4 Runge-Kutta-Verfahren

Größe: px
Ab Seite anzeigen:

Download "4 Runge-Kutta-Verfahren"

Transkript

1 Numerik gewöhnlicher Differentialgleichungen 43 4 Runge-Kutta-Verfahren 4. Konstruktion Ausgangspunkt wie immer (Substitution: s = t + τh, 0 τ ) y(t + h) = y(t) + [y(t + h) y(t)] = y(t) + = y(t) + h 0 y (t + τh) dτ. t+h t y (s) ds Approximiere durch Quadraturformel 0 g(τ) dτ m β j g(γ j ). j= ( ) Damit zumindest g exakt integriert wird, fordern wir m j= β j =. 4 Runge-Kutta-Verfahren Technische Universität Bergakademie Freiberg

2 Numerik gewöhnlicher Differentialgleichungen 44 Daraus folgt y(t + h) y(t) + h = y(t) + h m β j y (t + γ j h) j= m β j f (t + γ j h, y(t + γ j h)). j= (RK-) Problem: y(t + γ j h) = y(t) + h γ j 0 y (t + τh) dτ sind unbekannt. Näherungen wieder durch Quadraturformeln, aber mit den alten Knoten γ j (j =,..., m) aus ( ) (sonst würden sich neue Unbekannte y(t + Knoten h) ergeben). γj 0 g(τ) dτ m α j,l g(γ l ) (j =,..., m). ( ) l= Damit zumindest g exakt integriert wird, fordern wir m l= α j,l = γ j j =,..., m. 4. Konstruktion Technische Universität Bergakademie Freiberg

3 Numerik gewöhnlicher Differentialgleichungen 45 Damit ergibt sich y(t + γ j h) y(t) + h m l= α j,ly (t + γ l h) = y(t) + h m l= α j,lf (t + γ l h, y(t + γ l h)). (RK-2) Abkürzung: k j := ( f (t + γ j h, y(t + γ j h)) (j =,..., m). (RK-2): kj f t + γ j h, y(t) + h ) m l= α j,l k l (j =,..., m). (RK-): y(t + h) y(t) + h m j= β j k j. m-stufiges Runge-Kutta-Verfahren (RKV): y n+ = y n + h m β j k j mit k j = f ( j= t n + γ j h, y n + h ) m α j,l k l (j =,..., m). (RKV) l= 4. Konstruktion Technische Universität Bergakademie Freiberg

4 Numerik gewöhnlicher Differentialgleichungen 46 Butcher-Matrix (John Charles Butcher, 933) (auch Runge-Kutta-ABC): γ α, α,m... γ m α m, α m,m β β m Beispiele /2 /2 symbolisiert ein zweistufiges explizites RKV (ein RKV ist explizit, wenn α j,l = 0 j l gilt), nämlich das verbesserte Euler-Verfahren. 4. Konstruktion Technische Universität Bergakademie Freiberg

5 Numerik gewöhnlicher Differentialgleichungen 47 0 /4 /4 2/3 /4 5/2 /4 3/4 symbolisiert ein zweistufiges implizites RKV: k = f ( t n, y n + 4 hk 4 hk 2), k 2 = f ( t n h, y n + 4 hk hk 2), ( zwei i.a. nichtlineare Gleichungen für k und k 2 ) y n+ = y n + 4 h(k + 3k 2 ). (Beispiel 2 aus Abschnitt 2.2 ist ein weiteres implizites zweistufiges RKV.) 4. Konstruktion Technische Universität Bergakademie Freiberg

6 Numerik gewöhnlicher Differentialgleichungen /2 / /6 4/6 /6 symbolisiert ein dreistufiges explizites RKV. Verfahren dritter Ordnung von Kutta: k = f (t n, y n ), k 2 = f ( t n + 2 h, y n + 2 hk ), k 3 = f (t n + h, y n hk + 2hk 2 ), y n+ = y n + 6 h(k + 4k 2 + k 3 ). 4. Konstruktion Technische Universität Bergakademie Freiberg

7 Numerik gewöhnlicher Differentialgleichungen /3 / /3 0 2/3 0 /4 0 3/4 symbolisiert ein dreistufiges explizites RKV. Verfahren dritter Ordnung von Heun: k = f (t n, y n ), k 2 = f ( t n + 3 h, y n + 3 hk ), k 3 = f ( t n h, y n hk 2), y n+ = y n + 4 h(k + 3k 3 ). (Vgl. Beispiel aus Abschnitt 2.2.) 4. Konstruktion Technische Universität Bergakademie Freiberg

8 Numerik gewöhnlicher Differentialgleichungen /2 / /2 0 / /6 2/6 2/6 /6 symbolisiert ein vierstufiges explizites RKV. Klassisches Runge-Kutta-Verfahren: k = f (t n, y n ), k 2 = f (t n + 2 h, y n + 2 hk ), k 3 = f (t n + 2 h, y n + 2 hk 2), k 4 = f (t n + h, y n + hk 3 ), y n+ = y n + 6 h(k + 2k 2 + 2k 3 + k 4 ). 4. Konstruktion Technische Universität Bergakademie Freiberg

9 Numerik gewöhnlicher Differentialgleichungen 5 Eine alternative Form von (RKV) ist y n+ = y n + h m β j f (t n + γ j h, ỹ j ) mit ỹ j = y n + h j= m α j,l f (t n + γ l h, ỹ l ) (j =,..., m). (RKV ) l= Setze k j = f (t n + γ j h, ỹ j ). Die ỹ j können als Approximationen an die Lösung y zur Zeit t n + γ j h interpretiert werden, die k j als Approximationen an y (t n + γ j h). 4. Konstruktion Technische Universität Bergakademie Freiberg

10 Numerik gewöhnlicher Differentialgleichungen Konsistenzordnung Jedes RKV hat die Form y n+ = y n + hφ f (y n, t n ; h) mit Φ f (y n, t n ; h) = m β j k j. j= Es ist ein Einschrittverfahren (ρ(ζ) = ζ ), also stabil und (vgl. Abschnitt 2.3) genau dann konsistent, wenn Φ f (y(t n ), t n ; 0) = f (t n, y(t n ))ρ () erfüllt ist, was hier zu m j= β j = äquivalent ist. Ein RKV ist deshalb genau dann konvergent, wenn gilt. m β j = j= 4.2 Konsistenzordnung Technische Universität Bergakademie Freiberg

11 Numerik gewöhnlicher Differentialgleichungen 53 Um die Konsistenzordnung eines RKVs zu bestimmen (oder um m-stufige RKV mit möglichst hoher Konsistenzordnung zu konstruieren), sind wie im Fall der Taylor-Verfahren (siehe Abschnitt 2.5) komplizierte Rechnungen erforderlich. Wir untersuchen als Beispiel explizite dreistufige RKV, γ 2 γ γ 3 γ 3 α 3,2 α 3,2 0, β β 2 β 3 und entwickeln h R n+ = y(t n+) y(t n ) h Φ f (y(t n ), t n ; h) = y(t n+) y(t n ) h 3 β j k j j= nach Potenzen von h (unter der Voraussetzung, dass y bzw. f genügend oft differenzierbar sind). 4.2 Konsistenzordnung Technische Universität Bergakademie Freiberg

12 Numerik gewöhnlicher Differentialgleichungen 54 Für skalare AWPe ergibt sich mit den Abkürzungen F := f t + f y f und G := f tt + 2f ty f + f yy f 2 (alle Ableitungen von f werden an der Stelle (t n, y(t n )) ausgewertet) die Beziehung Anderseits ist y(t n+ ) y(t n ) h k = f(t n, y(t n )) = f, = f + 2 F h + 6 (G + f yf )h 2 + O(h 3 ). k 2 = f(t n + hγ 2, y(t n ) + hγ 2 k ) = f + hγ 2 F + 2 h2 γ 2 2G + O(h 3 ), k 3 = f(t n + hγ 3, y(t n ) + h(γ 3 α 3,2 )k + hα 3,2 k 2 ) = f + hγ 3 F + h 2 (γ 2 α 3,2 F f y + 2 γ2 3G) + O(h 3 ). 4.2 Konsistenzordnung Technische Universität Bergakademie Freiberg

13 Numerik gewöhnlicher Differentialgleichungen 55 Das bedeutet: h R n+ = Folgerungen. [ 3 j= β j ] f + [ 2 β 2γ 2 β 3 γ 3 ] F h + [ ( 3 β 2γ 2 2 β 3 γ 2 3) 2 G + ( 6 β 3γ 2 α 3,2 )F f y ] h 2 + O(h 3 ).. Das Euler-Verfahren ist das einzige einstufige explizite RKV der Ordnung (β = ). Es gibt kein einstufiges explizites RKV höherer Ordnung. 2. Die zweistufigen expliziten RKV der Ordnung 2 sind durch β + β 2 = und β 2 γ 2 = 2 charakterisiert. Beispiele sind das modifizierte (β = 0, β 2 =, γ 2 = 2 ) und das verbesserte Euler-Verfahren (β = β 2 = 2, γ 2 = ). Kein explizites zweistufiges RKV besitzt die Ordnung Konsistenzordnung Technische Universität Bergakademie Freiberg

14 Numerik gewöhnlicher Differentialgleichungen Explizite dreistufige RKV der Ordnung 3 sind durch die vier Gleichungen β + β 2 + β 3 =, β 2 γ β 3 γ 2 3 = 3, β 2 γ 2 + β 3 γ 3 = 2, β 3γ 2 α 3,2 = 6 charakterisiert. (Man kann zeigen, dass keine dieser Methoden die Ordnung 4 besitzt.) Beispiele sind das Verfahren von Heun (β = 4, β 2 = 0, β 3 = 3 4, γ 2 = 3, γ 3 = α 3,2 = 2 3 ) und das Verfahren von Kutta (β = 6, β 2 = 2 3, β 3 = 6, γ 2 = 2, γ 3 =, α 3,2 = 2). 4. Ähnliche (kompliziertere) Rechnungen zeigen, dass es eine zweiparametrige Familie expliziter vierstufiger RKV der Ordnung 4 gibt, von denen keines die Ordnung 5 besitzt. Ein Beispiel ist das klassische Runge-Kutta-Verfahren. Weitere Beispiele sind 4.2 Konsistenzordnung Technische Universität Bergakademie Freiberg

15 Numerik gewöhnlicher Differentialgleichungen /3 / /3 / /8 3/8 3/8 /8 (3/8-Regel) /5 2/ /5 3/20 3/ /44 5/44 40/ /360 25/360 25/360 55/360 (Formel von Kuntzmann). 4.2 Konsistenzordnung Technische Universität Bergakademie Freiberg

16 Numerik gewöhnlicher Differentialgleichungen 58 Die oben beschriebene Methode, die Ordnung eines RKVs zu bestimmen, wird für Verfahren höherer Ordnung schnell unübersichtlich: Die Koeffizienten eines expliziten Verfahrens der Ordnung 3 müssen 4 Gleichungen erfüllen (s.o.), während bei einem Verfahren der Ordnung 8 bereits 200 nicht-lineare Gleichungen überprüft werden müssen. Die sog. Butcher-Theorie (vgl. J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods. John Wiley & Sons, Chichester 987) erleichtert mit Hilfe graphentheoretischer Bäume die Buchhaltung bei den partiellen Ableitungen von f und erlaubt eine elegante Berechnung der Ordnung eines gegebenen RKVs (sie liefert aber keine Methode, ein Verfahren mit gewünschter Ordnung zu konstruieren). Wir beschränken uns hier darauf, notwendige Ordnungsbedingungen abzuleiten, die sich aus den speziellen AWPen y = y + t l, y(0) = 0, (l N) ergeben. 4.2 Konsistenzordnung Technische Universität Bergakademie Freiberg

17 Numerik gewöhnlicher Differentialgleichungen 59 Satz 4. (Notwendige Ordnungsbedingungen für RKV) Das durch die Butcher-Matrix c A b definierte RKV besitze die Ordnung p. Dann gelten b A k C l (l )! e = (l + k)! = l(l + )... (l + k) für l =, 2,..., p und k = 0,,..., p l. Dabei sind b := [β, β 2,..., β m ], A := [α j,ν ] j,ν m, C := diag(γ, γ 2,..., γ m ) und e := [,,..., ] R m. 4.2 Konsistenzordnung Technische Universität Bergakademie Freiberg

18 Numerik gewöhnlicher Differentialgleichungen 60 Spezialfälle der notwendigen Bedingungen aus Satz 4. sind (für k = 0) b C l e = m j= β j γ l j = l für l =, 2,..., p sowie (für l = mit k k + ) b A k e = k! für k =, 2,..., p. Bemerkung. Ein explizites m-stufiges RKV besitzt höchstens die Konsistenzordnung m, denn hier ist A m = O (A ist echte untere Dreiecksmatrix). Für die optimale Ordnung p(m) eines expliziten m-stufigen RKVs gilt sogar p(m) m falls m 5, genauer: m p(m) Konsistenzordnung Technische Universität Bergakademie Freiberg

19 Numerik gewöhnlicher Differentialgleichungen Absolute Stabilität Wir wenden ein m-stufiges RKV auf die Testgleichung y = λy an und erhalten mit ĥ = λh [ ] y n+ = + ĥb (I m ĥa) e y n =: R(ĥ)y n, so dass (bei festem h) lim n y n = 0 (für alle y 0 ) genau dann gilt, wenn R(ĥ) < erfüllt ist. In Analogie zu Abschnitt 3.5 definieren wir den Stabilitätsbereich eines RKVs durch R A := {ĥ C : R(ĥ) < }. Für ein beliebiges m-stufiges RKV gilt R(ĥ) = + ĥb (I m ĥa) e = + ĥ j b T A j e. j= 4.3 Absolute Stabilität Technische Universität Bergakademie Freiberg

20 Numerik gewöhnlicher Differentialgleichungen 62 Besitzt das Verfahren die Ordnung p, so folgt R(ĥ) = p j=0 j!ĥj + j=p+ ĥ j b A j e. Ist das RKV explizit, so folgt m R(ĥ) = + ĥ j b T A j e. j= Insbesondere hängt der Stabilitätsbereich eines m-stufigen expliziten RKVs der Ordnung m ( m 4) wegen R(ĥ) = m j=0 j!ĥj nicht von den Koeffizienten des Verfahrens ab. Außerdem besitzt kein explizites RKV einen unbeschränkten Stabilitätsbereich (denn R ist ein Polynom). 4.3 Absolute Stabilität Technische Universität Bergakademie Freiberg

21 Numerik gewöhnlicher Differentialgleichungen 63 3 Verfahren dritter Ordnung von Heun 3 klassisches Rung Kutta Verfahren Absolute Stabilität Technische Universität Bergakademie Freiberg

22 Numerik gewöhnlicher Differentialgleichungen Eingebettete Runge-Kutta-Verfahren Kein Verfahren zur Lösung von AWPen arbeitet in der Praxis mit einer konstanten Schrittweite. Man wird vielmehr versuchen, die Schrittweite an das Verhalten der Lösung y anzupassen (ändert sich y in einem Bereich schnell, so ist dort eine kleine Schrittweite angebracht; in Bereichen, in denen y kaum variiert, ist eine größere Schrittweite ausreichend). Wir werden hier eine Schrittweitensteuerung vorstellen, die zum Ziel hat, den Konsistenzfehler K n+ := h R n+ (wird in der Literatur oft lokaler Diskretisierungsfehler genannt, vgl. Abschnitt 2.3) zu kontrollieren: K n tol, n =, 2,..., mit einer vorgebenen Toleranz tol. Bei Systemen von DGen (insbesondere dann, wenn die Lösungskomponenten von unterschiedlicher Größenordnung sind) wird man für jede Komponente eine eigene absolute Fehlertoleranz und global eine relative Fehlertoleranz festsetzen. 4.4 Eingebettete Runge-Kutta-Verfahren Technische Universität Bergakademie Freiberg

23 Numerik gewöhnlicher Differentialgleichungen 65 Das folgende Lemma besagt, dass mit dem Konsistenzfehler auch der (eigentlich interessante) globale Diskretisierungsfehler kontrolliert wird. Lemma 4.2 Für den globalen Diskretisierungsfehler e n = y(t n ) y n eines Einschrittverfahrens gilt e n (t n t 0 ) κ n exp(m(t n t 0 )). Dabei ist κ n := max{ K j : j = 0,,..., n} und M die Lipschitzkonstante der Verfahrensfunktion (vgl. (V 2 ) aus Abschnitt 2.2). Um den Konsistenzfehler zu schätzen, verwendet man zwei Methoden unterschiedlicher Konsistenzordnungen (sagen wir p und q mit p < q), um y n aus y n zu berechnen: y n = y n + hφ f (y n, t n ; h) bzw. ŷ n = y n + h Φ f (y n, t n ; h). 4.4 Eingebettete Runge-Kutta-Verfahren Technische Universität Bergakademie Freiberg

24 Numerik gewöhnlicher Differentialgleichungen 66 Für die zugehörigen Konsistenzfehler gelten: Daraus folgt K n = y(t n) y(t n ) h K n = y(t n) y(t n ) h Φ(y n, t n ; h) = O(h p ), Φ(y n, t n ; h) = O(h q ). K n K n = Φ(y n, t n ; h) Φ(y n, t n ; h) = h (ŷ n y n ). Wegen K n K n = K n ( + O(h q p )) K n erhalten wir aus eine (grobe) Schätzung für K n. h y n ŷ n K n 4.4 Eingebettete Runge-Kutta-Verfahren Technische Universität Bergakademie Freiberg

25 Numerik gewöhnlicher Differentialgleichungen 67 Ist h y n ŷ n > tol, so wird die Schrittweite h verworfen und mit ( h h ) p = α h tol y n ŷ n ( ) eine neue Schrittweite h bestimmt (α ist hier ein Sicherheitsfaktor, etwa α = 0.9). Ausgehend von y n werden jetzt neue Näherungen y n und ŷ n (an der Stelle t n + h) berechnet. Diesen Prozess wiederholt man so lange, bis h y n ŷ n tol erfüllt ist. Dann wird ( ) verwendet, um eine neue (größere) Schrittweite für den nächsten Schritt (n n + ) vorzuschlagen. Die Wahl von h nach ( ) motiviert sich folgendermaßen: benutzte Schrittweite h: h y n ŷ n K n = ch p + O(h p+ ) ch p, erwünschte Schrittweite h: tol = K n = c h p + O( h p+ ) c h p. 4.4 Eingebettete Runge-Kutta-Verfahren Technische Universität Bergakademie Freiberg

26 Numerik gewöhnlicher Differentialgleichungen 68 Um den Aufwand in Grenzen zu halten, verwendet man zur Berechnung von y n und ŷ n zwei RKV (verschiedener Ordnungen), deren Butcher-Matrizen sich nur im Vektor b unterscheiden (d.h. A und c sind für beide Verfahren gleich, so dass die Größen k j nur einmal berechnet werden müssen). Man spricht von eingebetteten RKV und schreibt c A b, z.b. b /2 /2. Im Beispiel wird ein RKV der Ordnung (das Euler-Verfahren) in ein RKV der Ordnung 2 (das verbesserte Euler-Verfahren) eingebettet. 4.4 Eingebettete Runge-Kutta-Verfahren Technische Universität Bergakademie Freiberg

27 Numerik gewöhnlicher Differentialgleichungen 69 Ein populäres Beispiel ist die Fehlberg 4(5)-Formel: Hier werden zwei sechsstufige RKV der Ordnungen 4 bzw. 5 kombiniert Eingebettete Runge-Kutta-Verfahren Technische Universität Bergakademie Freiberg

28 Numerik gewöhnlicher Differentialgleichungen Implizite und halb-implizite Verfahren Ist die Matrix A eines m-stufigen RKVs keine echte untere -Matrix (ist das RKV also implizit), so muss in jedem Zeitschritt ein nicht-lineares Gleichungssystem der Form k = f (t n + γ h, h m l= α,lk l ).. k m = f (t n + γ m h, h m l= α m,lk l ). ( ) gelöst werden. Dieses System hat also mn Unbekannte, wenn y = f(t, y) aus n Gleichungen besteht. Mit Hilfe des Banachschen Fixpunktsatzes erkennt man, dass ( ) für genügend kleine h eindeutig lösbar ist. In der Praxis wird man dieses System aber nicht mit der Fixpunktiteration, sondern mit einem Newton- bzw. Quasi-Newton-Verfahren lösen. 4.5 Implizite und halb-implizite Verfahren Technische Universität Bergakademie Freiberg

29 Numerik gewöhnlicher Differentialgleichungen 7 Ist A eine untere (aber keine echte untere) -Matrix, so nennt man das zugehörige RKV halb-implizit. Das System ( ) zerfällt dann in m Systeme mit jeweils n Unbekannten. Implizite RKV werden oft mit Hilfe von Gauß-Quadraturformeln konstruiert. Dies sind Formeln der Bauart b m g(τ)dτ = β j g(γ j ) + R m (g). a j= Hier werden die Gewichte β j und Knoten γ j so gewählt, dass R m (p) = 0 für Polynome p möglichst hohen Grades d erfüllt ist. Man kann zeigen (vgl. Numerik I), dass eine optimale Wahl auf d = 2m führt (man sagt die Quadraturformel hat Exaktheitsgrad 2m). Die zugehörigen RKV (auch sie werden Gauß-Formeln genannt) haben die Ordnung 2m. Beachte, dass kein m-stufiges RKV eine höhere Ordnung besitzen kann. Warum? 4.5 Implizite und halb-implizite Verfahren Technische Universität Bergakademie Freiberg

30 Numerik gewöhnlicher Differentialgleichungen 72 Für m = ergibt sich die implizite Mittelpunktsregel welche die Ordnung 2 besitzt. /2 /2, Für m = 2 und m = 3 ergeben sich die Gauß-Formeln bzw mit den Konsistenzordnungen 4 bzw. 6. Bei Gauß-Radau-Integrationsformeln wählt man einen Knoten als (entweder linken oder rechten) Endpunkt des Integrationsintervalls. 4.5 Implizite und halb-implizite Verfahren Technische Universität Bergakademie Freiberg

31 Numerik gewöhnlicher Differentialgleichungen 73 Die übrigen Knoten und alle Gewichte werden so bestimmt, dass sich ein möglichst hoher Exaktheitsgrad ergibt. Man kann zeigen, dass eine Gauß-Radau-Formel mit m Knoten den Exaktheitsgrad 2m besitzt. Daher haben die zugehörigen impliziten RKV die Konsistenzordnung 2m. Zu dieser Klasse gehören die Verfahren und Schließlich kann man noch beide Enden des Integrationsintervalls als Knoten wählen und die übrigen Daten so bestimmen, dass die zugehörige Integrationsformel den Exaktheitsgrad 2m 2 (bzw. das zugehörige implizite RKV die Konsistenzordnung 2m 2) besitzt. Man spricht von Gauß-Lobatto-Formeln. Ein Beispiel ist die Trapezregel (für m = 2). 4.5 Implizite und halb-implizite Verfahren Technische Universität Bergakademie Freiberg

32 Numerik gewöhnlicher Differentialgleichungen 74 Ein Vorteil von impliziten gegenüber expliziten RKV ist ihr wesentlich größerer Stabilitätsbereich (wird ausführlicher im nächsten Kapitel diskutiert). Wir betrachten die Trapezregel 0 0 /2 /2 /2 /2 d.h. k = f (t n, y n ), k 2 = f (t n+, y n + h(k + k 2 )/2), y n+ = y n + h(k + k 2 )/2, oder kürzer: y n+ = y n + h(f (t n, y n ) + f (t n+, y n+ ))/2. Die zugehörige Stabilitätsfunktion ist R(ĥ) = ( + ĥ/2)/( ĥ/2) und es gilt: R(ĥ) < + ĥ/2 < ĥ/2 Real(ĥ) < 0. Die Trapezregel ist daher A-stabil. (Man nennt ein Verfahren A-stabil, wenn sein Stabilitätsbereich die (offene) linke Halbebene enthält.) 4.5 Implizite und halb-implizite Verfahren Technische Universität Bergakademie Freiberg

33 Numerik gewöhnlicher Differentialgleichungen Kollokationsmethoden Kollokationsmethoden sind spezielle implizite RKV, die auf Grund ihrer Konstruktion sehr viel leichter zu analysieren sind als allgemeine RKV. Mit gegebenen 0 γ < γ 2 < < γ m setzen wir t (j) := t n + γ j h (j =, 2,..., m) und suchen ein Polynom p vom Grad m (bei Systemen von k DGen ist das ein Vektor p = [p, p 2,..., p k ] aus k Polynomen vom Grad höchstens m), das die Interpolationsbedingungen p(t n ) = y n, p (t (j) ) = f (t (j), p(t (j) )) (j =, 2,..., m) erfüllt. Die Näherung y n+ an der Stelle t n+ wird dann definiert durch y n+ := p(t n+ ). 4.6 Kollokationsmethoden Technische Universität Bergakademie Freiberg

34 Numerik gewöhnlicher Differentialgleichungen 76 p ist ein Polynom vom Grad m, das durch die letzten m dieser Interpolationsbedingungen eindeutig bestimmt ist. In Lagrange-Form besitzt es die Darstellung p (t n + τh) = m j= l j(t n + τh)k j mit l j (t n + τh) = m j i= Jetzt folgt für jedes i {, 2,..., m} Analog: τ γ i γ j γ i und k j := p (t (j) ). p(t (i) ) p(t n ) = t (i) t n p (t n + sh) ds = t (i) m t n j= l j(t n + sh)k j ds = h m ( γi j= 0 l j(r) dr ) k j =: h m j= α i,jk j. p(t n+ ) p(t n ) = h ( m ) j= 0 l j(r) dr k j =: h m j= β jk j. 4.6 Kollokationsmethoden Technische Universität Bergakademie Freiberg

35 Numerik gewöhnlicher Differentialgleichungen 77 Daraus folgt y n+ = p(t n+ ) = p(t n ) + h m j= β jk j = y n + h m j= β jk j mit k j = p (t (j) ) = f (t (j), p(t (j) )) = f (t n + γ j h, y n + m l= α j,lk l ). Mit anderen Worten: Jedes Kollokationsverfahren ist ein (implizites) RKV. Implementiert wird es in der Form (RKV) bzw. (RKV ), d.h. zu gegebenen γ j (j =, 2,..., m) bestimmt man zunächst (i, j =, 2..., m). α i,j = γ i 0 l j(r) dr und β j = 0 l j(r) dr Nicht jedes implizite RKV ist ein Kollokationsverfahren. Beispiel /3 /3 /3 /4 3/4 repräsentiert kein Kollokationsverfahren. 4.6 Kollokationsmethoden Technische Universität Bergakademie Freiberg

36 Numerik gewöhnlicher Differentialgleichungen 78 Satz 4.3 (Konsistenzordnung bei Kollokationsverfahren) Für ein m-stufiges Kollokationsverfahren mit der Butcher-Matrix c A b sind die folgenden drei Aussagen äquivalent: Das Verfahren besitzt die Konsistenzordnung m + p. 0 τ j m j= (τ γ j) dτ = 0 für j = 0,,..., p. b C l e = /l für l =, 2,..., m + p. Dabei sind C := diag(γ, γ 2,..., γ m ) und e := [,,..., ] R m. 4.6 Kollokationsmethoden Technische Universität Bergakademie Freiberg

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden für die nachfolgenden Untersuchungen wesentliche Grundlagen bereitgestellt. 2.1 Differentiell-algebraische Gleichungssysteme 2.1.1 Einführung

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Definition und Eigenschaften Finiter Elemente

Definition und Eigenschaften Finiter Elemente Definition und Eigenschaften Finiter Elemente 1 Das letzte Mal Im letzten Vortrag haben wir zum Schluss das Lemma von Lax Milgram präsentiert bekommen, dass ich hier nocheinmal in Erinnerung rufen möchte:

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Geoadditive Regression

Geoadditive Regression Seminar: Stochastische Geometrie und ihre Anwendungen - Zufallsfelder Universität Ulm 27.01.2009 Inhalt Einleitung 1 Einleitung 2 3 Penalisierung 4 Idee Variogramm und Kovarianz Gewöhnliches Ansatz für

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Übungsaufgaben mit Lösungsvorschlägen

Übungsaufgaben mit Lösungsvorschlägen Otto-Friedrich-Universität Bamberg Lehrstuhl für Medieninformatik Prof. Dr. Andreas Henrich Dipl. Wirtsch.Inf. Daniel Blank Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik . Einführung Die numerische Mathematik, kur Numerik genannt, beschäftigt sich als Teilgebiet der Mathematik mit der Konstruktion und Analyse von Algorithmen für technisch-naturwissenschaftliche Probleme..

Mehr

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen ERCOFTAC-Technologietag, Stuttgart 2005 p. 1 Ein für aeroakustische Simulationen bei kleinen Machzahlen Achim Gordner und Prof. Gabriel Wittum Technische Simulation Universiät Heidelberg ERCOFTAC-Technologietag,

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen. Vorlesung an der TU München Wintersemester 2012/13

Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen. Vorlesung an der TU München Wintersemester 2012/13 Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen Vorlesung an der TU München Wintersemester 2012/13 PD Dr. Ewald Müller Max-Planck-Institut für Astrophysik Karl-Schwarzschild-Straße

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Stabilisierung durch lokale Projektion für inkompressible Strömungsprobleme

Stabilisierung durch lokale Projektion für inkompressible Strömungsprobleme Stabilisierung durch lokale Projektion für inkompressible Strömungsprobleme Diplomarbeit vorgelegt von Johannes Löwe aus Göttingen angefertigt im Institut für Numerische und Angewandte Mathematik der Georg-August-Universität

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Semidiskretisierung der PDA-Systeme

Semidiskretisierung der PDA-Systeme Kapitel 4 Semidisretisierung der PDA-Systeme Eine Möglicheit zur numerischen Behandlung von Anfangsrandwertproblemen partieller Differentialgleichungen ist die Linienmethode method of lines, MOL, vgl.

Mehr

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract:

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract: Spezifikation der zulässigen Parameter Bemerkungen: Bei jeder (partiellen) Funktion muss man sich überlegen und dokumentieren, welche aktuellen Parameter bei einer Anwendung zulässig sein sollen. Der Anwender

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Effizientes Lösen von Anfangswertproblemen gewöhnlicher Differentialgleichungssysteme mithilfe von Autotuning-Techniken

Effizientes Lösen von Anfangswertproblemen gewöhnlicher Differentialgleichungssysteme mithilfe von Autotuning-Techniken Effizientes Lösen von Anfangswertproblemen gewöhnlicher Differentialgleichungssysteme mithilfe von Autotuning-Techniken Von der Universität Bayreuth zur Erlangung des Grades eines Doktors der Naturwissenschaften

Mehr

9 Weitreichende Wechselwirkungen zwischen zwei Molekülen

9 Weitreichende Wechselwirkungen zwischen zwei Molekülen 9 Weitreichende Wechselwirkungen zwischen zwei Molekülen 9.1 Elektrostatische Wechselwirkungen als Beiträge erster Ordnung Die elektrostatische Wechselwirkung zwischen zwei Molekülen A und B kann durch

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

\"UBER DIE BIVEKTOR\"UBERTRAGUNG

\UBER DIE BIVEKTOR\UBERTRAGUNG TitleÜBER DIE BIVEKTORÜBERTRAGUNG Author(s) Hokari Shisanji Journal of the Faculty of Science Citation University Ser 1 Mathematics = 北 要 02(1-2): 103-117 Issue Date 1934 DOI Doc URLhttp://hdlhandlenet/2115/55900

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

7. Numerik mit MATLAB

7. Numerik mit MATLAB Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

In Kapitel 1 haben wir folgende Formel zur risiko-neutralen Bewertung von Optionen eingeführt:

In Kapitel 1 haben wir folgende Formel zur risiko-neutralen Bewertung von Optionen eingeführt: Seydel: Skript Numerische Finanzmathematik, Kap. 3 (Version 211) 47 ºÅÓÒØ ¹ ÖÐÓ¹Å Ø Ó Ò In Kapitel 1 haben wir folgende Formel zur risiko-neutralen Bewertung von Optionen eingeführt: V (S, ) = e rt E Q

Mehr

Modellierung und Simulation eines Biogasreaktors. Dissertation. zur Erlangung des Doktorgrades. der Naturwissenschaften. vorgelegt beim Fachbereich 12

Modellierung und Simulation eines Biogasreaktors. Dissertation. zur Erlangung des Doktorgrades. der Naturwissenschaften. vorgelegt beim Fachbereich 12 Modellierung und Simulation eines Biogasreaktors Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich 12 der Johann Wolfgang Goethe-Universität in Frankfurt am

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr