Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort

Größe: px
Ab Seite anzeigen:

Download "Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort"

Transkript

1 Kaffelde Die Kaf auf eine Masse kann an eschiedenen Oen uneschiedlich sein. Zu ollsändigen Angabe uss fü jeden O jede Punk die Kaf die Richung de Tangene an die Kaflinie ha. Scheibweise: de Kafeko angegeben weden. Kaffeld. Kaflinien elaufen so daß in afische Dasellung Kaffelde sind ewas Reales. In eine aiaionsfeld bw. eine elekoagneischen eld is Enegie gespeiche. Mi de Akionspinip kann an die Beschleunigung eine Masse a O in eine Kaffeld diek beechnen. 75 aiaionsfeld Es wid die Kaf auf eine kleine Masse in de Nähe de Masse M geessen. Die Richung de Kaf eig auf Masse M d.h. in Richung on. De Beag de Kaf is Also ode M M M e M 76

2 Kaffelde können usälich auch on de Zei abhängen:. Dies is de all wenn sich die feldeeugenden Massen gegeneinande bewegen. Man kann kein Kaffeld definieen wenn die Käfe auch on de eschwindigkei de Pobeasse abhängen.b. Reibungskäfe. Die Kaf häng dann eplii on de oenanen Bewegung de Pobeasse ab. 77 U das eld unabhängig on de Masse des Pobeköpes u achen füh an eine eldsäke ein. M g e. Wegen de leichhei Täge Masse schwee Masse is die eldsäke des aiaionsfeldes eine Beschleunigung Schweebeschleunigung. Denn es gil: g a g Aus diese Beiehung is esichlich daß fü alle Köpe i Schweefeld die gleiche Beschleunigung gil unabhängig on ihe Masse: g Alle Massen fallen gleich schnell 78

3 Beispiele: eld eine Punkasse 79 eld on wei gleichgoßen Punkassen 8

4 Ausschni i Zelegung de Käfe eldsäke in ihe Koponenen 8 eld on wei Punkassen / 5/ 8

5 eld on dei gleichgoßen Punkassen 8 Zu gaphischen Dasellung on elden: eldlinien eldlinie Äquipoeniallinie Jede eldlinie beginn i Unendlichen und ende an eine Masse. Die Richung de eldlinie si an jede Punk i de Richung de Kaf auf eine Pobeasse übeein. Die Diche de eldlinien po lächeneinhei bei senkeche Duchsoßen is popoional u Beag de Kaf. eldlinien sehen senkech auf den Äquipoeniallinien. 84

6 Bewegung eine Masse in eine Kaffeld Newon s Akionspinip laue in diese all: a Die Beschleunigung häng o O ab an de sich die Masse befinde. Newon s Akionspinip liefe eine Anleiung u die Bewegung de Masse duch das Kaffeld u beechnen: Ausgehend o Sapunk i Sageschwindigkei wid in jede Moen folgendes beechne: aus de Kaf die Beschleunigung Ändeung de eschwindigkei daaus die neue eschwindigkei Ändeung des Osekos daaus de neue O. 85 Aus de Akionspinip ehäl an eine Diffeenialgleichung die Bewegungsgleichung. Wi scheiben u i a a & & egib sich Diese Diffeenialgleichung ha als Lösung unkionen. Lösung sind alle öglichen Bewegungen in de Kaffeld d.h. alle ulässigen unkionen. Angabe on Anfangsbedingungen fü O und eschwindigkei beschänk die Lösung auf eine besie Bewegung. 86

7 Bescheibung und Vohesage de Bewegungen on Massen. Bescheibung des Epeienes iels eines Modells. Zusaensellen alle Käfe die auf bewegliche Massen wiken. Aufsellen de Bewegungsgleichung. Lösen de Bewegungsgleichung. essellen de Anfangsbedingungen. Beechnung de Bahnkuen u diesen Anfangsbedingungen. Vegleich i de Epeien. Besäigung bw. Koeku des Modells. 87 Die Bewegungsgleichung d.h. die Diffeenialgleichung kann nueisch ode in besien ällen analisch gelös weden. Einfache nueische Lösung: Ausgehend o Sapunk i Sageschwindigkei wid in jede Moen folgendes beechne: aus de Kaf die Beschleunigung Ändeung de eschwindigkei daaus die neue eschwindigkei Ändeung des Osekos daaus de neue O: & & a. & a d.h. neu al a d.h.. neu al al 88

8 Die Beschleunigung beechne sich aus de Kaf also: al al neu d.h. Koponenenweise egib sich: Anfangsbedingung: 89 Beispiel: Bewegung de Ede u die Sonne Sonne selbs sei osfes E S Koponenenweise egib sich: S S S 9

9 Analische Behandlung on keisföigen Planeenbahnen: Wichige Mehode bei Lösen on Diffeenialgleichungen: Inelligenes Raen de ichigen unkion und anschließend Beechnung de Paaee. Bahnkue is ein Keis also: cosϕ sinϕ Bewegung auf Keis is gleichföig Keples lächensa. Winkel ni gleichäßig u. ϕ ω: Winkelgeschwindigkei Bogenaß! T: Ulaufei. Also: ω ω cons. π ω T π T. cosω sinω ϕ 9 cosω sinω & ω sinω ω cosω a & ω cosω ω sinω. Ableiung on nach de Zei: Nach Ausklaen on -ω egib sich: a ω Die Beschleunigung eig ie u Zenu des Keises. Sie heiß Zenipealbeschleunigung a ω Bewegungen auf eine Keisbahn sind ie beschleunige Bewegungen.. Beschleunigung seh senkech u sie ände nich Beag on nu Richung. ϕ a 9

10 Die Zenipealbeschleunigung uß duch eine Kaf eusach weden Newon s Akionspinip.B. aiaion. a i i Zenu und auf de Keisbahn egib sich: ω ω ω ω Käfegleichgewich: Zenipealkaf aiaionskaf Die Scheinkaf Zenifugalkaf is beagsäßig gleich de Zenipealkaf abe ih engegengeiche. Ein Ulauf d.h. wid nach de Zei eeich. ϕ π π ω T π ω ν. ν: equen T T 9 Aus ω lies an sofo wiede das. Keple sche ese ab: π T T 4π cons. Bahngeschwindigkei : also ω ω sin ω cos ω Analische Behandlung on Ellipsen schwieige Analische Behandlung eine Roseenbahn seh schwieig 94

11 Keplebahn eines isens u ein Schwaes Loch i Zenu unsee Milchsaße: Abschäen de Masse SL i Inneen de Ellipse: SL 4π T s. ohegehende olie. Keplesches ese 9 Bahn des Sens S Punke i ehlebalken i Senbild des Schüen u die Posiion de kopaken Radioquelle SgA* goße Keis i Keu. Die Daen weden duch eine Ellipsenbahn i Eeniiä 87 Ulaufpeiode 57 Jahe und goße Sei-Halbachse beschieben in deen eine okus die Radioquelle si. Das Speku de Radioquelle kann als Snchoonsahlung elaiisische Elekonenhohe Enegie in eine Magnefeld gedeue weden. Diese Sahlung enseh in de Ugebung eines Schwaen Lochs. eschäe Einsöung on Maeie in das Schwae Loch: Deei - Sonnenassen po Jah. SL Mi Sonne. 6 kg. kg 6 wid SL 45 Sonne. 95 Keplegesee und die Eisen on Dunkle Maeie: Zwei Aufnahen fene alaien und eine Zeichnung echs i beobacheen Ufangsgeschwindigkeien on Senen in eschiedenen Absänden o galakischen Zenu geäß de gefundenen eingeschlossenen Maeiediche und de. Kepleschen ese. Übeeinsiung eisie nu wenn an die Eisen on Dunkle Maeie posulie Nu aiaionswikung! 96

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort Kaffelde Die Kaf auf eine Masse kann an eschiedenen Oen uneschiedlich sein. Zu ollsändigen Angabe muss fü jeden O F F, F, F Scheibweise:,, de Kafeko angegeben weden. Kaffeld Gafische Dasellung F F,,, F,,,

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

Physik für Wirtschaftsingenieure

Physik für Wirtschaftsingenieure Phsik fü Wischafsingenieue Chisophe Diemaie, Mahias Mändl ISBN 3-446-373-8 Lesepobe Weiee Infomaionen ode Besellungen une hp://www.hanse.de/3-446-373-8 sowie im Buchhandel Mechanik Bild. Bewegung eines

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) peimenalphsik II Kip SS 7 Zusavolesungen: Z-1 in- und mehdimensionale Inegaion Z- Gadien Divegen und Roaion Z-3 Gaußsche und Sokessche Inegalsa Z-4 Koninuiäsgleichung Z-5 lekomagneische Felde an Genflächen

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Sichwoe aus de 3. Volesung: inkelaße: Radian und Seadian die (gleichföige) Keisbewegung als beschleunige Bewegung (Richungsändeung von v) Dasellung de kineaischen Gößen duch die inheisvekoen

Mehr

Kapitel 2 Dynamik eines Massenpunktes

Kapitel 2 Dynamik eines Massenpunktes 1 Kpiel Dnmik eines Mssenpunkes Mechnik eines Mssenpunkes Ielisiees Gebile : lle Msse es Köpes in einem Punk konenie Keine Beücksichigung e Ausehnung eines Köpes Ausehnung sei iel kleine ls ie Dimensionen

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

Integralrechnung III.Teil

Integralrechnung III.Teil Inegalechnung III.eil 1 Inegalechnung III.eil ngewande Mahemaik GM Wolgang Kugle Inegalechnung III.eil Inhalsvezeichnis 1. Mielwee peiodische Signale 1.1 Deiniion des aihmeischen Mielwees 1. Deiniion des

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

5.5. Anwendungsaufgaben aus der Physik

5.5. Anwendungsaufgaben aus der Physik .. Anwendungsaufgaben aus de Physik Aufgabe 1: Kinemaik Skizzieen Sie die Geschwindigkeis-Zei- und Weg-Zei Diagamme im Beeich < < 1 s und sellen Sie die Funkionsgleichungen fü v() und s() auf. a) Ein Köpe

Mehr

4a Kinematik Mehrdimensionale Bewegungen

4a Kinematik Mehrdimensionale Bewegungen 4a Kinemaik Mehdimensionale Bewegungen Zusammenfassung Kinemaik in eine Dimension Kinemak bescheib die Bewegung on Köpen Die Bescheibung muss imme in Beug auf ein Refeenssem efolgen. In de Regel is dies

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phamazeuen und Biologen (PPh Mechanik, Elekiziäslehe, Opik Übung : Volesung: Tuoials: Monags 13:15 bis 14 Uh, Buenand-HS Monags 14:15 bis 15:45, Liebig HS Monags 16:00 bis 17:30,

Mehr

Ausgangspunkt zur Herleitung der Wellengleichung sind die Maxwell-Gleichungen v E = t. v v v v. D t

Ausgangspunkt zur Herleitung der Wellengleichung sind die Maxwell-Gleichungen v E = t. v v v v. D t Insiu fü hsi und hsialische Technologien de TU Claushal Mä 6 Nichlineae Opi WS 5/6 leomagneische Wellen. Wellengleichung Ausgangspun u eleiung de Wellengleichung sind die Mawell-Gleichungen B D ρ B D Ladungen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

2 Mechanik des Massenpunkts und starrer Körper

2 Mechanik des Massenpunkts und starrer Körper 8 Mechanik des Massenpunks und sae Köpe MEV Mechanik des Massenpunks und sae Köpe Bewegung In diese Kapiel geh es u Bewegung: Geschwindigkei, Beschleunigung, Roaion ec Und zwa nu u den Velauf de Bewegung,

Mehr

= 0. Wert von C hängt von den Anfangsbedingungen. (abb33.cw2)

= 0. Wert von C hängt von den Anfangsbedingungen. (abb33.cw2) 5. Genzzlen Schwingungen sind uns aus de Mechani beannt. Die Gleichung fü den haonischen Oszillato & = lässt sich in zwei lineae Diffeentialgleichungen. Odnung übefühen. Jacobi-Mati: = & = 0 A = 0 = &

Mehr

Von Kepler III zu Kepler III

Von Kepler III zu Kepler III Von Keple III zu Keple III Joachi Hoffülle jh.schule@googleail.co Luitpold-Gynasiu München Seeaust. 80538 München Voaussetzungen: F a t Geschwindigkeit als Göße it Betag und Richtung Vetautheit it de Beechnung

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Der Luftwiderstand soll bei allen Bewegungen vernachlässigt werden.

Der Luftwiderstand soll bei allen Bewegungen vernachlässigt werden. Lösunen fü Teie de Püfunskausu om..7 eichmäßi bescheunie Lineabeweun M. Ein Sein wid mi eine eschwindikei om and eine Kippe de Höhe h senkech nach oben ewofen. a) Nach weche Zei eeich e das unee Ende de

Mehr

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag 1. Übung 1. Schi: Wann is Miag? Mie zwischen den beiden Messungen besimmen: 14h 44 19 + 17h 02 09 31h 46 28 31h 46 28 2 15h 53 14 Wahe Osmiag 2. Schi: Weil Miag is sind wi auf dem selben Längengad wie

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Master E/BMT/DFHI Höhere Mathematik I

Master E/BMT/DFHI Höhere Mathematik I Mas E/BM/DFHI Höh Mahmaik I Lösungn zu Übung Vkoanalysis Pof D B Gabowski gabowski@hw-saalandd Zu Aufgab Bchnn Si fü di Bahnku cos M ins ilchns zu Zi a Gschwindigki b Bschlunigung c Glichung d angnn an

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Asoeilchenphysik I Winesemese 2012/1 Volesung # 2, 25.10.2012 Guido Dexlin, Insiu fü Expeimenelle Kenphysik Fühes Univesum - Hubble-Expansion - Uknall: Gundlagen - Expansionsdynamik: a & Zusandsgleichungen

Mehr

Fachhochschule Hannover

Fachhochschule Hannover Fachhochschle annove 8..5 Fachbeeich Maschinenba Zei: 9 min Fach: Physik im WS 4/5 ilfsmiel: Fomelsammlng z Volesng. in PKW(, de mi konsane Geschwindigkei von 7 kmh - fäh, wid von einem andeen PKW( mi

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Kinematik und Dynamik (Mechanik II)

Kinematik und Dynamik (Mechanik II) TECHNISCHE UNIVERSITÄT BERLIN Fakulä V Vekehs- und Maschinensysee - Insiu fü Mechanik FG Sysedynaik und Reibungsphysik Pof D e na V Popov wwweibungsphysikde Kineaik und Dynaik (Mechanik II) Volesungsnoizen

Mehr

v(t) r(t) Die Bewegung eines Körpers auf einer Kreisbahn vom Radius r kann beschrieben werden durch

v(t) r(t) Die Bewegung eines Körpers auf einer Kreisbahn vom Radius r kann beschrieben werden durch Die Keisbeweun ================================================================== 1. Bescheibun de Keisbeweun y v(t) ϕ(t) (t) ϕ(t) x Die Beweun eines Köpes auf eine Keisbahn vom Radius kann beschieben

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3.4 Eigenschaften von elektromagnetischen Wellen Herleitung von elektromagnetischen Wellen

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3.4 Eigenschaften von elektromagnetischen Wellen Herleitung von elektromagnetischen Wellen Phsi PH3/4 (Shwingungen, Wellen, Opi Seie 8_lmagWellen1_a_A.do - 1/7 3.4 igenshafen von eleomagneishen Wellen 3.4.1 Heleiung von eleomagneishen Wellen 1 Qualiaive, anshaulihe Heleiung (nih gan ihig eshleunige

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Zykloiden und Epizykloiden DEMO. Text Nummer Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Zykloiden und Epizykloiden DEMO. Text Nummer Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Zykloiden und Epizykloiden Tex Numme 540 0. Mai 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 540 Zykloiden Vowo Die Zykloiden sind beühme und seh of vewendee Beispiele fü Kuven. Vo allem

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht.

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht. Neuonale Neze, Fuzzy Conol, Geneische Algoihmen Pof. Jügen Saue 0. Aufgabenbla mi Lösungen. Nennen Sie eine ypische Anwendung von Hopfield-Nezen. Museekennung 2. Welche Einschänkungen gib es hiefü? Es

Mehr

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes Zusmmenfssung Kpiel Mechnik eines Mssenpunkes 1 Mechnik eines Mssenpunkes idelisiees Gebilde : lle Msse des Köpes in einem Punk konzenie keine Beücksichigung de Ausdehnung eines Köpes Ausdehnung d sei

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Physik II (Elektrodynamik) SS Klausur Fr , 16:00-18:00 Uhr, Gerthsen Hörsaal, Gaede Hörsaal, HMO Hörsaal. Name: Matrikelnummer:..

Physik II (Elektrodynamik) SS Klausur Fr , 16:00-18:00 Uhr, Gerthsen Hörsaal, Gaede Hörsaal, HMO Hörsaal. Name: Matrikelnummer:.. Physik II (Elekodynamik) SS 5 1. Klausu F. 7.5.5, 16:-18: Uh, Gehsen Hösaal, Gaede Hösaal, HMO Hösaal Name: Maikelnumme:.. Sudienziel: Übungsguppe:.... Benoee Schein ewünsch: Aufgabe Punke Eeichbae Punke

Mehr

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker Beibläe zu Volesung Physik fü Elekoechnike und Infomike, Mschinenbue und Mechonike WS 4/5 Pof. D. Min Senbeg, Pof. D. Eckehd Mülle Ohne Veändeungen zugelssen zu Klusu GPH Kinemik Dynmik Abei und Enegie

Mehr

Maxwellsche Gleichungen. James Clerk Maxwell ( )

Maxwellsche Gleichungen. James Clerk Maxwell ( ) Mawellsche Gleichungen James Clek Mawell 1831-1879 bisheige Gundgleichungen... Ladungen ezeugen elekische Felde: div s gib keine Ladungen die magneische Felde ezeugen: Söme ezeugen magneische Wibel-Felde:

Mehr

Mechanik. 1 Kinematik

Mechanik. 1 Kinematik Mechanik Kinemaik - Beschreibung der Bewegung eines Körpers durch Or, Geschwindigkei und Beschleunigung - Körper wird als Punkmasse (PM) beschrieben.. Modell der Punkmasse und Koordinaensseme (KS) Def.

Mehr

Kosmologie. Wintersemester 2015/16 Vorlesung # 3,

Kosmologie. Wintersemester 2015/16 Vorlesung # 3, Meik Kosmologie Winesemese 15/16 Volesung #,.11.15 Guido Dexlin, Insiu fü Expeimenelle Kenphysik Expndieendes Univesum - Fiedmnn-Lemîe Gleichungen - Robeson-Wlke Meik - Kümmungspmee k - Zusndsgleichungen

Mehr

Geometrie der Cartan schen Ableitung

Geometrie der Cartan schen Ableitung Geoetie de Catan schen Ableitung - - Notation Sei + Sei + Wi bezeichnen it ( L den Vektoau alle fach ultilineaen Abbildungen f : -al 2 Wi bezeichnen it S die Guppe alle Peutationen σ : {,, } {,, } Des

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

Physik 1+2 Sommer 2007 Prof. G.Dissertori Klausur. Aufgabe 1: Gekoppelt Oszillatoren (10 Punkte)

Physik 1+2 Sommer 2007 Prof. G.Dissertori Klausur. Aufgabe 1: Gekoppelt Oszillatoren (10 Punkte) Physik + Somme 007 Po. G.Dissetoi Klausu Lösungen Augabe : Gekoppelt Oszillatoen 0 Punkte a Die Bewegungsgleichungen de beiden Massen egeben sich aus de Gleichung ü einen hamonischen Oszillato und einem

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet.

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet. .. Gie.. Baufomen Mi de Bezeichnun Gie is im Folenden eine Suku emein, bei de eine peiodische Ändeun des Bechunsindex enlan eine Raumichun volie. Gie weden in Halbleielasen vo allem in zwei Baufomen einesez.

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen leomagneische Wellen In einem Wechselsomeis mi Spule und Kondensao (Schwingeis wechsel die negie peiodisch wischen -Feld im Kondensao und -Feld in de Spule. Spule und Kondensao sind geschlossen aufgebau

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Vesuch : Dehschwingungen, Expeimentelle Bestimmung von Tägheitsmomenten 1. Aufgabenstellung Die Winkelichtgöße eine Dillachse soll eineseits duch statische Auslenkung mit bek. Dehmoment und andeeseits

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v 4. Supeposiionspinip Beweun in 3 Koodinaenicunen sind unabäni oneinande! Beispiel: Sciefe Wuf ( ) ( ) a () nfansbedinunen Beweun in de --Ebene Eliminaion on () ( ) () ( ) 4. Tes des Supeposiionspinip fei

Mehr

Regelungstechnik I (WS 17/18) Übung 1

Regelungstechnik I (WS 17/18) Übung 1 Regelungstechnik I (WS 17/18 Übung 1 Pof. D. Ing. habil. Thomas Meue, Lehstuhl fü Regelungstechnik Aufgabe 1 (Mathematische Modellieung eines elektisch aktuieten Seilzuges. Abbildung 1.1 zeigt den Ankekeis

Mehr

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen.

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen. 6.6 Fequenzgang Neben de Übeagungfunkion zu Becheibung de Signalübeagung in einem lineaen Übeagungglied im Bildbeeich wid in vechiedenen Teilgebieen de Elekoechnik noch eine andee Kennfunkion benuz, de

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Mehrkörperproblem & Gezeitenkräfte

Mehrkörperproblem & Gezeitenkräfte 508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse Rezipokes Quaatgesetz un Stabilität von planetaischen Bahnen Einige analytische Egebnisse ) Die Kepleschen-Gesetze sin Folgen e Tatsache, ass ie Gavitationskaft einem umgekehten Quaatgesetz folgt Wi ween

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

2 Homogene Transformationen und Posen

2 Homogene Transformationen und Posen 2. Homogene Tansfomaionen un Posen 2 Homogene Tansfomaionen un Posen Auf e Basis e homogenen Tansfomaionen können Kooinaenansfomaionen wischen Objeken anspaen übe nich ekusive Maipouke beschieben ween.

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Die Beugung am Spalt. paralleles Licht. Schirm. Lichtquelle f 1. f 1 f 2 Spalt I

Die Beugung am Spalt. paralleles Licht. Schirm. Lichtquelle f 1. f 1 f 2 Spalt I Die Beugung am Spal Lichquelle f 1 paalleles Lich a Schim x Die wegen des Huygens schen Pinzips am Spal gebeugen Wellen inefeieen mieinande, was zu eine Inensiäsveeilung mi Maxima und Minima füh. f 1 f

Mehr

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet.

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet. Lösungen Abiu Leisungsus Mahemai Seie von 9 P Analyische Geomeie. Dasellung de Veoen: BE + FG = BH. C F = AF AF + F = C AF + FC = AC AC FC = AF A ( ;;) B ( ; 4; ) C ( ;; ) D ( ;;) E ( ;;) F ( ; 4; ) G

Mehr

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung Foucau-Pende Newonsche Gundechun oeenden Sse Newons Gechun n de Fo Kaf ech Masse a escheunun nu n ene Ineasse d h, n ene Sse, das sch eadn konsane Geschwndke bewe In ene de Wnkeeschwndke oeenden Sse daeen

Mehr

Aufgaben zu Kräften zwischen Ladungen

Aufgaben zu Kräften zwischen Ladungen Aufgaben zu Käften zwischen Ladungen 75. Zwei gleich geladenen kleine Kugeln sind i selben Punkt an zwei langen Isoliefäden aufgehängt. Die Masse eine Kugel betägt g. Wegen ihe gleichen Ladung stoßen sie

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule Passive Neweke Diffeenialgleichungen H. Fiedli Dasellung de passiven auelemene Widesand Kondensao Spule du U R I( ) I U& di( ) ( ) U L L I& d d Mi diesen Definiionen lassen sich alle passiven Kombinaionen

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

. Es genügt den Energieerhaltungssatz anzuwenden. , die der zweiten mit h 2. bzw. Im ersten Fall sehen wir von Rollreibung ab.

. Es genügt den Energieerhaltungssatz anzuwenden. , die der zweiten mit h 2. bzw. Im ersten Fall sehen wir von Rollreibung ab. Weollen Zei idenisce Kugeln ollen in gleice Höe los und kommen auf gleice Höe iede ins Ziel Welce de Kugeln is abe zues im Ziel? Dabei sollen beide Kugeln niemals uscen, sonden imme ollen! Die sciefe bene

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr