Formelsammlung Mechanik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung Mechanik"

Transkript

1 oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8

2 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen den Göße zeichen Einhei zeichen Einheien k Abei, Eneie, E Joule J J Mee duch Bechleuniun Qudekunde Boenß c, 36 Rdin d d ˆ 57, 3 π Diche ρ k Kilo 3, 3 3 c duch k Kubikee k k c d Duck p k Pcl P P B b b 5 P Dehzhl n duch Sekunde 6 in Dehoen M ewonee k edekonne D ewon duch k Mee läche A equenz f Hez Hz Gechwindikei Mee duch k k 3,6 Sekunde h h 3,6 Ipul p k k Kf ewon k Läne l Mee Leiun P J k 3 Me Kilo k Schwinundue T Sekunde Täheioen J Kilo l Qudee k Voluen V Kubikee, 3 3 L Lie L Lc 3 ellenläne λ Mee inkelbechleuniun Rdin duch d d ode Qudekunde inkelechwindikei ω Rdin duch d d ode Sekunde Zei Sekunde Minue Sunde T Jh in h d in6 h6in36 d4h44in ,4d Seie on 9

3 oellun Mechnik Beufliche Gniu chobechule Kineik (Lehe on de Becheibun de Beweunen) Geeze de Beweun uf eine eden Bhn (Tnlion) Sondefll : Gleichföie edlinie Beweun ( konn) Sondefll : Gleichäßi bechleunie edlinie Beweun ( konn) ) Bechleuniun u de Beweun, d.h. i de Anfnechwindikei >. Mi > il dnn: + kon. kon : e in : Gechwindikei / : Zei in : Anfnwe bei : Bechleuniun / : Anfnechwindikei bei b) Bechleuniun u de Sillnd dnn i und i il : c) eie ll (i ) Gechwindikei-Zei-Die : llbechleuniun 9,8 / (uf de 5. Beiend) Gleichäßi bechleunie Beweun ohne Anfnechwindikei (, d.h. Bechleuniun u de Sillnd) i Anfnechwindikei ( > ) ll : Bechleuniun ( > ) Zunhe de Gechwindikei Zunhe de Gechwindikei ll : Vezöeun ( < ) Abnhe de Gechwindikei Seie 3 on 9

4 oellun Mechnik Beufliche Gniu chobechule Beweuneeze de Keibeweun (Roion) Gößen Gleichföie Keibeweun Gleichäßi bechleunie Keibeweun Dehwinkel ϕ ϕ ω + ϕ inkelechwindikei ω ω kon. inkelbechleuniun Gleichföie Keibeweun Bhnechwindikei Rdilbechleuniun Zenipelbechleuniun ϕ π ω π n T π ω T Z Z ω ω ϕ + ω + ϕ enn ϕ ω + ω und ω enn ω : ω kon. ϕ : ω : Keidiu T : Ulufzei n : Dehzhl ω : inkelechwindikei Menäheioen J d J : Menäheioen : Rdiu : Me ufbeweunen Senkeche uf O-Zei-Geez Gechwindikei-Zei- Geez Seihöhe Seizei eche uf O-Zei-Geez ufichun nch oben h h Hoizonl: leichföie Beweun: Veikl: leichäßi bechleunie Beweun: ufichun nch unen e-di i ufkue: w >!w w w Gechwindikei-Zei- Geez + ufpbel ufweie h w Seie 4 on 9

5 oellun Mechnik Beufliche Gniu chobechule Schiefe uf O-Zei-Geez Gechwindikei-Zei- Geez co in + in e-di i ufkue: w o ufpbel h (ufhöhe) ufweie ufhöhe w in in h w (ufweie) Seizei h in ufpbel n co Käfe in de Mechnik Kf, lleein Bechleuniende Kf Gewichkf Reibunkf Gleieibunkf Hfeibunkf Rolleibunkf edepnnkf S (Hookeche Geez) R HR RR G S HR RR µ µ µ HR RR D Aufiebkf A ρ V A : Me : llbechleuniun : olkf µ Gleieibunzhl µ HR Hfeibunzhl µ RR Rolleibunzhl : Rdiu de ollenden Köpe Käfe n de chiefen Ebene (in h/) Hnbiebkf H olkf H G G in co G H b G h G G Ee ewonche Aio: ohne äußee Beeinfluun (Käfe) il (Täheieez): Zweie ewonche Aio: (dniche Gundeez) Die ewonche Aio : (cio ecio) kon. Seie 5 on 9

6 oellun Mechnik Beufliche Gniu chobechule Kf, Gechwindikei, Bechleuniun l Vekoen Zuenen, Zeleen on zwei Käfen und (ü d Zuenezen, Zeleen on Gechwindikeien und Bechleuniunen elen die leichen oeln.) und ind leich eiche und ind eneeneez eiche und ehen enkech ufeinnde und bilden einen beliebien inkel R R R R R + R :Be de eulieenden Kf R R + R + + enn ich die oel : co dnn eeinfch R co Beäe de Kfkoponenen in bzw. Richun: co + R in n R k + co + k n R k + in + k cn co in Eine ndee Mölichkei Käfe ddieen / ubhieen biee die Bechun de Käfe i Polkoodinene: Polkoodinen, ϕ coϕ +, ϕ inϕ ϕ cn Tchenechnefunkionen : P R R P Rechwinklie Koodinen In diee Dellun weden Käfe ddie / ubhie, inde n ihe echwinklien Koponenen beechne und dnn line ddie / ubhie. Seie 6 on 9

7 oellun Mechnik Beufliche Gniu chobechule Abei, Eneie, Leiun Mechniche Abei co Hubbei Hub Reibunbei R Bechleuniunbei B Hub Hub R B B G h R µ B B : Kf : e G : Gewichkf : Me : llbechleuniun h: Höhe R : Reibkf : olkf µ : Gleieibunzhl D: edekonne edepnnbei D Bedinun: E il d Hookeche Geez. Mechniche Eneie E () Poenzielle Eneie E po Kineiche Eneie E kin I ednhen Giionfeld E po E po G h h Eine epnnen ede Tnlion Roion E po D E kin E kin J ω Geez on de Ehlun de echnichen Eneie: In eine bechloenen eibunfeien echnichen Se il: Ee E po + Ekin kon. + E E E E po, kin, po, e + kin, e E po ; Ekin, E po e; Ekin, e, Zund Anfn,, Zund Ende eine Eneieuwndlun Mechniche Leiun, ikund Leiun, P bei linee Beweun Bei Dehbeweun ikund η P P ( und P M ω kon) Eb b η ; η ; η E P P b : eichee Abei : Zei : Kf: : e : Gechwindikei E, P b, Beäe de b b beebenen E,, P Beäe de, efühen (ufewnden) Eneie, Abei, Leiun Seie 7 on 9

8 oellun Mechnik Beufliche Gniu chobechule Ipul, Dehipul Ipul p p : Ipul : Me : Gechwindikei Ipulehlun Kfoß p Dehipul Beekun: enn p con. > L con. dh. E wiken keine Käfe uf Dehoen Vohe chhe p p kon +. L M L p L in, M ( ) ( ) p p L J ω p L M : Ipul : Me : Gechwindikei : Ipul : Me : Gechwindikei : Kf : Zei : Bechleuniun : Dehipul : Menäheioen : inkelechwindikei : Rdiu : Ipul : Gechwindikei : Me : Dehipul : Dehoen : Zei Seie 8 on 9

9 oellun Mechnik Beufliche Gniu chobechule Auwhl phikliche Konnen und ee e Zeichen e Einhei llbechleuniun 9,8 - Giionkonne f 6,67* - 3 * k -l * - Milee Eddiu E 6,37* 6 Ede E 5,977* 4 k Milee Monddiu M,738* 6 Monde M 7,35* k Sonnene,984* 3 k Udehunzei Ede T E 8,664* 4 Ulufzei Ede T E 3,558* 7 Ulufzei Mond T M,366* 6 Enfenun Ede-Mond E-M 3,844* 8 Enfenun Ede-Sonne E-S,496* Abolue ullpunk T -73,5 C K Gkonne R 8,34 J*K - *ol - Aodo Zhl A 6,5* 3 o - Mole Voluen V M,n,4* -3 3 ol - Ruhee Elekon e 9,9* -3 k Ruhee Poon M p,673* -7 k Ruhee euon n,675* -7 k Lichechwindikei i Vkuu c,999* 8 * - Reibun- und hwidendzhlen (Auwhl) Hfeibunzhl µ H Gleieibunzhl µ G ocken n ocken n Shl uf Shl,5,,,5 Holz uf Holz,5-,65,,5,5 Lede uf Mell,5-,6,,5, Gui uf Aphl <,9 <,5,5 hzeu i hzeu i Shleifen uf Edwe, Shleifen uf Aphl, Shleifen uf Sße,4 Guieifen uf Aphl,3 Shleifen uf Pfle,3 Shläde uf Schienen,5 Quellen: D oße Tfelwek ineki, Conelen Vel oellun Phik, A.Gudin Seie 9 on 9

Gebiet Basisgröße Formelzeichen Basiseinheit Einheitenzeichen

Gebiet Basisgröße Formelzeichen Basiseinheit Einheitenzeichen 141 Phik I Einfühun Die Phik i ein Teilebie de Nuwienchfen und bechäfi ich mi de lebloen Umwel. In de Phik wid euch, die Geezmäßikeien de unbeleben Meie duch Beobchunen und Meunen zu efen und in eine mhemichen

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen.

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen. Aufben Arbei und Enerie 547. Ein Tnk oll i Hilfe einer Pupe i Wer efüll werden. Der Tnk für den Scluc zwei Anclüe, oben und unen. Wie eräl e ic i der durc die Pupe zu erriceen Arbei, u den Tnk olländi

Mehr

Techn. Physik. Formelsammmlung. zum Lehrfach Technische Physik von. P. Heinrich

Techn. Physik. Formelsammmlung. zum Lehrfach Technische Physik von. P. Heinrich [Geerbliche Schule] [Öhrinen] echn. Phyik achchule für echnik Machinenechnik Sand: r. 008 orelalun zu Lehrfach echniche Phyik on P. Heinrich Diee Manukri dien zur Unerüzun de Unerriche i o.a. ach und i

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Formelsammlung. Physik Technologie Chemie. mit Merkhilfe Mathematik/Technik

STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Formelsammlung. Physik Technologie Chemie. mit Merkhilfe Mathematik/Technik STAATSINSTITUT Ü SCHULQUALITÄT UND BILDUNGSOSCHUNG MÜNCHEN oellung Tecnologie Ceie i Mekilfe Meik/Tecnik Müncen 3 Ebeie i Aufg de Byeicen Sinieiu fü Uneic und Kulu Leiung de Abeikeie: Geog O Siniu fü Sculquliä

Mehr

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

2 Mechanik des Massenpunkts und starrer Körper

2 Mechanik des Massenpunkts und starrer Körper 8 Mechanik des Massenpunks und sae Köpe MEV Mechanik des Massenpunks und sae Köpe Bewegung In diese Kapiel geh es u Bewegung: Geschwindigkei, Beschleunigung, Roaion ec Und zwa nu u den Velauf de Bewegung,

Mehr

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes Zusmmenfssung Kpiel Mechnik eines Mssenpunkes 1 Mechnik eines Mssenpunkes idelisiees Gebilde : lle Msse des Köpes in einem Punk konzenie keine Beücksichigung de Ausdehnung eines Köpes Ausdehnung d sei

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung Foucau-Pende Newonsche Gundechun oeenden Sse Newons Gechun n de Fo Kaf ech Masse a escheunun nu n ene Ineasse d h, n ene Sse, das sch eadn konsane Geschwndke bewe In ene de Wnkeeschwndke oeenden Sse daeen

Mehr

Aufgabe 1. Übungsblatt 7. Woche

Aufgabe 1. Übungsblatt 7. Woche T II SS Übunsb 7. Woche Pof. Oseeye Aufbe Zeichnen Sie die Le de oennpoe fü Sb, und Sb und beechnen Sie die Winkeeschwindikei ω des dien Sbes fü die ezeichnee Le. ω Geeben:, ω. b Zeichnen Sie die Le de

Mehr

Aufgaben zum Energieerhaltungssatz

Aufgaben zum Energieerhaltungssatz Aufben zu nerieerlunz. Bei Zuenellen eine eiezue wird ein Won i Me bereieell. r roll einen Ablufber i de eiunwinkel,7 von einer Höe,0 i der Anfnecwindikei,40 - inb und bewe ic dnn in der orizonlen bene

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker Beibläe zu Volesung Physik fü Elekoechnike und Infomike, Mschinenbue und Mechonike WS 4/5 Pof. D. Min Senbeg, Pof. D. Eckehd Mülle Ohne Veändeungen zugelssen zu Klusu GPH Kinemik Dynmik Abei und Enegie

Mehr

Affine Geometrie 11. Jahrgang

Affine Geometrie 11. Jahrgang Affine Geomeie. Jhgng Gliedeung. Vekoen. Dellung von Vekoen. Rechnen mi Vekoen. Linee Ahängigkei. Geden- und Eenengleichungen. Gedengleichungen. Eenengleichungen in Pmeefom. Inzidenzpoleme. Punk und Gede

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Grundlen der Kineik Gecwindikei und Becleuniun Die Gecwindikei i definier l der pro Zeieinei zurückelee We eine Körper = bzw = Die Becleuniun i definier l die Änderun der Gecwindikei pro Zeieinei: = bzw

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Wie funktioniert ein GPS System?

Wie funktioniert ein GPS System? GPS Sem Wie funkionie ein GPS Sem? Im Pinip gn einfh. Mehee Sellien, die ih in eine w. meheen geoionäen Umlufhnen üe de Ede efinden, hlen egelmäßig ihen deei kuellen Snd de Aomei u. D GPS Geä uf de Edoeflähe

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine Veuch 5: Unteuchunen zu Bechleuniun n de Atwoodchen Fllchine Theoetiche Gundlen: I. Ekläun de Modell Mepunkt : Auedehnte Köpe weden duch einen Punkt detellt, in de n ich die ete Me de Köpe veeinit denkt.

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1. Inenion O, Geschwindigkei und Beschleunigung eines Köpes zu jedem Zeipunk bescheiben. z e e z e () Oseko: () R. Giwidz 1 1.1 Eindimensionle, gedlinige Bewegung Eindimensionles Koodinenssem: 1 Veeinfchend

Mehr

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min 1. Klauur Phik Klae 11 Grundkur, 3.11.011 Dauer: 45 in 1. Skizzieren Sie für die leichförie und die leichäßi bechleunie Beweun die --, - und a--diarae. (6). Beor ein Dach neu einedeck wird, werden die

Mehr

Formeln Informationsund Systemtechnik

Formeln Informationsund Systemtechnik EUROA-ACHBUCHREIHE fü elekoecnice un elekonice Beufe omeln Infomionun Syemecnik Auoen Monik Bugmie Suieniekoin Sug Ulic G.. eye Dipl.-Ing., Anly fü Meienecnik Kln Ben Gimm Oeuien Leoneg, Sinelfingen Gego

Mehr

Bestimmung der Erdbeschleunigung g

Bestimmung der Erdbeschleunigung g Beiun der Erdbechleuniun Mai G 68 uorin: Cornelia Sin eilneher: Daniel Guyo Diana Bednarczyk Fabian Fleicher Heinrich Südeyer Inkje Dörin Rain orabi René Könnecke Galileo Galilei G 68: rookoll zur Beiun

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Induktivität und Energie des Magnetfeldes

Induktivität und Energie des Magnetfeldes Induktivität und Enegie de Mgnetfelde 1. D CMS (Compct Muon Solenoid) m CERN it ein ieige Teilchendetekto fü den HC (ge Hdon Collide). D Kentück de CMS it ein upleitende Elektomgnet de änge = 13m und mit

Mehr

Wärmeübertragung Formelsammlung

Wärmeübertragung Formelsammlung ämeübegung omemmung Zummenfung on Dd Henze (dd.henze@myum.de) Veon. om 8..8 (-Veöffenchung..8) Gundgen.... Gundenheen.... Koeffzenen und Kennzhen.... Rndbedngungen.... ämeduchgng..... ämeduchgng..... Péce-Gechungen

Mehr

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe:

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe: Phsik I U Domund WS7/8 Gudun Hille Shauka Khan Kapiel Zahlenbeispiel zum feien Fall: Fallzei eine Kapsel im Beme Fallum aus H = m Höhe: h h H h m H H H ms 9,8m 4,74 s Wähend diese Zei hesch in de Kapsel

Mehr

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man Aufaben zu freien Fall 8. Au welcher Höhe üen Fallchirpriner zu Übunzwecken frei herab prinen, u i derelben Gechwindikei (7 - ) anzukoen wie bei Abprun i Fallchir au roßer Höhe? 0. Von der Spize eine Ture

Mehr

1. Eine kleine Masse rutscht vom höchsten Punkt einer großen Halbkugel vom Radius R reibungsfrei ab.

1. Eine kleine Masse rutscht vom höchsten Punkt einer großen Halbkugel vom Radius R reibungsfrei ab. TU Chemnitz Institut fü Physik Physikübunen fü Witschaftsinenieue WS003 Lösunsvoschläe fü das 3. Übunsblatt 1. Eine kleine Masse utscht vom höchsten Punkt eine oßen Halbkuel vom adius eibunsfei ab. a)

Mehr

Kapitel 5: Koordination der Personalführung im Führungssystem

Kapitel 5: Koordination der Personalführung im Führungssystem Kpitel 5: Koodintion de Peonlfühung im Fühungytem 5. Beziehungen zwichen Contolling und Peonlfühung Kpitel 5 5. Koodintion de Peonlfühung mit dem Infomtionytem 5.3 Koodintion de Peonlfühung mit Plnung

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

3 Mechanik fester Körper

3 Mechanik fester Körper Mehr Infortionen z Titel 3 Mechnik feter Körper oreln 3.1 Dichte orelzeichen r = V = r V V r Me Volen Dichte 3 / 3 Körper 1 = 0,001 3 d 3 g t 1 = 1 = 1 c 3 d 3 3 Wichtige Dichten Werktoff r in /d 3 Kpfer

Mehr

m t 2 1 A n 2 n A n m DA d t 1...erklärt das - Zeichen (wenn D eine positive Zahl sein

m t 2 1 A n 2 n A n m DA d t 1...erklärt das - Zeichen (wenn D eine positive Zahl sein 6.5 Diffuion, Omoe und Dampfdruck: Z7/vo/mewae/Kap6_5DiffomDampfdr_4_06_01_17 Diffuion: Eindrinen eine Soffe in einen anderen auf Grund der Wärmebeweun. Experimen: ruhende, verchieden efärbe Flüikeien

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Sichwoe aus de 3. Volesung: inkelaße: Radian und Seadian die (gleichföige) Keisbewegung als beschleunige Bewegung (Richungsändeung von v) Dasellung de kineaischen Gößen duch die inheisvekoen

Mehr

Kugelfallmethode nach Stokes

Kugelfallmethode nach Stokes Phyikaliche Grunrakiku Veruch 09 Veruchrookolle alf Erlebach uelfallehoe nach Soke Aufaben. Meen er Fallzeien on ieren Sahlkueln in izinuöl.. Berechnen er ynaichen Vikoiä e Öl.. Berechnen er kineaichen

Mehr

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v 4. Supeposiionspinip Beweun in 3 Koodinaenicunen sind unabäni oneinande! Beispiel: Sciefe Wuf ( ) ( ) a () nfansbedinunen Beweun in de --Ebene Eliminaion on () ( ) () ( ) 4. Tes des Supeposiionspinip fei

Mehr

Graphische Datenverarbeitung

Graphische Datenverarbeitung Egänungen u Gaphiche Datenveabeitung Euleinkel und Quatenionen Pof. D.-Ing. Detlef Köke Goethe-Univeität, Fankfut Gaphiche Datenveabeitung Übeicht. Da Poble: Rotationen u beliebige Achen. Die Eule Tanfoation

Mehr

Analytische Geometrie

Analytische Geometrie Anlytiche eometie Intention: Eeitung eine Vefhen, mit deen Hilfe mn jede geometiche Aufge duch echnung löen knn. I Vektoen und Vektoäume Pfeile und Vektoen Vektoen ind geichtete ößen. Phyik: Kft, echwindigkeit,

Mehr

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb Freiwillie Aufaen zur Vorleun WS /3, la 1 1) 3 () 1 4 8 1 () a Fahrzeu a und Fahrzeu fahren auf der leichen eradlinien Sraße. Sellen Sie anhand neenehenden Diara ihre We-Zei- Funkionen auf und erechnen

Mehr

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung.

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung. . Dynaik 9 Nachechnen: v / a / t 0 Die Dynaik befat ich it den Uachen de Beweun. a t k/ N. Axioe. Täheitpinzip (Galileo, 564-64 Newton, 64-77) Ein ich elbt übelaene Köpe bewet ich eadlini leichföi. Reaktionpinzip

Mehr

Formelsammlung in Physik. Muster

Formelsammlung in Physik. Muster Foelsalung in Physik Inhalsübesich Einheien, Gössenodnungen und Konsanen Mechanik 4. Kineaik on Massenpunken: O, Geschwindigkei, Beschleunigung....... 4. Dynaik on Massenpunken: Kaf, Ipuls, Dehoen, Dehipuls......

Mehr

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g 3..00 Volesun - Bestimmun de Bennweite B G F F Aildunsleichun f ; f wid fest ewählt; wid so lane eändet, is Bild schaf auf Mattscheie escheint. ( ) ( ) ( ) ( ) f f. Methode ( ) ( ) f ± Die folenden Folien

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

Endspurt Vorklinik: Physik

Endspurt Vorklinik: Physik Endpu Voklinik Endpu Voklinik: Phyik Die Skipen fü Phyiku Auflage Thiee 03 Velag CH Beck i Inene: wwwbeckde ISBN 978 3 3 5334 5 Zu Inhalvezeichni chnell und poofei ehällich bei beck-hopde DIE ACHBUCHHANDLUNG

Mehr

Moroder Daniel Vermessungskunde Klasse 4eB

Moroder Daniel Vermessungskunde Klasse 4eB oode Daniel Vemessunskunde Klasse 4eB VEESSUGSKUDE 4EB Besimmun von aepunken Is die ae eine Anzahl von Punken duch ihe Koodinaen in einem echwinklien Koodinaensysem eeben, so kann man von ihnen ausehend

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr

Schwingung := zeitlich periodischer Vorgang mit periodischer Umwandlung verschiedener Energieformen

Schwingung := zeitlich periodischer Vorgang mit periodischer Umwandlung verschiedener Energieformen 9. Schwinunen 9. Übeblick Schwinun := zeitlich peiodiche Voan it peiodiche Uwandlun vechiedene Eneiefoen Beipiele: - Fedependel - Maenpendel (ath. Pendel) - Toionpendel (ehpendel) - Stabchwinunen (Eienchw.)

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Formelsammlung Physik

Formelsammlung Physik oellun Phik oellun Phik fü die Beufuiä echnik, chieku, Life Science Scienific eicn Science Buddie IBL eweblich-induielle Beuffchchule Liel Mühlee 34 44 Liel Phili Schluche www.hchluche.ch eion uli 7 oellun

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn.

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn. Keisbeweun 1. Ein kleine Waen de Masse 0,5 k bewet sich auf eine vetikalen Keisbahn it Radius 0,60. De Waen soll den höchsten Punkt de Bahn so duchfahen, dass de Waen it eine Kaft von de Göße seine Gewichtskaft

Mehr

Kreisbewegung. Die gleichförmige Kreisbewegung. Mechanik. Die gleichförmige Kreisbewegung. Physik Leistungskurs

Kreisbewegung. Die gleichförmige Kreisbewegung. Mechanik. Die gleichförmige Kreisbewegung. Physik Leistungskurs Mechanik Krummlinie Beweunen (6 h) Kreibeweun Phyik Leiunkur Walkowiak 9 Walkowiak 9 Die leichförmie Kreibeweun Die leichförmie Kreibeweun Kreibeweun: Man berache einen Maepunk, der ich im Aband r um einen

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

α Winkel der Schrägen

α Winkel der Schrägen Glechföge Bewegung eg Gechwndgket t π d n t Glechföge echleungte Bewegung Bewegung ohne nfng- t gechwndgket t t t d n t eg Gechwndgket et Duchee Dehhl eg Bechleungung et Gechwndgket - n - - - chefe Eene

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung :

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung : Mechaniche chwingungen F r Rück Gleichgewichlage r F Rück F r Rück F r Rück Gleichgewichlage Größen zur quaniaiven Bechreibung : chwingungdauer oder Periode T, Einhei: Frequenz υ /T, Einhei: / oder Hz

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

Aufgaben Translationsdynamik Seite 1. TM1: Federpendel. Lösungshinweis: Die Gewichtskraft prägt einen zusätzlichen Impulsstrom auf. N 200 m.

Aufgaben Translationsdynamik Seite 1. TM1: Federpendel. Lösungshinweis: Die Gewichtskraft prägt einen zusätzlichen Impulsstrom auf. N 200 m. Aufgen Trnltiondynik Seite 1 TM1: Federpendel Aufgentellung: Eine Feder verlängert ich ei eine kontnten Ipultro der Stärke 30 N u 15 c. Diee Feder wird nun n eine Ende ufgehängt und nderen Ende it eine

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Ohne Anspruch auf Vollständigkeit!!!

Ohne Anspruch auf Vollständigkeit!!! Mhemik Veuch eine Zummenfung de Abiu-Soffe Ohne Anpuch uf Volländigkei!!! ANALYSIS: Funkionuneuchung Funkionen: gnzionle Funkionen b e-funkionen c igonomeiche Funkionen Tngenen- und Nomlenbeimmung Okuven

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phamazeuen und Biologen (PPh Mechanik, Elekiziäslehe, Opik Übung : Volesung: Tuoials: Monags 13:15 bis 14 Uh, Buenand-HS Monags 14:15 bis 15:45, Liebig HS Monags 16:00 bis 17:30,

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg PN Handwek GC-Onine UGL-Schniee Schnenieg Inha GC-Onine UGL-Schniee... 3 Gundneungen fü den auomaichen Daenauauch... 3 Daanom-Daen aben... 4 Akionen de Handweke... 7 Beeung (Liefeaag)... 7 Abaag... 7 Abaag

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

1.2. Kinematik. x(t ) x(t ) = oder auch in

1.2. Kinematik. x(t ) x(t ) = oder auch in ... Die eradlini leichförmie Beweun.. Kinemaik Ein Körper bewe sich eradlini und leichförmi enlan der -Achse, wenn seine Geschwindikei (eloci) konsan bleib. Srecke Zeiabschni Orsänderun Zeiänderun Geschwindikeien

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Aufgaben gleichmäßig beschleunigte Bewegung

Aufgaben gleichmäßig beschleunigte Bewegung Aufaben eichäßi bechleunie Beweun 671. (Abi 1995, Grundkur) Vor der Einfahr in eine Bahnhof bre der Lokführer einen Zu i der Bechleuniun 0,850 - on 100,0 kh -1 auf 50,0 kh -1 ab und fähr i dieer Gechwindikei

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Biophysik für Pharmazeuten I. 2016/17

Biophysik für Pharmazeuten I. 2016/17 .09.06. Biophysik fü Phaazeuten I. 06/7 Mechanik Bioechanik Volesung Mechanik László Selle http://biofiz.sote.hu undlegende Begiffe de Physik, wie Kaft, Enegie,... Mechanik Kineatik (Bewegungslehe) Tanslation

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen,

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen, Aufgben zur bechl. Bewegung 66. (Abi 007) Ein Lieferwgen der Me,5 wird u de Sillnd durch eine konne Krf i de k Berg,0 kn bechleunig. Nchde die Gechwindigkei 7 erreich i, fähr der h Lieferwgen gleichförig

Mehr

498. Über ein kräftiges Holzbrett soll ein Heizkessel aus Stahl auf einen LKW gezogen werden. Das

498. Über ein kräftiges Holzbrett soll ein Heizkessel aus Stahl auf einen LKW gezogen werden. Das Aufgben zur eibung 498. Über ein kräfige olzbre oll ein eizkeel u Shl uf einen LKW gezogen werden. D Bre i 4 lng, die LKW-Priche befinde ich,0 über de Erdboden. Der eizkeel h eine Me von 60 kg. ) Welche

Mehr

n 4 Dr. A. Brink Dr. A. Brink 1

n 4 Dr. A. Brink Dr. A. Brink 1 E. Tlgugsechuge Aufgabe E/3 E Ked ee chuldsue vo. s übe Jahe ach de Mehode de quaalswese-achschüssge Auäelgug zuückzuzahle. Eel e de Jahesauä sowe de Rückzahlugsae ud eselle e ee Fazpla fü ee Jaheszssaz

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

2 Geradlinige Bewegung eines Massenpunkts

2 Geradlinige Bewegung eines Massenpunkts 13 2 Gerdlinige Bewegung eine Menpunk Bei ielen Bewegungufgben knn die Drehbewegung eine Körper ernchläig werden, wenn nur deen rnloriche Bewegung inereier. In dieem Fll drf der Körper l Menpunk berche

Mehr

E B. B r = 0 B E E E B B. E r. Elektromagnetische Wellen. Die vier Maxwell Gleichungen im quellenfreien Raum. mit

E B. B r = 0 B E E E B B. E r. Elektromagnetische Wellen. Die vier Maxwell Gleichungen im quellenfreien Raum. mit lekomagneishe Wellen µ Die vie Mawell Gleihungen im quellenfeien Raum µ a a a mi µ µ mi µ µ µ Wellengleihung eindimensionale Wellengleihung.. 3. 4. Lösung de eindimensionalen Wellengleihung? in Ansa: sin

Mehr

Chorpartitur Du Gott Lieder einer Messe mit Neuer Geistlicher Musik von Wolfgang Biel

Chorpartitur Du Gott Lieder einer Messe mit Neuer Geistlicher Musik von Wolfgang Biel Chorpriur Du Go Lieder einer Mee mi Neuer Geilicher Mui von Wolfgng Biel Du Go Lieder einer Mee mi Neuer Geilicher Mui von Wolfgng Biel Jülich www.muigruppe-zene.de Chorpriur Du Go Lieder einer Mee mi

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

T4 ZUSTANDSGLEICHUNG IDEALER GASE

T4 ZUSTANDSGLEICHUNG IDEALER GASE PHYSIKALISCHE GRUNDLAGEN Wichige Grundbegriffe: Byle-Mrieche Geez, Gy-Lucche Geez, Zundgleichung ideler Ge (hermdynmich und mlekulrkineich), Mwell-Blzmnnche Gechwindigkeivereilung, Gleichvereilungz, Ghermmeer

Mehr

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet.

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet. .. Gie.. Baufomen Mi de Bezeichnun Gie is im Folenden eine Suku emein, bei de eine peiodische Ändeun des Bechunsindex enlan eine Raumichun volie. Gie weden in Halbleielasen vo allem in zwei Baufomen einesez.

Mehr

Kugelstoßpendel ( Newtonsche Wiege )

Kugelstoßpendel ( Newtonsche Wiege ) Kuetoßpende ( Newtonche Wiee Ein Kuetoßpende (Abb it eine Anordnun von hintereinander aufehänten Kuen eicher Mae und Pendeäne, wobei die Pendeabtände eich den Kuedurchmeern ind Die Wirkunen zwichen den

Mehr

Ihr lieben Hirten, fürchtet euch nicht

Ihr lieben Hirten, fürchtet euch nicht Ihr lieben Hirten, fürchtet euch nicht Andreas Hammerschmidt Ihr lie- ben Hir- ten, ihr lie- ben, fürch- tet euch nicht, 10 sie- he, ich ver- kün- di- ge euch Freu- de, Freu- de, Freu- de, gro- ße Freu-

Mehr

Ergänzung Kpiel 5. Whl der Führunggröße Whl der Führunggröße für Lgeregelungen Biher wurde mei on einem prungförmigen Verluf der Führunggröße w( ugegngen. Viele regelungechniche Anwendungen weien uch ein

Mehr