Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)"

Transkript

1 Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen in eine Milliekunde zuück? 3. Eine Feplae ach 700 Udehungen po Minue. De äußee Rand ha einen Aband von 4,5 c von de Mie. Wie goß i die Bahngechwindigkei eine Punke in diee Aband? (in k/h) 4. Eine Zenifuge eziel die 100-fache Edbechleunigung. Dabei deh ie ich in eine Keibahn i 5 Radiu. Mi welche Gechwindigkei beweg ich ein Punk a Rande de Keibahn? 5. Eine Schaukel chwing au hoizonale Anfanglage al Pendel nach unen. Welche Kaf haben die aelo gedachen Seben de Gondel a iefen Punk auzuhalen, wenn die Mae de Gondel 60 kg und die de dain izenden Peon 70 kg beäg? 6. Ein Käfe (=1g) oie windgechüz auf de Flügelpize (=15) eine Windkafanlage, die fü eine Udehung bauch. Mi welche Kaf u ich de Käfe i einen kleinen Käfebeinen an de Flügel fehalen, dai e daauf izen bleib? 7. Fü viele Leue ach eine Achebahn e ichig Spaß, wenn indeen ein Looping enhalen i. I Looping fäh de Waagen o chnell, da e an die Bahn gepe wid und nich heunefäll. Auch die Peonen i Wagen püen dieen Anduck. Nun fahen in eine Achebahn Menchen ganz unechiedliche Mae: dünne, leiche und dicke, chwee. Wie püen ie die Kaf, die ie a obeen Punk de Looping i Wagen häl? a) Die chween Menchen püen eine äkee Kaf. b) Alle Menchen püen die gleiche Kaf. c) Die leichen Menchen püen eine chwächee Kaf.

2 Löungen 1. geg.: v = 1,5 ge.: = 60in Löung: Die Zei egib ich au de Daue eine Udehung de Minuenzeige: e bauch genau 1 Sunde = 60 in fü eine volle Udehung. Fü die gleichföige Dehbewegung gil: π T v T = π 1, = π = 859 = 86c Anwo: De Zeige i 86 c lang.

3 . geg.: U= 3940in Löung: = 10c ge.: = 1 Da die Bewegung gleichföig i, kann an cheiben: = v i de geuche Weg und die vogegebene Milliekunde. Die Gechwindigkei lä ich au den gegebenen Gößen beechnen. De Weg de Teilchen i ein Kei, o da an dafü den Keiufang vewenden kann: = u= π = π 1 10 = 0,63 Dieen Weg chaff da Teilchen in eine Minue al, alo in eine Sekunde 399 al. Da heiß, die Zei fü einen Ulauf beäg 1 = 399 Au de Weg und de zei kann die Gechwindigkei bei weden: 0, , ,4 Da Teilchen leg alo 51,4 in eine Sekunde zuück. Gefag i de Weg in eine Milliekunde, alo de auendel Teil eine Sekunde. Da ind dann 0,514, alo und 5 c. Anwo: Da Teilchen leg in eine Milliekunde und 5 c zuück.

4 3. geg.: Löung: n = 700in ge.: = 4,5 c Die Bewegung de Punke veläuf gleichföig, da heiß, e wid wede chnelle noch langae. Dai kann die Gleichung fü die gleichföige Bewegung vewende weden: De Weg enpich de Ufang eine Keie i de gegebenen Radiu: = U = π De Punk ach 700 Udehungen in eine Minue. da ind in eine Sekunde: Udehungen 60 = v Dai bauch de Punk Eingeez egib da π π 4, π 4, ,9 k 1,1 h 1 10 fü einen Ulauf. Anwo: De Punk ha eine Bahngechwindigkei von 1 k/h.

5 4. geg.: Löung: Anwo: a = 100g ge.: v = 5 Da de Punk a Rand in eine konanen Aband kei i die auf ihn wikende Kaf gleich de Radialkaf: v v a = v a = a ,81 k h 5 De Punk beweg ich i 5 k/h.

6 5. geg.: Löung: Anwo: G P = 60kg ge.: F = 70kg Die Seben üen i uneen Punk zwei Käfe aufbingen: die Gewichkaf und die Radialkaf. F = F G + F R Die Gewichkaf i: F G = g Die Radialkaf: v FR = i de Radiu de Keibewegung und enpich de Länge de Schaukel. Die i abe nich gegeben. v i die Gechwindigkei, die die Schaukel i uneen Punk ha. Da ie au de hoizonalen Lage ko, in de ie in Ruhe wa, enpich die Gechwindigkei de Fallgechwindigkei au diee Höhe. Die Höhe i abe de Radiu. g und g = = g Dai wid: g g g g Dai geh an in die Gleichung de Radialkaf: g FR = FR = g Die Länge de Schaukel i nich nowendig. Nun lä ich die Geakaf beechnen: F = g+ g F = 3 g F = 3 130kg 9,81 F = 386N F = 3,8kN Die Seben üen eine Belaung von 3,8 kn wideehen können. Da i da deifache de Gewichkaf de Peon.

7 6. geg.: 3 = 1 10 kg Löung: = 15 ge.: T = Dai de Käfe die Keibewegung iachen kann, u e ich i de dazu nowendigen Radialkaf an de Flügelpize fekallen. v Übe die Gechwindigkei i noch nich bekann. Die Bewegung i abe gleichföig und Weg und Zei ind bekann. De in zuückgelege Weg i de Ufang de geaen Windade: π T Dai ehäl an die Radialkaf: 4 π T 4 π T ,15N kg 4 π 15 F Anwo: Dai u de Käfe eine Kaf aufbingen, die de 15-fachen eine Köpegewiche enpich. De Käfe u ich i 0,15 N fehalen.

8 7. I obeen Punk de Looping wiken zwei Käfe auf den Menchen: die ie und all gegenwäige Gewichkaf, die ihn nach unen ziehen wüde und die Zenifugalkaf. Lezee i eine Täghei- ode Scheinkaf, die o goß wie die Radialkaf i und nach außen wik. Dai zeig die Richung de Zenifugalkaf i obeen Punk de Loopingbahn engegengeez zu Gewichkaf. Die Kaf, die de Mench in diee Punk pü, i die Diffeenz de beiden Käfe. I die Gewichkaf göße, fäll e au de Gondel, ind beide gleich goß, chweb e geade o duch den Looping (chweelo) und i die Zenifugalkaf göße, ko e ganz iche duch den Looping hinduch. Wovon ind die beiden Käfe nun abhängig? Die Gewichkaf i ganz einfach Mae al Fallbechleunigung: F = g G Die Zenifugalkaf beechne ich wie die Radialkaf und häng von de Mae de Köpe, de Gechwindigkei und de Radiu de Keibahn ab: F R v = Subahie an beide Käfe, ehäl an F = F F G R v F = g v F = g Die Wee in de Klae ind fü einen Waagen ie gleich. Einzig die Mae i fü die Menchen vaiabel. Ja göße die Mae, uo göße die nach außen wikende Kaf. Hinwei: Dai die Loopingbahn übehaup duchlaufen weden kann, üen Gewichkaf und Fliehkaf genau gleich ein. In diee Fall küzen ich die Maen au. E koen alo owohl die Dicken al auch die Dünnen duch den Looping.

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen.

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen. 7. Die Skizze tellt den Velauf de Siene eine Loopingban da. I Punkt at de Wagen die Gewindigkeit 6,1 /. I Punkt C oll e eine Zentifugalkaft vo 1,5faen Betag eine Gewitkaft augeetzt ein. De Punkt C befindet

Mehr

1. Kontrolle Physik Grundkurs Klasse 11

1. Kontrolle Physik Grundkurs Klasse 11 1. Konrolle Phyik Grundkur Klae 11 1. Ein Luch lauer eine Haen auf und lä e da ahnungloe und chackhafe Tier bi auf 30,0 herankoen. Dann prine er i 68 k/h auf ein Opfer lo, da ofor davon renn. Nach 5,0

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

Endspurt Vorklinik: Physik

Endspurt Vorklinik: Physik Endpu Voklinik Endpu Voklinik: Phyik Die Skipen fü Phyiku Auflage Thiee 03 Velag CH Beck i Inene: wwwbeckde ISBN 978 3 3 5334 5 Zu Inhalvezeichni chnell und poofei ehällich bei beck-hopde DIE ACHBUCHHANDLUNG

Mehr

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen.

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen. 6.6 Fequenzgang Neben de Übeagungfunkion zu Becheibung de Signalübeagung in einem lineaen Übeagungglied im Bildbeeich wid in vechiedenen Teilgebieen de Elekoechnik noch eine andee Kennfunkion benuz, de

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs,

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs, Löung Aufgabenalung BM Beruf- und Weierbildungzenru bzb, Hanflandr. 17, Pofach, 9471 Buch, www.bzbuch.ch 1) Während Sie in eine Lif ehen, ehen Sie eine Schraube von der hohen Decke der Lifkabine herabfäll.

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

Aufgaben Radialkraft

Aufgaben Radialkraft Aufgaben adialkaft 13. Eine Wachachine chleudet it 800 Udehungen po Minute die Wäche in eine Toel o adiu 6 c. Mit welche Kaft wid dabei ein Waetopfen de Mae 1 g nach außen gedückt? Welche Mae beitzt dieelbe

Mehr

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man Aufaben zu freien Fall 8. Au welcher Höhe üen Fallchirpriner zu Übunzwecken frei herab prinen, u i derelben Gechwindikei (7 - ) anzukoen wie bei Abprun i Fallchir au roßer Höhe? 0. Von der Spize eine Ture

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

2. Gleich schwere Pakete werden vom

2. Gleich schwere Pakete werden vom . Klauur Phyik Leiungkur Klae 11 14.1.014 Dauer. 90 in Teil 1 Hilfiel: alle verboen 1. a) Schreiben Sie den Energieerhalungaz für ein abgechloene Sye auf. () b) Ein Auo wird ohne angezogene Handbree und

Mehr

zentral auf einen 5,0 kg schweren Block, der a) Wie weit wird die an einer Wand befestigte Feder dadurch zusammengedrückt?

zentral auf einen 5,0 kg schweren Block, der a) Wie weit wird die an einer Wand befestigte Feder dadurch zusammengedrückt? Impul- und Enegieehaltung ================================================================== 1. Ein 10 g chwee Gechoß tifft mit de Gechwindigkeit v v = 450 km h zental auf einen 5,0 kg chween Block, de

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinknn hp://brinknn-du.de Seie 5..03 Kle 0: Ergebnie und uführliche Löungen der Aufgben zur bechleunigen Bewegung Ergebnie E E E3 E4 E5 Erkläre die Begriffe: ) gleichförige Bewegung b) bechleunige

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

1.7. Aufgaben zur Drehimpulserhaltung

1.7. Aufgaben zur Drehimpulserhaltung .7. Aufgaben u Dehimpulehalung Aufgabe : Dehimpul Eine 0 g chwee Kugel wid an einem 0 cm langen Faden weimal po Sekunde im Kei heumgechleude. a) Beechne die Bahngechwindigkei und den Bahndehimpul de Kugel.

Mehr

Kreisbewegung. Die gleichförmige Kreisbewegung. Mechanik. Die gleichförmige Kreisbewegung. Physik Leistungskurs

Kreisbewegung. Die gleichförmige Kreisbewegung. Mechanik. Die gleichförmige Kreisbewegung. Physik Leistungskurs Mechanik Krummlinie Beweunen (6 h) Kreibeweun Phyik Leiunkur Walkowiak 9 Walkowiak 9 Die leichförmie Kreibeweun Die leichförmie Kreibeweun Kreibeweun: Man berache einen Maepunk, der ich im Aband r um einen

Mehr

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb Freiwillie Aufaen zur Vorleun WS /3, la 1 1) 3 () 1 4 8 1 () a Fahrzeu a und Fahrzeu fahren auf der leichen eradlinien Sraße. Sellen Sie anhand neenehenden Diara ihre We-Zei- Funkionen auf und erechnen

Mehr

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet Analyiche Geomeie Übungaufgaben geame Soffgebie Pflicheil (ohne GTR und ohne Fomelammlung): P: Zeichne die folgenden Ebenen mi Hilfe ihe Spugeaden in ein kaeiche Koodinaenyem ein: a) E: b) E: 8 c) E: P:

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Freier Fall. Quelle: Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m

Freier Fall. Quelle:  Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m Freier Fall 1. Der franzöiche Fallchirpringer Michel Fournier (geb. 14.5.1944) verfolg ei ehr al 1 Jahren da Ziel in ca. 4 Höhe i eine Sraophärenballon aufzueigen und von dor abzupringen. Dabei will er

Mehr

1.4.2 Die Schwerkraft

1.4.2 Die Schwerkraft Voleung Epeienalphik I a..999 und 9..999 J. Ihinge.4. Die Schwekaf Die Schwekaf auf de Ede ehäl an au de allgeeinen Foulieung de Gaviaiongeeze, wenn an eine de beiden Maen duch die Edae eez. F Foel We

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) peimenalphsik II Kip SS 7 Zusavolesungen: Z-1 in- und mehdimensionale Inegaion Z- Gadien Divegen und Roaion Z-3 Gaußsche und Sokessche Inegalsa Z-4 Koninuiäsgleichung Z-5 lekomagneische Felde an Genflächen

Mehr

Aufgaben gleichmäßig beschleunigte Bewegung

Aufgaben gleichmäßig beschleunigte Bewegung Aufaben eichäßi bechleunie Beweun 671. (Abi 1995, Grundkur) Vor der Einfahr in eine Bahnhof bre der Lokführer einen Zu i der Bechleuniun 0,850 - on 100,0 kh -1 auf 50,0 kh -1 ab und fähr i dieer Gechwindikei

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt:

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt: Aufgabe 4. Phyk und Uwelt I Löungen de Übungen. 4 t de etche nege de Zuge zu beechnen, de be Anfahen wede aufgebacht weden u. De Mae de geaten Zuge t: 5 kg. ene echwndgket betägt: 44 k/h 4 /. ü de etche

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

5.5. Anwendungsaufgaben aus der Physik

5.5. Anwendungsaufgaben aus der Physik .. Anwendungsaufgaben aus de Physik Aufgabe 1: Kinemaik Skizzieen Sie die Geschwindigkeis-Zei- und Weg-Zei Diagamme im Beeich < < 1 s und sellen Sie die Funkionsgleichungen fü v() und s() auf. a) Ein Köpe

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

2 Mechanik des Massenpunkts und starrer Körper

2 Mechanik des Massenpunkts und starrer Körper 8 Mechanik des Massenpunks und sae Köpe MEV Mechanik des Massenpunks und sae Köpe Bewegung In diese Kapiel geh es u Bewegung: Geschwindigkei, Beschleunigung, Roaion ec Und zwa nu u den Velauf de Bewegung,

Mehr

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen,

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen, Aufgben zur bechl. Bewegung 66. (Abi 007) Ein Lieferwgen der Me,5 wird u de Sillnd durch eine konne Krf i de k Berg,0 kn bechleunig. Nchde die Gechwindigkei 7 erreich i, fähr der h Lieferwgen gleichförig

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min 1. Klauur Phik Klae 11 Grundkur, 3.11.011 Dauer: 45 in 1. Skizzieren Sie für die leichförie und die leichäßi bechleunie Beweun die --, - und a--diarae. (6). Beor ein Dach neu einedeck wird, werden die

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

WACHSTUM VON POPULATIONEN

WACHSTUM VON POPULATIONEN WACHSTUM VO POPULATIOE I II Exponenielles Wachsum Logisisches Wachsum Bei auseichenden Resoucen und fehlende Einwikung duch naüliche Feinde ode sonsige Einflußgößen, die das Wachsum beschänken, komm es

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen leomagneische Wellen In einem Wechselsomeis mi Spule und Kondensao (Schwingeis wechsel die negie peiodisch wischen -Feld im Kondensao und -Feld in de Spule. Spule und Kondensao sind geschlossen aufgebau

Mehr

Beispiel: t = 6 s gesucht: Geschwindigkeit v, Weg s

Beispiel: t = 6 s gesucht: Geschwindigkeit v, Weg s R. Binkann hp://binkann-du.d Si 6..3 Zuangz Bwgungn Gchwindigki- Zi und Wg- Zi Diaga. Bwgung i konan Gchwindigki. konan Bipil: ggbn: / guch: Glichäßig bchlunig Bwgung. a a Bipil: ggbn: a 3 6 guch: Gchwindigki,

Mehr

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht.

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht. Neuonale Neze, Fuzzy Conol, Geneische Algoihmen Pof. Jügen Saue 0. Aufgabenbla mi Lösungen. Nennen Sie eine ypische Anwendung von Hopfield-Nezen. Museekennung 2. Welche Einschänkungen gib es hiefü? Es

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Einfühung in ie Roboik Diffeeniasanieb Mohame Oubbai Insiu fü Neuoinfomaik Te.: +49) 731 / 5 24153 mohame.oubbai@uni-um.e 27. 11. 212 D. Oubbai, Einfühung in ie Roboik Neuoinfomaik, Uni-Um) Diffeeniaanieb

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Integralrechnung III.Teil

Integralrechnung III.Teil Inegalechnung III.eil 1 Inegalechnung III.eil ngewande Mahemaik GM Wolgang Kugle Inegalechnung III.eil Inhalsvezeichnis 1. Mielwee peiodische Signale 1.1 Deiniion des aihmeischen Mielwees 1. Deiniion des

Mehr

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn.

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn. Keisbeweun 1. Ein kleine Waen de Masse 0,5 k bewet sich auf eine vetikalen Keisbahn it Radius 0,60. De Waen soll den höchsten Punkt de Bahn so duchfahen, dass de Waen it eine Kaft von de Göße seine Gewichtskaft

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung :

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung : Mechaniche chwingungen F r Rück Gleichgewichlage r F Rück F r Rück F r Rück Gleichgewichlage Größen zur quaniaiven Bechreibung : chwingungdauer oder Periode T, Einhei: Frequenz υ /T, Einhei: / oder Hz

Mehr

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag 1. Übung 1. Schi: Wann is Miag? Mie zwischen den beiden Messungen besimmen: 14h 44 19 + 17h 02 09 31h 46 28 31h 46 28 2 15h 53 14 Wahe Osmiag 2. Schi: Weil Miag is sind wi auf dem selben Längengad wie

Mehr

Affine Geometrie 11. Jahrgang

Affine Geometrie 11. Jahrgang Affine Geomeie. Jhgng Gliedeung. Vekoen. Dellung von Vekoen. Rechnen mi Vekoen. Linee Ahängigkei. Geden- und Eenengleichungen. Gedengleichungen. Eenengleichungen in Pmeefom. Inzidenzpoleme. Punk und Gede

Mehr

Induktionsgesetz. a = 4,0cm. m = 50g

Induktionsgesetz. a = 4,0cm. m = 50g 1. Die neenehende Aildung (Blick von vorn) zeig eine Spule mi 5 Windungen von quadraichem uerchni mi Seienlänge a = 4,cm zum Zeipunk. DieSpuleeweg ich mider Gechwindigkei v vom Berag v = 2, cm nachrech.

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen

Mehr

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt?

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt? Aufgaben zur gleicäßig becleunigen Bewegung. Ein Auo eiger eine Gecwindigkei gleicäßig on = 0 k - auf = 50 k -. Wie groß i die Becleunigung und der zurückgelege Weg, wenn die Gecwindigkeieröung in der

Mehr

1. Klausur Physik Leistungskurs Klasse

1. Klausur Physik Leistungskurs Klasse 1. Kluur Phyik Leiungkur Kle 11 1.1.1 1. uf einer gerden, horizonlen Srße fähr ein Moorrd i der konnen Gechwindigkei 9kh -1. pier zur Zei eine Mrke M. Zu elben Zeipunk re i Punk P ein Moorrd (Me einchließlich

Mehr

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird)

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird) AB Energie Leiung Scüler, Seie 1 V Welce Leiung bring ein Menc bei arrad aren? Einleiung (Hier wird erklär, waru der Veruc durcgefür wird) Mecanice Energie E wird dann auf einen Körper überragen, wenn

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Elektrische Ladung. Elektrizitätslehre. Ladungstrennung. griechisch Elektron (ηλεκτρον) heisst Bernstein

Elektrische Ladung. Elektrizitätslehre. Ladungstrennung. griechisch Elektron (ηλεκτρον) heisst Bernstein lekiziäslehe lekische Ladung giechisch lekon (ηλεκτρον) heiss Bensein elekische ufladung des Haaes lekophysiologische xpeimene Naueeigniss: Bliz Wenn Bensein mi einem Tuch geieben wid, veveände de Zusand

Mehr

2.2. Lösungen der Physikaufgaben

2.2. Lösungen der Physikaufgaben Hebel, Drehmomen und Auflagerkräfe 2.2. Löungen der Phyikaufgaben 2.1.1. Hebel, Drehmomen und Auflagerkräfe M I 1. M = F I F = 7Nm F = = 16,9 N 0,32m Am Ende de Schraubenchlüel mu eine Kraf von 16,9 N

Mehr

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss?

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss? Aufgaben zur gleicförigen Bewegung 533. Eine Wepe caff al Höcgecwindigkei 6,5 k/. Gib die Gecwindigkei in / an. Wie wei flieg da Tier i dieer Gecwindigkei in einer alben Minue? 534. ibellen ind in der

Mehr

ges Die resultierende Geschwindigkeit ist nun die des Flugzeugs plus die des Windes; als Rückenwind positiv, als Gegenwind negativ.

ges Die resultierende Geschwindigkeit ist nun die des Flugzeugs plus die des Windes; als Rückenwind positiv, als Gegenwind negativ. Phyikkur i Rahen de Forbildunglehrgange Indurieeier Fachrichung Pharazeuik Januar 008 Löungen Mechanik Aufgabe M: Ein Flugzeug kann konan i einer Gechwindigkei on 900 k/h gegen die ugebende Luf fliegen.

Mehr

Aufgaben zum Impuls

Aufgaben zum Impuls Aufgaben zu Ipul 593. Ein Wagen (Mae 4kg) prallt it einer Gechwindigkeit, / auf einen zweiten ( 5 kg), der ich in gleicher Richtung it der Gechwindigkeit 0,6 / bewegt. a) Wie groß ind die Gechwindigkeiten

Mehr

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert -0 - Kapiel Kapialwe und Endwe Kapielübesich. De Ein-Peioden-Fall. De Meh-Peioden-Fall. Diskonieung. Veeinfachungen.5 De Unenehmenswe.6 Zusammenfassung und Schlussfolgeungen -. De Ein-Peioden-Fall: Endwe

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Sichwoe aus de 3. Volesung: inkelaße: Radian und Seadian die (gleichföige) Keisbewegung als beschleunige Bewegung (Richungsändeung von v) Dasellung de kineaischen Gößen duch die inheisvekoen

Mehr

Physik-Übungsblatt Nr. 1: Lösungsvorschläge

Physik-Übungsblatt Nr. 1: Lösungsvorschläge Phyik-Übungbla Nr. 1: Löungorchläge ufgabe 1: Zur Zei are Wagen mi der konanen Gechwindigkei 1 km / h, Wagen fähr mi der konanen Gechwindigkei 1 km / h in die gleiche Richung, ha aber zu eginn einen Vorprung

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Übungen für die 1. Physikprüfung - mit Lösungen

Übungen für die 1. Physikprüfung - mit Lösungen Übungen für die. Pyikprüfung - i Löungen One vhvon obenl : =H 0 L + v 0 + ÅÅÅÅ a One Hvon obenl : v = v 0 + a One a : =H 0 L + ÅÅÅÅ Hv + v 0L One : v = è!!!!!!!!!!!!!!!!!!!!!!! v 0 + a Zenerpoenzen Screiben

Mehr

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung.

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung. . Dynaik 9 Nachechnen: v / a / t 0 Die Dynaik befat ich it den Uachen de Beweun. a t k/ N. Axioe. Täheitpinzip (Galileo, 564-64 Newton, 64-77) Ein ich elbt übelaene Köpe bewet ich eadlini leichföi. Reaktionpinzip

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

VORANSICHT. Die Affen rasen durch den Wald Auf dem Weg zum Klassen-Rap. Nach Claudia Dorn-Schmidt, Bad Langensalza, bearbeitet von Katrin Bückmann

VORANSICHT. Die Affen rasen durch den Wald Auf dem Weg zum Klassen-Rap. Nach Claudia Dorn-Schmidt, Bad Langensalza, bearbeitet von Katrin Bückmann I Musik-Paxis Beitag 34 ie ffen asen duch den Wald uf dem Weg zum Klassen-Rap 1 ie ffen asen duch den Wald uf dem Weg zum Klassen-Rap Nach Claudia on-schmidt, Bad Langensalza, beabeitet von Katin Bückmann

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik Phyik I im Sudiengang lekroechnik - Kinemaik - Prof. Dr. Ulrich Hahn WS 2015/2016 Bewegung in Körper/Objek änder eine Poiion (Or) Dafür wird Zei benöig Kinemaik 2 Bewegung Kinemaik 3 Roaion Unerchiedliche

Mehr

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008 Abitu - Leistungskus Physik Sachsen-Anhalt 008 Thema G Efoschung des Weltalls Die Entdeckungen von Johannes Keple und Isaac Newton sowie die Estellung de Gundgleichung des Raketenantiebs duch Konstantin

Mehr

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule Passive Neweke Diffeenialgleichungen H. Fiedli Dasellung de passiven auelemene Widesand Kondensao Spule du U R I( ) I U& di( ) ( ) U L L I& d d Mi diesen Definiionen lassen sich alle passiven Kombinaionen

Mehr

Bohrmaschine. kinetische Energie b) Campingkocher. Sonnenkollektor. Akku beim Laden

Bohrmaschine. kinetische Energie b) Campingkocher. Sonnenkollektor. Akku beim Laden Anwendunggaben - nergie - Löungen a) Die gepanne Feder beiz nergie. Wirkung: Der Tichenniball wird bechleunig. b) Da Öl und die Flae beizen nergie. Wirkung: Die Flae gib Wäre ab und ende Lich au. c) Die

Mehr

Hilfsmittel Beliebiger Taschenrechner Lösungsformel für quadratische Gleichungen (siehe Folgeseite)

Hilfsmittel Beliebiger Taschenrechner Lösungsformel für quadratische Gleichungen (siehe Folgeseite) Fachhochchule Nodwechweiz FHA, FHBB, FHSO Hochchule fü Wichaf Aufahepüfug 006 Maheaik MATHEMATIK Doze: Thoa Schäfe Dau 9. Mai 006 Zei 08.00 0.00 Nae, Voae Püfugo Hilfiel Beliebige Tacheeche Löugfoel fü

Mehr

Aufgaben Ladungen im elektr. und mag. Feld

Aufgaben Ladungen im elektr. und mag. Feld Aufgaben Ladungen i ekt. und ag. Fd 85. Elektonen teten au eine Glühkathode K au und weden duch ein Fd zwichen ih und de Anode A (Spannung zwichen K und A betägt U = 5, V) zu letztee hin bechleunigt. Duch

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Physik. als Manuskript gedruckt

Physik. als Manuskript gedruckt Uniesiä e Bunesweh München Suiengang lie Coue an Counicaion Technology (B. Eng.) Pof. D. e. na. Klaus Uhlann Physik als Manuski geuck. EINFÜHRUNG 3. Poga un Mehoe e Physik 3. Physikalische Gößen, Gößengleichungen

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

3 GERADL. GLEICHM. BESCHL. BEWEGUNG

3 GERADL. GLEICHM. BESCHL. BEWEGUNG PS KINEMATIK P. Rendulić 0 GERADL. GLEICHM. BESCHL. BEWEGUNG 7 3 GERADL. GLEICHM. BESCHL. BEWEGUNG 3. Experimenelle Herleiung de WegZeiGeeze 3.. Veruchbechreibung Wirk läng der Bahn eine konane Kraf in

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mahemaik fü Ingenieue Eemweaufgaben (Opimieung une Nebenbedingungen) Eemweaufgaben - Einfühung In de Pais een häufig Pobleme auf, bei denen es daauf ankomm, einen opimalen We zu besimmen; z. B. den maimalen

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit ) 5. Übung (KW 48) Aufgabe 1 (M 4.1 Veschiebungsabeit ) Welche Abeit muss aufgewendet weden, um eine Fede mit Fedekonstanten k (a) ohne Vospannung, d. h. von de Vospannlänge x 1 0, (b) von de Vospannlänge

Mehr

1. Flächen und Räume (Buch Seite 69-71)

1. Flächen und Räume (Buch Seite 69-71) Löungen zu Teraining Texaufgaben Hee/Scrader. Fläcen und Räue (Buc Seie 69-7) Aufgabe Größe eine Pflaerein A Sein : ASein = 0c 0c= 0, 0, = 0, 0 Wie iele Pflaereine brauc die Fira nun für den Plaz? 500

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Bewertungsformeln für Barrier Options im klassischen Optionspreismodell von BLACK, SCHOLES und MERTON

Bewertungsformeln für Barrier Options im klassischen Optionspreismodell von BLACK, SCHOLES und MERTON Beweungsfomeln fü Baie Opions im klassischen Opionspeismodell von BLACK, SCOLES und MERON ANDREAS PECL Es wid zunächs die eellweige Funkion 3 F : mi x x log log y ρ υ y ρ υ F( x, y, z;, υρ, : x z e ρ =

Mehr