = a b ya und 0 r = ha + kb + lc B = h k beschreibt das Skalarprodukt: rr = hx + ky + lz = hx den Abstand des Punktes x von der Netzebenenschar h (Phasendifferenz). z a b c 1 C A

22 Exkurs: Reziprokes Gitter, k-raum Reziprokes Gitter II: Elementarzelle und Symmetrie real periodisch Raumgruppe reziprok nicht periodisch Punktgruppe (Laueklasse) b 0 Wigner Seitz Zelle Elementar zelle a b* 0 a* Punktsymmetrie (Laueklasse) Ursprung im Zentrum des reziproken Gitters Elementarzelle: Wigner-Seitz-Zelle (Polyeder mit den Mittelsenkrechten zwischen dem Ursprung und allen benachbarten Gitterpunkten als Flächen). enthält genau einen reziproken Gitterpunkt 1. Brillouin-Zone

23 Exkurs: Reziprokes Gitter, k-raum Reziprokes Gitter III (rr als Phase!) Elektronische Strukturen e (E: [ev]) LCAO (Blochsummen): ψ = P j φjeikna mit: k = π a k = 0: MO-Schema (M: E: UV/vis-Spektroskopie) k beliebig: Bandstruktur E(k) Beugung Photonen (Röntgen); e (E: [kev]); n positive Interferenz (Reflex) Streuvektor s = reziproker Gittervektor r M: Intensitätsgewichtetes reziprokes Gitter F h = P N j=1 fje2πi(hx j) = R ρ xe 2πihx dv Gitterdynamik Phononen (E: [mev]) Elemente der dynamischen Matrix: D kk = mit: q: Wellenvektor 1 mk m k Pl V kl,k l eiqr l l q = 0: Schwingungsenergien (M: E: IR/Raman-Spektroskopie) q beliebig: Phononendispersion E(q) (M: inelastische n-streuung)

24 Exkurs: Reziprokes Gitter, k-raum Reziprokes Gitter IV real periodisch Raumgruppe reziprok nicht periodisch Punktgruppe (Laueklasse) b 0 Wigner Seitz Zelle Elementar zelle Darstellungstheorie a 0 b* a* E (Molekül) IR/Raman UV/vis E Dispersion (FK) Γ 1. BZ π a Elektronen [ev] Phononen [mev] k Impuls Wellenvektor Lösung des E-Eigenwertproblems (Blockdiagonalisierung von H bzw. der dynamischen Matrix D)

25 3-dimensionaler Fall, reale Metalle Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen im Kasten, mit periodischem Potential der Rümpfe 2-dimensionaler Fall Allgemeines Beispiel: Squarium Exkurs: Reziprokes Gitter, k-raum 3-dimensionaler Fall, reale Metalle Allgemeines Beispiel: Metalle Zusammenfassung

26 3-dimensionaler Fall, reale Metalle Allgemeines 3D allgemein: k: 3 Komponenten Vektoren im k-raum mit Endpunkten kx,y,z Plot: E g 4D erforderlich, daher nur Spaghetti-Plots möglich k F: Fermifläche Konstruktion der 1. BZ analog 2D-Fall alle BZ parkettieren den reziproken Raum Benennung spezieller Punkte und Pfade Bilbao Crystallograhic Server!! eigene Benennungen im Umlauf Beispiel: 1. BZ des f.c.c.-gitters (vgl. Struktur von Ultramarine) Σ L Λ Γ K Q U S Z X W

27 3-dimensionaler Fall, reale Metalle Beispiel: Metalle DOS bei Elementen mit den drei Metallpackungen (Beispiele, schematisch) Na Mg Al DOS DOS DOS Energie Na, b.c.c. Energie Mg, h.c.p. Energie Al, f.c.c.

28 3-dimensionaler Fall, reale Metalle Beispiel: Metalle DOS von Aluminium (f.c.c., berechnet) ,6 total Aluminium DOS/eV 0,4 0,2 0, E-E F [ev] (FP-LAPW, PBE-GGA, Programm Wien2k, 1000 k-punkte)

29 3-dimensionaler Fall, reale Metalle Beispiel: Metalle Brillouin-Zonen der drei Metallpackungen P F Λ Γ Σ N H L Λ U Q Γ S Σ K W Z X L Γ A S H M T P K b.c.c. f.c.c. h.c.p.

30 3-dimensionaler Fall, reale Metalle Beispiel: Metalle f.c.c.: Bandstruktur von Aluminium Energie [Rydberg] L Λ U Q Γ S Σ K W Z X Γ X W Γ U X schematisch (gestrichelt: potentialfrei)

31 3-dimensionaler Fall, reale Metalle Beispiel: Metalle f.c.c.: Bandstrukturen von Kupfer (1 VE) und Al (3 VE) (berechnet) Cu Al Energie [ev] E F E F L Λ U Q Γ S Σ K W Z X Γ X W Γ L U X Γ X W Γ L U X (jeweils s-fat-bands)

32 3-dimensionaler Fall, reale Metalle Beispiel: Metalle f.c.c.: Fermiflächen von Kupfer (1 VE) und Al (3 VE) (Schnitte) X Γ U L K X U 2 2 L Γ K Kupfer: 1 Valenzelektron Aluminium: 3 Valenzelektronen

33 Zusammenfassung Zusammenfassung NFE-Ansatz = Teilchen im Kasten ψ = PW E-Änderungen bei periodischen Potentialen an den Stellen π a Zurückfalten der Bänder Translationssymmetrie reziprokes Gitter NFE- (II) und LCAO-Ansatz (I) führen zu ähnlichen Ergebnissen und der gleichen Darstellung von Bandstrukturen LCAO (z.b. Hückel, LMTO-ASA usw.) günstig für kovalentere Systeme (I) NFE/PW günstiger für metallische Systeme (II = hier) aktuelle Festkörpertheorie: Mischung aus LCAO (Atom-artige Basisfunktionen) und NFE (PW, ebene Wellen) (III)

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2)

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2) Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Übersicht 2 Beugung von Röntgenstrahlen an Kristallen 2.1 Erzeugung von Röntgenstrahlen 2.2 Streuung an Elektronen 2.3 Streuung an

Mehr

Quantenchemische Rechenmethoden: Grundlagen und Anwendungen. M+K-Kurs, 3.2015

Quantenchemische Rechenmethoden: Grundlagen und Anwendungen. M+K-Kurs, 3.2015 Bandstrukturen I: Vom Molekül zum Festkörper (LCAO-Ansatz) Quantenchemische Rechenmethoden: Grundlagen und Anwendungen Caroline Röhr, Universität Freiburg M+K-Kurs, 3.2015 0-dimensionaler Fall: Atome und

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Bandstrukturen II: NFE-Ansatz (nearly free electron)

Bandstrukturen II: NFE-Ansatz (nearly free electron) Bndstrukturen II: NFE-Anstz (nerly free electron) Quntenchemische Rechenmethoden: Grundlgen und Anwendungen Croline Röhr, Universität Freiburg M+K-Kurs, 3.2016 1-dimensionler Fll Teilchen im Ksten, potentilfrei

Mehr

Chemische Bindungsanalyse in Festkörpern

Chemische Bindungsanalyse in Festkörpern Fakultät Mathematik und Naturwissenschaften Fachrichtung Chemie und Lebensmittel Chemie Professur AC2 Dr. Alexey I. Baranov Chemische Bindungsanalyse in Festkörpern Sommersemester 2015 Bindung in Orbitaldarstellung:

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Aufbau der Elektronenhülle des Wasserstoffatoms

Aufbau der Elektronenhülle des Wasserstoffatoms Aufbau der Elektronenhülle des Wasserstoffatoms Wasserstoff, H: ein Proton im Kern, (+) Elektronenhülle mit nur einem Elektron, (-)( Kern und Elektron ziehen sich aufgrund der Coulombkraft an. Das Elektron

Mehr

Vorlesung am 7. Juni 2010

Vorlesung am 7. Juni 2010 Materialwissenschaften, SS 2008 Ernst Bauer, Ch. Eisenmenger-Sittner und Josef Fidler 1.) Kristallstrukturen 2.) Strukturbestimmung 3.) Mehrstoffsysteme 4.) Makroskopische Eigenschaften von Festkörpern

Mehr

Bandstrukturen II: NFE-Ansatz (nearly free electron)

Bandstrukturen II: NFE-Ansatz (nearly free electron) Bndstrukturen II: NFE-Anstz (nerly free electron) Quntenchemische Rechenmethoden: Grundlgen und Anwendungen Croline Röhr, Universität Freiburg M+K-Kurs, 4.2018 1-dimensionler Fll Teilchen im Ksten, potentilfrei

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Physik 4, Übung 11, Prof. Förster

Physik 4, Übung 11, Prof. Förster Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Optik II (Beugungsphänomene)

Optik II (Beugungsphänomene) Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Allg. u. Anorg. Chemie

Allg. u. Anorg. Chemie Allg. u. Anorg. Chemie Übungsaufgaben Atommodell SoSe 2014, Amadeu Daten: h=6,6 10-34 J.s, C=3 10 8 m/s. 1) Stellen Sie das klassische Modell für die elektromagnetische Strahlen graphisch dar. Erklären

Mehr

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + +

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + + 1 3. Anwendungen 3.1. Chemische Reaktionen Aufgabe: Die Gleichung + + beschreibt die Verbrennung von Ammoniak zu Stickstoffoxid und Wasser Für welche möglichst kleine natürliche Zahlen x1, x2, x3 und x4

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Hilfe!... Eine modulierte Struktur Ein Erfahrungsbericht. Internes Seminar, 15.11.2005

Hilfe!... Eine modulierte Struktur Ein Erfahrungsbericht. Internes Seminar, 15.11.2005 Hilfe!... Eine modulierte Struktur Ein Erfahrungsbericht. Internes Seminar, 15.11.2005 Typisches Phasendiagramm A I -Zn/Cd: Das System Na Zn Quelle: Massalski NaZn 13 -Struktur Cd(1) Cd(1) d K(1) a Cd(2)

Mehr

Elektronenkonfigurationen von Mehrelektronenatomen

Elektronenkonfigurationen von Mehrelektronenatomen Elektronenkonfigurationen von Mehrelektronenatomen Der Grundzustand ist der Zustand, in dem alle Elektronen den tiefstmöglichen Zustand einnehmen. Beispiel: He: n 1 =n 2 =1 l 1 =l 2 =0 m l1 =m l2 =0 Ortsfunktion

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz Vorlesung Festkörperphysik WS 2014/2015 Vorlesungen 28.10.14 Universität Rostock Heinrich Stolz 1 2. Das Reziproke Gitter Wichtige mathematische Objekt in der Physik mit periodischer Struktur? ebene Welle

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung 37. Lektion Strahlenschutz und Dosimetrie Reichweite und Abschirmung von radioaktiver Strahlung Lernziel: Der beste Schutz vor radioaktiver Strahlung ist Abstand und keine Aufnahme von radioaktiven Stoffen

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: andreasa@sbox.tu-graz.ac.at. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

Kapitel 8 MO-Verbindungen der Übergangsmetalle - Bindungsverhältnisse und Strukturen

Kapitel 8 MO-Verbindungen der Übergangsmetalle - Bindungsverhältnisse und Strukturen Kapitel 8 MO-Verbindungen der Übergangsmetalle - Bindungsverhältnisse und Strukturen 8.1 Vergleich Hauptgruppen-Nebengruppen Hauptgruppen (p-block) Bindigkeit: entsprechend der 8-n-Regel (Ausnahme: hypervalente

Mehr

II.3. Primitive Elementarzellen und Basisvektoren

II.3. Primitive Elementarzellen und Basisvektoren II.3. Primitive Elementarzellen und Basisvektoren Elementarzelle (EZ): lückenlose Überdeckung des Raumes, Beispiel: Würfel für kubische Gitter, Primitive EZ: enthält 1 Gitterpunkt Beispiel: kubische bcc-struktur

Mehr

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren ISBN-10: 3-446-41595-5 ISBN-13: 978-3-446-41595-9 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41595-9

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind.

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind. Laser: light amplification by stimulated emission of radiation W ind.absorption = n 1 ρ B Laserbox 8πhν = B c A W ind.emission = n ρ B Besetzungs-Inversion notwendig Zwei-Niveau-System 1,0 Besetzung des

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)

Mehr

(FP-LAPW-Methode (z.b. Wien2K)

(FP-LAPW-Methode (z.b. Wien2K) AFP-Seminar, CR Bandstrukturen III: Berechnungen mit FP-LAPW-Methoden (FP-LAPW-Methode (z.b. Wien2K) AFP-Seminar, CR Übersicht I. Einleitung: Elektronische Strukturen von Festkörpern = Problemstellung

Mehr

1 Zwei Teilchen in einem Kastenpotenzial

1 Zwei Teilchen in einem Kastenpotenzial 1 Zwei Teilchen in einem Kastenpotenzial Es geht hier darum herauszu nden, welche prinzipiellen Eigenschaften die Wellenfunktion für mehrere Teilchen im gleichen Potenzial aufweisen muss. Wir unterscheiden

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 01/13 Christoph Wölper Universität Duisburg-Essen Koordinationszahlen Ionenradien # dichteste Packung mit 1 Nachbarn -> in Ionengittern weniger

Mehr

Vortrag 2: Kohärenz VON JANIK UND JONAS

Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz Inhalt: Kohärenz im Allgemeinen Kohärenzlänge Kohärenzbedingungen Zeitliche Kohärenz Räumliche Kohärenz MICHELSON Interferometer zum Nachweis

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie Allgemeine Chemie 1 Skript Allgemeine und Anorganische Chemie Inhaltsverzeichnis: 1. Atome...3 A Elektronen...3 B Protonen...4 C Neutronen...5 D Aufbau von Atomen...5 E Isotope...6 F Radioaktivität...6

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Grundlagen der Elektrotechnik Was hat es mit Strom, Spannung, Widerstand und Leistung auf sich Michael Dienert Walther-Rathenau-Gewerbeschule Freiburg 23. November 2015 Inhalt Strom und Spannung Elektrischer

Mehr

Thema heute: Aufbau fester Stoffe - Kristallographie

Thema heute: Aufbau fester Stoffe - Kristallographie Wiederholung der letzten Vorlesungsstunde: Thema: Ionenbindung Ionenbindung, Kationen, Anionen, Coulomb-Kräfte Thema heute: Aufbau fester Stoffe - Kristallographie 244 Aufbau fester Materie Im Gegensatz

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Fortgeschrittenen - Praktikum. Gamma Spektroskopie

Fortgeschrittenen - Praktikum. Gamma Spektroskopie Fortgeschrittenen - Praktikum Gamma Spektroskopie Versuchsleiter: Bernd Zimmermann Autor: Daniel Bruns Gruppe: 10, Donnerstag Daniel Bruns, Simon Berning Versuchsdatum: 14.12.2006 Gamma Spektroskopie;

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Ionenbindung, Koordinationspolyeder, ionische Strukturen, NaCl, CsCl, ZnS, Elementarzelle, Gitter, Gitterkonstanten, 7 Kristallsysteme, Ionenradien, Gitterenergie

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Woraus besteht ein Bild? 28.02.2008 (c) Winfried Heinkele 2006 2

Woraus besteht ein Bild? 28.02.2008 (c) Winfried Heinkele 2006 2 Woraus besteht ein Bild? 28.02.2008 (c) Winfried Heinkele 2006 2 Was ist ein Pixel? Die durch das Objektiv einer Kamera auf einen Film oder einen elektronischen Bildsensor projizierte Wirklichkeit ist

Mehr

Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron

Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron Sehr gute Leiter Cu Z=29 Ag Z=47 Au Z=79 64 29 Cu 108 47 Ag 197 79 Au 1 Valenzelektron Die elektrische Ladung e - p + Die Grundbausteine der Atome (und damit aller Materie) sind Elektronen und Protonen

Mehr

Demografie und Rente: Die Effekte einer höheren Erwerbstätigkeit Älterer auf die Beitragssätze zur Rentenversicherung

Demografie und Rente: Die Effekte einer höheren Erwerbstätigkeit Älterer auf die Beitragssätze zur Rentenversicherung Demografie und Rente: Die Effekte einer höheren Erwerbstätigkeit Älterer auf die Beitragssätze zur Rentenversicherung Präsentation, Berlin 18. Juni 2013 Im Auftrag der Initiative Neue Soziale Marktwirtschaft

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen

Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen Wiederholung der letzten Vorlesungsstunde: Thema: Das wellenmechanische h Atommodell (Orbitalmodell) ll) Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen beschrieben werden, Hauptquantenzahl

Mehr

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)

Mehr

Das Wasserstoffatom. Michael Pohlig WHG-Durmersheim Didaktik der Physik an der Uni KA michael@pohlig.de

Das Wasserstoffatom. Michael Pohlig WHG-Durmersheim Didaktik der Physik an der Uni KA michael@pohlig.de Das Wasserstoffatom Michael Pohlig WHG-Durmersheim Didati der Physi an der Uni KA michael@pohlig.de Literatur: Bronner, Hauptmann, Herrmann: Wie sieht ein Atom aus? (PdN-PhiS 2/55 Jg 2006) CD Das Wasserstoffatom

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Materialart Güte Norm. Stahlblech verzinkt DX51D + Z275 MA-C DIN 10327. VA- Bleche (Oberfläche III C) 1.4301 (V2A) DIN 17440

Materialart Güte Norm. Stahlblech verzinkt DX51D + Z275 MA-C DIN 10327. VA- Bleche (Oberfläche III C) 1.4301 (V2A) DIN 17440 ANWENDUNG Die Dachhaube (DH) ist eine einfache Konstruktion eines Dachaufsatzes für die Außenluftansaugung und den Fortluftausblas. Auf Grund ihrer einfachen Ausführung kann die Dachhaube nur für relativ

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale.

Quantenzahlen. Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. Quantenzahlen Magnetquantenzahl m => entspricht der Zahl und Orien- (m = -l, -(l-1) 0 +(l-1), +l) tierung der Orbitale in jeder Unterschale. l = 0, 1, 2, 3, (Orbital-)Symbol s, p, d, f, Zahl der Orbitale

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen

Mehr

1 3.Übungsblatt-Phononen

1 3.Übungsblatt-Phononen 1 3.Übungsblatt-Phononen 1.1 Phonon dispersion relation for atoms on a 2-d square lattice Das Gesetz von Newton beschreibt die Kraft zwischen Atomen auf einem Gitter, wobei nur die Wechselwirkung zwischen

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft.

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft. 7. Chemische Stoffumwandlungen 7.1 Massenbilanz bei chemischen Stoffumwandlungen Bruttoreaktionen, z. B. die Knallgasreaktion H 2 + ½ O 2 = H 2 O, beschreiben die Mengenverhätnisse beim Umsatz H 2 zu O

Mehr

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L Zugversuch Zugversuch Vor dem Zugversuch Verlängerung ohne Einschnürung Beginn Einschnürung Bruch Zerrissener Probestab Ausgangsmesslänge L 0 Verlängerung L L L L Verformung der Zugprobe eines Stahls mit

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Stromortskurve Asynchronmaschine

Stromortskurve Asynchronmaschine Stromortskurve der Asynchronmaschine Prof. Dr.-Ing. Carsten Fräger Folie 1 von 61 Prof. Dr.-Ing. Stromortskurve Asynchronmaschine Stromortskurve der Drehstrom-Asynchronmaschine mit kurzgeschlossenem Rotor

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

ElektronischeBandstruktur

ElektronischeBandstruktur ElektronischeBandstruktur Literatur: C. Kittel Einführungin die Festkörperphysik Kapitel 7,8 Ashcroft & Mermin, Kapitel 7,8 Ziman Principles of the Theory of solids, Kapitel 3 Dispersionsrelation für

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

1.5 Umsatzsteuervoranmeldung

1.5 Umsatzsteuervoranmeldung 1.5 Umsatzsteuervoranmeldung In diesem Abschnitt werden die Arbeitschritte zum Erstellen des MwSt Abrechnungsschemas erläutert. Es wird gezeigt, wie die Werte für die monatliche Umsatzsteuervoranmeldung

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Rate (bzw. Preis), mit der zwei Währungen gegeneinander getauscht werden Mögliche Darstellung (z.b. bei und $)

Rate (bzw. Preis), mit der zwei Währungen gegeneinander getauscht werden Mögliche Darstellung (z.b. bei und $) Wechselkurse MB Wechselkurse Nominaler Wechselkurs Rate (bzw. Preis), mit der zwei Währungen gegeneinander getauscht werden Mögliche Darstellung (z.b. bei und $) Wie viel bekommt man für $1 Wie viel $

Mehr

Betreuer: Lars Grüne. Dornbirn, 12. März 2015

Betreuer: Lars Grüne. Dornbirn, 12. März 2015 Betreuer: Lars Grüne Universität Bayreuth Dornbirn, 12. März 2015 Motivation Hedging im diskretisierten Black-Scholes-Modell: Portfolio (solid), Bank (dashed) 110 120 130 140 150 160 170 Portfolio (solid),

Mehr