Mathematik für das Lehramt an Gymnasien. F. Wille, Analysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik für das Lehramt an Gymnasien. F. Wille, Analysis"

Transkript

1 Mathematik für das Lehramt an Gymnasien F. Wille, Analysis

2 Mathematik für das Lehramt an Gymnasien Herausgegeben von Prof. Dr. W. Degen, Stuttgart, Prof. Dr. K. Kirchgässner, Stuttgart, Oberstudienrat M. Toussaint, Karlsruhe, Prof. Dr. E. Walter, Freiburg Die Reihe Mathematik für das Lehramt an Gymnasien behandelt die für den Unterricht in der Sekundarstufe II bedeutsamen Gebiete der Mathematik. Die einheitlich konzipierten Bände vermitteln dem Lehramtskandidaten klassischen und neueren Universitätsstoff in einer auf den Schulunterricht bezogenen konkretisierten Form. Dem in der Praxis stehenden Lehrer dienen die Darstellungen dieser Reihe zur Vertiefung und Erweiterung seines theoretischen Wissens und bieten ihm den wissenschaftlichen Hintergrund für eine eigene Gestaltung des Unterrichts.

3 Analysis Eine anwendungsbezogene Einführung Von Dr. rer. nato Friedrich Wille Professor an der Gesamthochschule Kassel Mit 80 Figuren, 88 Beispielen und 83 übungen B. G. Teubner Stuttgart

4 Prof. Dr. rer. nato Friedrich Wille Geboren 1935 in Bremen. Studium der Mathematik und Physik in Marburg, an der Freien Universität Berlin und in Göttingen Diplom, Industriepraxis. Von 1963 bis 1968 wiss. Mitarbeiter der Aerodynamischen Versuchsanstalt (A VA) Göttingen Promotion, Leiter des Rechenzentrums Göttingen, ab 1966 stellv. Abteilungsleiter. Von 1968 bis 1971 wiss. Assistent an den Universitäten Freiburg und Düsseldorf sowie freier wiss. Mitarbeiter der Deutschen Forschungs- und Versuchsanstalt für Luft- und Raumfahrt (DFVLR) Gast am Battelle-Institut in Genf Habilitation, 1972 Wiss. Rat und Professor in Düsseldorf Professor für Angewandte Mathematik an der Gesamthochschule Kassel. QP-Kurztitelaufnahme der Deutschen Bibliothek Wille, Friedrich Analysis: e. anwendungsbezogene Einf Aufl. - Stuttgart : Teubner, (Mathematik für das Lehramt an Gymnasien) ISBN ISBN (ebook) DOI / Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, besonders die der Übersetzung, des Nachdrucks, der Bildentnahme, der Funksendung, der Wiedergabe auf photomechanischem oder ähnlichem Wege, der Speicherung und Auswertung in Datenverarbeitungsanlagen, bleiben, auch bei Verwertung von Teilen des Werkes, dem Verlag vorbehalten. Bei gewerblichen Zwecken dienender Vervielfältigung ist an den Verlag gemäß 54 UrhG eine Vergütung zu zahlen, deren Höhe mit dem Verlag zu vereinbaren ist. B. G. Teubner, Stuttgart 1976 Softcover reprint of the hardcover 1st edition 1976 Binderei: G. Gebhardt, Ansbach Umschlaggestaltung: W. Koch, Sindelfingen

5 Meinen Eltern

6 Vorwort Der Studierende des Faches Mathematik steht häufig vor dem Problem: Wozu sind die mathematischen Begriffe, Sätze und Denkweisen gut, die in großer Vielzahl auf ihn einstürmen? Wozu werden die Ergebnisse gebraucht, flir welche weiteren überlegungen sind sie wiederum Grundlage und Ausgangspunkt? Die vorliegende Einführung in die Analysis hat zum Ziel, dem Leser bei diesen Fragestellungen zu helfen, ihm Beweggründe flir die wichtigsten Grundbegriffe, Ansätze und Ziele der Differential- und Integralrechnung zu vermitteln. Als Schlüsselproblem erweist sich dabei die Frage nach den Lösungen von Gleichungen und Gleichungssystemen. Hiervon ausgehend werden Abbildungsbegriff, Konvergenzbegriff (Iteration), Stetigkeit (Lösungsexistenz ), Differenzierbarkeit (Newton-Verfahren) und vieles mehr erschlossen. Andere Inhalte wurzeln auf natürliche Weise in geometrischen Fragestellungen, wie die Integralrechnung (Flächeninhaltsberechnung) und die trigonometrischen Funktionen (Entfernungsbestimmung). Der Leser erhält damit eine Richtschnur in die Hand, mit der sich die Differential- und Integralrechnung überschaubar gliedert. Bei der Stoffauswahl wurden Inhalte bevorzugt, die einerseits breiten Anwendungsbezug haben, andererseits vorbereitend zu Begriffsbildungen der höheren Analysis hinführen, insbesondere zur Funktionalanalysis, wie z. B. der Banachsche Fixpunktsatz, der Borsuksche Antipodensatz, der Brouwersche Fixpunktsatz, das Newton-Verfahren für mehrere Veränderliche und anderes mehr. Die numerischen Verfahren, die in diesem Buch behandelt werden, lassen sich bequem auf Kleinrechnern durchführen, wie sie heute in der Schule vielfach verwendet werden. Schließlich sei erwähnt, daß bei der Einführung der Konvergenz wie auch der Stetigkeit ein neuer Weg beschritten wird. Und zwar wird bei der Konvergenz mit monotonen Folgen begonnen, die erfahrungsgemäß für Schüler und Studienanfänger leichter faßlich sind als beliebige Folgen. Bei der Stetigkeit wird von der Upschitz-Stetigkeit ausgegangen, die dann in naheliegender Weise zur Stetigkeit verallgemeinert wird. An Vor k e n n t n iss e n wird nur wenig vorausgesetzt: etwas schulische Geometrie, das Rechnen mit reellen Zahlen und einige einfache Symbole der Mengenschreibweise (vgl. Symbolverzeichnis). Eine systematische Einführung der reellen Zahlen ist im Anhang untergebracht, da es zweckmäßig erscheint, nicht mit der ermüdenden Erläuterung der Gesetze reeller Zahlen zu beginnen, sondern sie dann nachzuschlagen, wann man sie braucht, z. B. bei der Anwendung des archimedischen Satzes, des Intervallschachtelungsprinzips oder der vollständigen Induktion. Die Existenz von Wurzeln wird ~ ebenfalls im Anhang behandelt. Das Arbeiten mit diesen Wurzeln wird daher im übrigen Text als bekannt vorausgesetzt. Die vorliegende Einführung kann einerseits als Lehrbuch für Studenten in der Analysisvorlesung verwendet werden; andererseits wird durch Inhalte, die neueren Entwicklungen Rechnung tragen, besonders der Lehrerfortbildungsbereich angesprochen. Schulische Belange sind durch eine Reihe unterrichtsnaher Anwendungen und Beispiele berucksich-

7 Vorwort 7 tigt. Einige neue Darstellungen, wie z. B. die elementaren Beweise zum Borsukschen Antipodensatz und zum Brouwerschen Fixpunktsatz, mögen darüber hinaus bei Mathematikern allgemein Interesse finden. Zum Schluß möchte ich mich besonders bei Herrn Professor Dr. K. Kir c h g ä s s n e r bedanken. Von ihm stammen Anregung und Grundidee zu diesem Buch sowie viele wertvolle Hinweise. Ferner bin ich Herrn Doz. Dr. P. W i I den aue r zu Dank verpflichtet für sein sorgfältiges Korrekturlesen und die damit verbundenen Verbesserungsvorschläge. Herrn E. Raa bedanke ich für die Herstellung einiger Computerbilder und Frau u. Wal t her flir die sorgfältige Erstellung des Schreibmaschinenmanuskriptes. Besonders danken aber möchte ich meiner Frau, der Hüterin meiner Arbeitsruhe. Schließlich gilt mein Dank dem Verlag B. G. Teubner, der geduldig und bereitwillig auf alle Wünsche und Vorschläge einging. Kassel, im Sommer 1976 F. Wille

8 Logische Abhängigkeit der einzelnen Abschnitte voneinander I Gleichungen, Abbildungen 2.1 Kontraktionen Folgen H23 Banachseher FixpunktSAtz 3.1 Stetigkeit Kompaktheit Borsukscher Antipodensatz I l4.6 Anwendungs- I beispiele I l 5.4 Numerische Integration L I Geometrische L Anwendungen I Differentialrechnung einer reellen 4.3 J 4.4 Veränderlichen ) 5.2 Integralbegriff 5.3 Analytische Integration Anwendungen in L der Mechanik I H Differentialrechnung mehrerer reeller Veränderlicher 6.3 Nichtlineare Gleichungssysteme L i n e Gleichungssysteme, ~ r e ~ Matnzen

9 Inhalt 1 Gleichungssysteme - Abbildungen 1.1 Der n-dimensionale Raum Rn Gleichungssysteme und Punkte des Rn Arithmetik im Rn Das innere Produkt Normen Abbildungen Graphische Näherungslösungim R Abbildungen und Funktionen Zusammenhang mit Gleichungen Kontraktive Abbildungen - Konvergenz 2.1 Lipschitz-Stetigkeit, Kontraktionen Beispiel zur Iteration Lipschitz-Stetigkeit Kontraktionssatz für eine reelle Veränderliche 2.2 Konvergente Folgen Unendliche Folgen Monoton fallende Nullfolgen Konvergenz von Folgen Beschränkte Folgen und Mengen Konvergenzkriterien Konvergenzgeschwindigkeit und -beschleunigung Steffensen-Verfahren, Konvergenzordnung Der Banachsche Fixpunktsatz Topologische Begriffe Der Banachsche Fixpunktsatz im Rn Der Banachsche Fixpunktsatz in vollständigen metrischen Räumen Lösungsexistenz - Stetigkeit 3.1 Stetige Abbildungen - Zwischenwertsatz Stetigkeit Grenzwerte bei Abbildungen Zusammengesetzte stetige Abbildungen Zwischenwertsatz, Intervallteilungsverfahren Regula falsi Stetigkeit und Kompaktheit - Satz vom Maximum Satz vom Maximum Normäquivalenz im Rn

10 10 Inhalt Gleichmäßige Stetigkeit Homöomorphismen. 3.3 Der Borsuksche Antipodensatz Konvexe Mengen Der Borsuksche Antipodensatz im Rn Beweis des Borsukschen Satzes im R Beweis des Borsukschen Satzes im Rn, n;;" Verallgemeinerungen des Borsukschen Satzes Brouwerscher Fixpunktsatz und Satz von Borsuk-Ulam 4 Linearisierung von Funktionen - Differentialrechnung einer reellen Veränderlichen 4.1 Ausgangspunkt Tangentenproblem Ableitung von Polynomen Idee des Newton-Verfahrens 4.2 Grundlagen der Differentialrechnung Differenzierbare Funktionen Differentiationsregeln Mittelwertsatz Taylorsche Formel Konvergenz des Newton-Verfahrens Auswertung von Polynomen, Horner-Schema 4.3 Unendliche Reihen Konvergenz unendlicher Reihen Taylor-Reihen Konvergenzkriterien Absolut konvergente Reihen Gleichmäßige Konvergenz Stetigkeit und Differenzierbarkeit von Grenzabbildungen Potenzreihen Exponentialfunktion, Logarithmus, Hyperbelfunktionen Problemstellung: Funktionen mit der Eigenschaft f = f' Eigenschaften der Exponentialfunktion Logarithmus und a X Hyperbel- und Area-Funktionen 4.5 Trigonometrische Funktionen Entfernungsbestimmung Bogenlänge beim Kreis Sinus und Cosinus Tangens und Cotangens Arcus-Funktionen

11 Inhalt II 4.6 Anwendungsbeispiele Bewegung von Massenpunkten Fehlerabschätzung Zur geometrischen Reihe: Sparkonten und Renten Zur binomischen Reihe: physikalische Näherungsformeln Zur Exponentialfunktion: Anwachsen und Abklingen Trigonometrische Funktionen Newton-Verfahren Eindimensionale Extremalprobleme Flächen- und Rauminhalte - Integralrechnung 5.1 Grundgedanken der Integralrechnung Flächen von Funktionen Berechnung von Integralen durch Stammfunktionen 5.2 Integrale Treppenfunktionen Integrale von Regelfunktionen Grundlegende Sätze über Integrale Riemannsche Summen Analytische Integration Hauptsatz der Differential- und Integralrechnung Grundintegrale Substitutionsmethode Fourier-Reihen Produktintegration Integration rationaler Funktionen Integration weiterer Funktionenklassen Uneigentliche Integrale Numerische Integration Problemstellung Interpolationsformel von Lagrange und Restgliedabschätzung Integrationsformeln von Newton-Cotes Trapez- und Simpson-Formel Romberg-Integration Geometrische Anwendungen Flächeninhalte im R Rauminhalte im Rn, mehrfache Integrale Kurvenlängen Rotationskörper Anwendungen in der Mechanik Vorgänge im Schwerefeld Elastische Kräfte, Schwingungen 259

12 12 Inhalt 6 Behandlung von Gleichungssystemen - Differentialrechnung mehrerer reeller Veränderlicher 6.1 lineare Gleichungssysteme und Matrizen Gaußscher Algorithmus Matrizenrechnung lineare Abbildungen Reguläre Matrizen Normen von Matrizen 6.2 Differentialrechnung mehrerer reeller Veränderlicher Differenzierbarkeit Ableitungsmatrix Differenzierbarkeitskriterium Regeln für differenzierbare Abbildungen Höhere partielle Ableitungen Taylor-Formel Extremalprobleme 6.3 Nichtlineare Gleichungssysteme Newton-Verfahren im Rn Konvergenz des Newton-Verfahrens im Rn Implizite Funktionen, Inversensatz Extrema mit Nebenbedingungen Anhang: Reelle Zahlen AI Das Axiomensystem der reellen Zahlen A2 Abgeleitete Regeln.... A3 Natürliche Zahlen.... A4 Ganze, rationale und irrationale Zahlen A5 Archimedische Eigenschaft und Intervallschachtelungsprinzip A6 Dezimalzahlen. A7 note Wurzel aus a Lösungen zu den übungen 1 ) Literatur Symbole Sachverzeichnis ) Zu den mit * versehenen Übungen werden Lösungen angegeben oder Lösungswege skizziert.

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen Inhaltsverzeichnis 1 Grundlagen 1 1.1 Reelle Zahlen..................................... 1 1.1.1 Die Zahlengerade................................. 1 1.1.2 Rechnen mit reellen Zahlen...........................

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Leitfäden und Monographien der Informatik. K. Kiyek/F. Schwarz Mathematik für Informatiker 1

Leitfäden und Monographien der Informatik. K. Kiyek/F. Schwarz Mathematik für Informatiker 1 Leitfäden und Monographien der Informatik K. Kiyek/F. Schwarz Mathematik für Informatiker 1 Leitfäden und Monographien der Informatik Herausgegeben von Prof. Dr. Hans-Jürgen Appelrath, Oldenburg Prof.

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Mathematik für. Bauingenieure

Mathematik für. Bauingenieure Mathematik für Bauingenieure Von Prof. Dr. rer. nato W olfhart Haacke Universität-Gesamthochschule Paderborn Prof. Dr.-Ing. Manfred Hirle Fachhochschule Stuttgart Prof. Dr.-Ing. Otto Maas Universität Essen-Gesamthochschule

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage

Mehr

Analysis für Ingenieure

Analysis für Ingenieure Analysis für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VMVERLX3 Inhaltsverzeichnis GRUNDLAGEN 1 Mengen 13 2 Zahlen 14 3 Übungen

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Ifi. Lehrgang der höheren Mathematik. Teill. von W. I. Smirnow. Mit 190 Abbildungen. Elfte, berichtigte Auflage

Ifi. Lehrgang der höheren Mathematik. Teill. von W. I. Smirnow. Mit 190 Abbildungen. Elfte, berichtigte Auflage Lehrgang der höheren Mathematik Teill von W. I. Smirnow Mitglied der Akademie der Wissenschaften der UdSSR Mit 190 Abbildungen Elfte, berichtigte Auflage Ifi H VEB Deutscher Verlag der Wissenschaften Berlin

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie mit ausführlichen Erläuterungen und zahlreichen Beispielen Bearbeitet von Prof. Dr. Guido Walz 1. Auflage 2010. Taschenbuch. xi, 580 S.

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr..

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr.. Differentialund Integralrechnung Von G. M. Fichtenholz Mit 168 Abbildungen Dreizehnte Auflage /' M^ntrKkiVr.. s^os«^

Mehr

W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002

W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 W. Oevel Mathematik II für Informatiker Veranstaltungsnr: 172010 Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 Inhalt 1 Komplexe Zahlen 1 1.1 Definitionen..............................

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Bachelormodule Zweitfach Mathematik a) Überblick

Bachelormodule Zweitfach Mathematik a) Überblick Bachelormodule Zweitfach Mathematik a) Überblick 1 Mathematik 2 2 Module im Pflichtbereich 1 3 Modul NAT-5541 4 Modul NAT-5542 Mathematik: Elemente der Analysis I (EdA I) (Zweitfach) (Elements of analysis

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik für das Bachelorstudium I

Mathematik für das Bachelorstudium I Matthias Plaue / Mike Scherfner Mathematik für das Bachelorstudium I Grundlagen, lineare Algebra und Analysis Spektrum k-/± AKADEMISCHER VERLAG Inhaltsverzeichnis I Grundlagen 1 1 Elementare Logik und

Mehr

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische G rundlagen... 2 1.2 Grundlagen der M engenlehre... 8 1.3 Abbildungen... 15 1.4 Die natürlichen Zahlen und die vollständige Induktion... 16 1.5 Ganze, rationale

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Definition 1 1.2 Mengenoperationen 2 1.3 Potenzmenge 3 1.4 Mengensysteme 3 1.5 Mengengesetze 4 1.6 Geordnetes Paar 4 1.7 Relation 5 1.8 Äquivalenzrelation 5 2 Inferenzregeln

Mehr

Mathematik 2 für Nichtmathematiker

Mathematik 2 für Nichtmathematiker Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Klaus Hefft Mathematischer Vorkurs zum Studium der Physik Das Begleitbuch zum Heidelberger Online-Kurs ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum k_/l AKADEMISCHER VERLAG Inhaltsverzeichnis Vorwort

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen Band 2 Mehrschrittverfahren Von Dr. phil. nat. Rolf Dieter Grigorieff o. Professor an der Technischen Universität Berlin unter Mitwirkung von Dr. phil. nat.

Mehr

Mathematik für Informatik und Biolnformatik

Mathematik für Informatik und Biolnformatik M.P.H. Wolff P. Hauck W. Küchlin Mathematik für Informatik und Biolnformatik Springer Inhaltsverzeichnis 1. Einleitung und Überblick... 1 1.1 Ziele und Entstehung des Buchs... 1 1.2 Wozu dient die Mathematik

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik zum Studieneinstieg

Mathematik zum Studieneinstieg Gabriele Adams Hermann-Josef Kruse Diethelm Sippel Udo Pfeiffer Mathematik zum Studieneinstieg Grundwissen der Analysis für Wirtschaftswissenschaftler, Ingenieure, Naturwissenschaftler und Informatiker

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

Arbeitsbuch Mathematik. für Ingenieure

Arbeitsbuch Mathematik. für Ingenieure v. Finckenstein / lehn / Schellhaas /Wegmann Arbeitsbuch Mathematik. für Ingenieure Band I Analysis Von Prof. Dr. rer. nat. Helmut Schellhaas Technische Universität Darmstadt Et; B. G. Teubner Stuttgart

Mehr

Kernkompetenz Mathematik (Teil Analysis)

Kernkompetenz Mathematik (Teil Analysis) Beschreibung der Kernkompetenzen in Mathematik (Teil Analysis) Themen Mindestkompetenzen 1. Grundlagen 1.1 Aussagen und Aussageformen 1.2 Vollständige Induktion 1.3 Reelle Funktionen und Graphen 1.4 Bijektivität

Mehr

Bachelormodule Zweitfach Mathematik a) Überblick

Bachelormodule Zweitfach Mathematik a) Überblick Bachelormodule Zweitfach Mathematik a) Überblick 1 Mathematik 2 2 Module im Pflichtbereich 1 3 Modul RUW 4000 4 Modul NAT 5541 5 Modul NAT 5542 Mathematik: Elemente der Analysis (Zweitfach) (gültig bis

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

0 Einleitung I. 1 Elementarmathematik 1

0 Einleitung I. 1 Elementarmathematik 1 Inhaltsverzeichnis 0 Einleitung I i Das Team ist der Primus............................... II ii Eingangstest...................................... III iii Wolfis Welt.......................................

Mehr

Inhaltsverzeichnis. 1. Anwendungen der Analysis... 1

Inhaltsverzeichnis. 1. Anwendungen der Analysis... 1 Inhaltsverzeichnis 1. Anwendungen der Analysis................ 1 1.1 Folgen und Reihen................................. 2 1.2 Funktionen... 9 1.3 Grenzwerte von Funktionen und Stetigkeit............ 18

Mehr

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München IngolfTerveer Mathematik- Formeln Wirtschaftswissenschaften UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Inhalt 1 Grundlegende Begriffe 11 1.1 Zahlbereiche 11 1.1.1 Reelle Zahlen 11 1.1.2

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK H. v. MANGOLDT'S EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM SEIT DER SECHSTEN AUFLAGE NEU HERAUSGEGEBEN UND ERWEITERT VON KONRAD KNOPP E. 0. PROFESSOR DER MATHEMATIK AN DER

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure Mathematik für Ingenieure Grundlagen - Anwendungen in Maple Bearbeitet von Ziya Sanal 3., vollständig überarbeitete und erweiterte Auflage 2015. Buch mit CD-ROM. XII, 816 S. Kartoniert ISBN 978 3 658 10641

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Brückenkurs Mathematik für Wirtschaftswissenschaftler

Brückenkurs Mathematik für Wirtschaftswissenschaftler VlEWEG+ TIUBNER Walter Purkert Brückenkurs Mathematik für Wirtschaftswissenschaftler Z, aktualisierte Auflage STUDIUM Inhaltsverzeichnis 1 Das Rechnen mit reellen Zahlen 1.1 Grundregeln des Rechnens....

Mehr

VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG

VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG VON R. COURANT ERSTER BAND FUNKTIONEN EINER VERÄNDERLICHEN DRITTE, VERBESSERTE AUFLAGE MIT 126 TEXTFIGUREN SPRINGER-VERLAG BERLIN GÖTTINGEN HEIDELBERG

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Klassische elementare Analysis

Klassische elementare Analysis i Max Koecher Klassische elementare Analysis 1987 Birkhäuser Verlag Basel Boston Inhaltsverzeichnis Kapitel I Der goldene Schnitt Einleitung 11 1 Elementare Eigenschaften 11 1. Definition - 2. Konstruktion

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK EINFÜHRUNG IN DIE HÖHERE MATHEMATIK MIT BESONDERER BERÜCKSICHTIGUNG IHRER ANWENDUNGEN AUF GEOMETRIE, PHYSIK, NATURWISSENSCHAFTEN UND TECHNIK VON DR.PHIL.KARL STRUBECKER ORD. PROFESSOR AN DER TECHNISCHEN

Mehr

Matthias Moßburger. Analysis in Dimension 1

Matthias Moßburger. Analysis in Dimension 1 Matthias Moßburger Analysis in Dimension 1 Matthias Moßburger Analysis in Dimension1 Eine ausführliche Erklärung grundlegender Zusammenhänge STUDIUM Bibliografische Information der Deutschen Nationalbibliothek

Mehr

Lehramt an Haupt- und Realschulen L2 und Förderschulen L5. Mathematik

Lehramt an Haupt- und Realschulen L2 und Förderschulen L5. Mathematik Lehramt an Haupt- und Realschulen L2 und Förderschulen L5 Mathematik Mathematik L2 / L5 Modul 1 bis 3: Mathematik Fachwissenschaft Modul 4 bis 6: Didaktik der Mathematik Schulpraktikum Modul 1 bis 3 Wissenschaftliche

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Hochschule/Fachbereich/Institut: Freie Universität Berlin/Fachbereich Mathematik und Informatik/Institut für Mathematik

Hochschule/Fachbereich/Institut: Freie Universität Berlin/Fachbereich Mathematik und Informatik/Institut für Mathematik 3g Mathematik Modul: Analysis I Qualifikationsziele: Die Studentinnen und Studenten kennen die Grundlagen des mathematischen (logischen, abstrakten, analytischen und vernetzten) Denkens, sie sind mit grundlegenden

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsæter Peter Hammond mit Arne Strøm Übersetzt und fachlektoriert durch Dr. Fred Böker

Mehr

Numerische Mathematik

Numerische Mathematik ».- Numerische Mathematik Von Dr. sc. math. Hans Rudolf Schwarz o. Professor an der Universität Zürich Mit einem Beitrag von Dr. sc. math. Jörg Waldvogel Titularprofessor an der Eidg. Technischen Hochschule

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Walter Purkert 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Brückenkurs Mathematik für Wirtschaftswissenschaftler.

Mehr

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben shermann K. stein Einf ührungskurs Höhere Mathematik Grundlagen Beispiele Aufgaben Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Elemente der Mathematik für Pharmazeuten

Elemente der Mathematik für Pharmazeuten Hans-Heinrich Körle Richard Hirsch Elemente der Mathematik für Pharmazeuten Womit ein Pharmazeut rechnen muß Mit 54 Bildern und 101 Übungsaufgaben mit ausführlichen Lösungen vieweg IX Inhaltsverzeichnis

Mehr

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen

Mehr

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11 IX 1 Mathematische Zeichen und Symbole 1 2 Logik 9 3 Arithmetik 11 3.1 Mengen 11 3.1.1 Allgemeines 11 3.1.2 Mengenrelationen 12 3.1.3 Mengenoperationen 12 3.1.4 Beziehungen, Gesetze, Rechenregeln 14 3.1.5

Mehr

Meyers Handbuch über die Mathematik

Meyers Handbuch über die Mathematik Meyers Handbuch über die Mathematik Herausgegeben von Herbert Meschkowski in Zusammenarbeit mit Detlef Laugwitz 2. erweiterte Auflage BIBLIOGRAPHISCHES INSTITUT MANNHEIM/WIEN/ZÜRICH LEXIKONVEK.1AG INHALT

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

BWL-Crash-Kurs Mathematik

BWL-Crash-Kurs Mathematik Ingolf Terveer BWL-Crash-Kurs Mathematik UVK Verlagsgesellschaft mbh Vorwort 9 1 Aufgaben der Linearen Wirtschaftsalgebra 13 Aufgaben 17 2 Lineare Gleichungssysteme 19 2.1 Lineare Gleichungssysteme in

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK H.v.MANGOLDTS EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM SEIT DER SECHSTEN AUFLAGE NEU HERAUSGEGEBEN UND ERWEITERT VON KONRAD KNOPP E. O. PROFESSOR DER MATHEMATIK AN DER

Mehr

Anton Deitmar. Analysis. 2., durchgesehene Auflage

Anton Deitmar. Analysis. 2., durchgesehene Auflage Springer-Lehrbuch Anton Deitmar Analysis 2., durchgesehene Auflage Anton Deitmar Mathematisches Institut Universität Tübingen Tübingen, Deutschland ISSN 0937-7433 Springer-Lehrbuch ISBN 978-3-662-53351-2

Mehr

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung * S.L. Salas/Einar Hille Calculus Einführung in die Differential- und Integralrechnung Aus dem Amerikanischen von Michael Basler, Thomas Lange und Karl-Heinz Lotze Mit 670 Abbildungen Spektrum Akademischer

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Heinrich Holland / Doris Holland Mathematik im Betrieb

Heinrich Holland / Doris Holland Mathematik im Betrieb Heinrich Holland / Doris Holland Mathematik im Betrieb HOLLAND/ HOLLAND MATHEMATIK IMBETRIEB PRAXISBEZOGENE EINFOHRUNG MIT BEISPIELEN GRUNDLAGEN. FUNKTIONEN. DIFFERENTIAL RECHNUNG INTEGRALRECHNUNG MATRIZEN

Mehr

HollandIHolland. Mathematik im Betrieb

HollandIHolland. Mathematik im Betrieb HollandIHolland. Mathematik im Betrieb HEINRICH HOLLAND/ DORIS HOLLAND Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 5. r überarbeitete Auflage LEHRBUCH Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Einführungskurs Höhere Mathematik I

Einführungskurs Höhere Mathematik I S. K. Stein Einführungskurs Höhere Mathematik I Funktionen Grenzwerte' Ableitungen Grundlagen des Studiums Mathematik für Ingenieure und Naturwissenschaftler Band 1 von L. Papula Mathematik für Ingenieure

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Mathematica-Befehle. A Algebra 'SymbolicSum, 25,94 Apart 128. C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312. D D 70,71,74,209,215 Div 315

Mathematica-Befehle. A Algebra 'SymbolicSum, 25,94 Apart 128. C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312. D D 70,71,74,209,215 Div 315 324 Mathematica-Befehle A Algebra 'SymbolicSum, 25,94 Apart 128 C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312 S Series 142,167,235 SetCoordinates 297 Sum 26,94,167,184 T Table 211 D D 70,71,74,209,215

Mehr

MATHEMATISCHE AUFGABENSAMMLUNG

MATHEMATISCHE AUFGABENSAMMLUNG MATHEMATISCHE AUFGABENSAMMLUNG Arithmetik Algebra und Analysis Zweite verbesserte Auflage 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN VII INHALT ERSTER ABSCHNITT Rechnen mit natürlichen Zahlen

Mehr

W. Schäfer/K. Georgi. Mathematik-Vorkurs

W. Schäfer/K. Georgi. Mathematik-Vorkurs W. Schäfer/K. Georgi Mathematik-Vorkurs Mathematik Vorkurs Übungs- und Arbeitsbuch tür Studienantänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer und Oberstudienrat Kurt Georgi unter Mitarbeit von

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

Inhaltsverzeichnis. Zeichenerklärung

Inhaltsverzeichnis. Zeichenerklärung Inhaltsverzeichnis Zeichenerklärung XIII 1 Grundlagen 1 1.1 Instrumente der Elementarmathematik 1 1.1.1 Zahlbereiche. Zahlendarstellung 1 1.1.2 Rechnen mit Zahlen 3 1.1.3 Bruchrechnung 7 1.1.4 Potenzrechnung

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr