Vorbemerkung. [disclaimer]

Größe: px
Ab Seite anzeigen:

Download "Vorbemerkung. [disclaimer]"

Transkript

1 Vorbemerkung Dies ist ein bgegebener Übungszettel us dem Modul physik411. Dieser Übungszettel wurde nicht korrigiert. Es hndelt sich lediglich um meine Abgbe und keine Musterlösung. Alle Übungszettel zu diesem Modul können uf gefunden werden. Sofern im Dokuments nichts nderes ngegeben ist: Dieses Werk von Mrtin Ueding ist lizenziert unter einer Cretive Commons Nmensnennung - Weitergbe unter gleichen Bedingungen 4.0 Interntionl Lizenz. [disclimer]

2 Gruppe Mrtin Ueding Symbolerklärung: Nbl, Lplce, d Almbert, Delt und, Vektor v, Tensor T. Aufgbe Punkte xxxxx/ 8 xxxxx/ 1 xxxxx/ 5 xxxxx/ 9 xxxxx/ 9 xxxxx/ Moleküle zählen 1. Wssergls 1 mol Wsser wiegt 18 g. Dort drin sind 6, Moleküle enthlten. Ds Volumen ist 18 ml. Im gnzen Gls sind lso 6, Moleküle enthlten. D 0, l nur eine signifiknte Stelle ht, ist meine Antwort Moleküle. 1b. Mrkierung Zuerst schätze ich b, welche Wssermenge der Plnet ht. Dzu nehme ich n, dss, wenn mn die Meere gleichmäßig verteilt, sie eine Tiefe von vielleicht 1000 m hben. Ds Volumen ist dnn: V = 4πR E 1000 m = 5, m 3 Geteilt durch die 18 ml/mol = 1, m 3 /mol erhlte ich eine Stoffmenge von,86 10 mol, ws 1, Teilchen entspricht. Im Meer ist jetzt ein Anteil von 3,89 10 Mrkiert. Wenn ich jetzt wieder 6, Moleküle uswähle, dnn ist der Erwrtungswert 600 mrkierte Moleküle im Gls. 1

3 . Flugzeit-Mssenspektrometer. Flugzeit-Mssenspektrometer. Skizze 10 mm 1 m NO Detektor Kondenstorpltten b. Flugzeit für 14 N 16 O Die Msse des Isotops ist 30 u = 4, kg. Ds Ion legt eine Potentildifferenz von 500 V zurück (mittig im Kondenstor), es bekommt lso 500 ev = 8, J Energie. Mit E kin = mv / erhlte ich eine Geschwindigkeit von v = m/s. D die Ruhemsse im Bereich von MeV liegt, drf ich n dieser Stelle klssisch rechnen. Mit dieser Geschwindigkeit v legen die Ionen die Strecke von L = 1 m in t = 1, s zurück. Dbei hbe ich die Beschleunigungszeit nicht berücksichtigt. Ds Ion beschleunigt innerhlb von d/ = 5 mm uf die Geschwindigkeit v. Mit v = d/ erhlte ich eine Beschleunigung von = 3, m/s. Die Zeit, um diese Strecke zurück zu legen erhlte ich mit d/ = t /: t = 1, s. Der reltive Fehler ist lso 0,01. c. Flugzeitverbreiterung Für die Flugzeitverbreiterung betrchte ich zwei Ionen, die n beiden Enden des Wechselwirkungsgebietes gestrtet sind. Die Ionen bekommen nun ls Energie: E ± = d ± x eu 0 d Diese Energien sind: E + = 8, J, E = 7, J Mit den eben benutzten Formeln errechne ich die Flugzeit für beide Ionen us: t + = 1, s, t = 1, s Die Zeituflösung ist lso mximl 1, s, wenn die endliche Größe des Wechselwirkungsgebietes berücksichtigt wird. Nun berechne ich die Flugzeit für die verschiedenen Isotope, wenn sie us der Mitte des Kondenstors strten: Mrtin Ueding Seite / 8 Gruppe

4 3. Mittlere freie Weglänge Isotop Msse / u Flugzeit t / s 14 N 16 O 30 1, N 16 O 31 1, N 18 O 3 1, Die Werte unterschieden sich mehr ls 10 7 s, so dss eine Unterscheidung möglich ist, wenn uch knpp. 3. Mittlere freie Weglänge 3. Zimmerumgebung Gesucht ist die mittlere freie Weglänge l. Dzu stelle ich die Gsgleichung um: pv = N k B T p = nk B T n = p k B T Die mittlere freie Weglänge l ist: l = 1 nσ l = k BT pσ = l = 1, m Die Teilchendichte ist n =, m 3. Der mittlere Abstnd zwischen den Teilchen ist dnn: = 3 1 n = 3, m Dieser Abstnd ist um zwei Größenordnungen kleiner ls die mittlere freie Weglänge. Dies liegt drn, dss der Wirkungsquerschnitt bei diesem Abstnd einen kleinen Rumwinkel einnimmt. 3b. Evkuieren Die gesuchte Teilchendichte ist n = 1/lσ. Nch der Gsgleichung ist dies uch gleich p/k B T. Nch p ufgelöst: p = k BT lσ = 10 mp Mrtin Ueding Seite 3 / 8 Gruppe

5 4. De Broglie-Wellenlängen 4. De Broglie-Wellenlängen 4. Energie 10 ev Die Energie-Impuls-Reltion besgt mit Gesmtenergie E, Ruheenergie E 0 und Impuls p: E = E 0 + (cp). Die de Broglie-Wellenlänge eines Teilchens ist λ = h/p. Dmit errechne ich: λ = ch E0 + E E 0 Dort setze ich E = 10 ev und E 0 = 511 kev ein und erhlte λ = 3, m. 4b. Energie 0 kev Gleiche Rechnung, nur mit nderer E = 0 kev. Ds Ergebnis ist λ = 8,56 m. 4c. α-teilchen Die Ruhemsse eines α-teilchens ist m α = c 377 MeV. Ich bestimme die Geschwindigkeit mit der reltivistischen Formel: v = 1, m/s 4d. Stickstoffmolekül bei Zimmertempertur Die Msse von 14 N ist 8 u. Bei Zimmertempertur T = 90 K ist die kinetische Energie pro Freiheitsgrd E = kt/. Die mittlere Geschwindigkeit ist somit: v = E kt m = = 93 m/s m Der Impuls ist p = 1, kg m/s, die de Broglie-Wellenlänge dzu ist λ = 4, m. Der Ablenkwinkel α für ds erste Mximum ist mit der Formel us der Optik: sin (α) = λ = α = 484 µrd 4e. Schnecke Ds Gewicht einer Schnecke ist vielleicht m = 30 g. Die Kriechgeschwindigkeit ist vielleicht v = 1 mm/s. Dnn ist der Impuls p = mv = 3, kg m/s. Der Streuwinkel m Gitter mit = 10 cm ist α =, rd, lso nicht zu beobchten. Mrtin Ueding Seite 4 / 8 Gruppe

6 Dmit es ber überhupt wirklich zur Interferenz kommen knn, drf der Ort der Schnecke nicht mehr gemessen werden, bis sie durch den Grtenzun ist. Dies ist llerdings schwer möglich, d sie den Boden (der sie misst) zur Fortbewegung brucht. Ohne Luft und Licht ht es die Schnecke noch schwerer. 4f. Photon Die Energie des Photons ist E = ch/λ. Sein Impuls ist p = h/λ. Die de Broglie-Wellenlänge λ db ist dnn λ. Ich beginne mit der gegebenen Schrödingergleichung. i ψ(x, t t) = ψ(x, t) i ψ(x, ˆp ψ(x, t t) = m + U(x) t) Der Impulsopertor ˆp ist nch dem, ws ich in [?, Seite 496] gelesen hbe, ˆp = i x und nicht proportionl zu t. So knn ich die Schrödingergleichung schreiben ls: ψ(x, i ψ(x, t t) = m x + U(x) t) Ds Potentil U(x) ist innerhlb des kompkten Intervlls identisch null, so dss ich diesen Summnden weglssen knn, wenn ich ds Problem nur uf diesem Intervll betrchte. i t ψ(x, t) = m x i ψ(x, t t) = m x ψ(x, t) ψ(x, t) x, x, Diese prbolische prtielle Differentilgleichung uf einem kompkten Intervll löse ich mit einem Seprtionsnstz. Mein Anstz ist: ψ(x, t) = φ(x)θ(t). Dmit wird die Gleichung zu: iφ(x) θ(t) = m φ (x)θ(t) i θ θ = φ m φ = α Die Integrlbsis für φ besteht us folgenden Elementen: cos αx, sin αx m m x, x, Mrtin Ueding Seite 5 / 8 Gruppe

7 Die Integrlbsis für θ dgegen ist: exp iα Ds Teilchen drf sich ußerhlb des Intervlls nicht ufhlten, d es dfür dnn eine unendliche Energie bräuchte. Dher muss die Wellenfunktion dort null sein. Wegen der geforderten Stetigkeit von ψ muss n den Rndpunkten ψ ±/ = 0 gelten. Mit dieser Rndbedingung knn ich nun α näher bestimmen. Es muss für den Kosinus gelten: α m = n + 1 π α = (n + 1)π m Für den Sinus: α m = nπ α = nπ m Somit wird die Integrlbsis für φ zu: (n + 1)π nπ cos x, sin x, Ds α für den Kosinus eingesetzt in die Integrlbsis für θ liefert: exp i (n + 1) π m t Für den Sinus geht dies nlog. 5. Mögliche Impulse Die Wellenzhlen k, die die Welle nnehmen drf sind dnn nπ/. Je nch dem, ob es eine Sinus- oder Kosinuswelle ist, muss n gerde beziehungsweise ungerde sein. 5b. Energie der Welle Die Energie E ist ein Eigenwert des Energieopertors i t. Ich nehme mir den entsprechenden Teil us der Schrödingergleichung: E ψ = i t ψ E i t ψ = 0 E i t cos(kx) exp i (n + 1) π m t = 0 Mrtin Ueding Seite 6 / 8 Gruppe

8 Beim Ableiten nch der Zeit t erhlte ich die innere Ableitung der Exponentilfunktion. Multipliziert mit dem Vorfktor erhlte ich: E = (n + 1) π m Von den Einheiten: kg m J s = kg m N m s = kg m 3 N s = kg s m 3 kg m s = D stimmt lso etws nicht, es sollte N m heruskommen. s m 4 Jedenflls lässt sich diese Rechnung noch für den Sinus wiederholen, die Energie ist dnn für Buchzhl n: E = n π m 5c. Normierung Die Normierung verlngt, dss gilt: / dx φ(x, t) φ(x, t) = 1 / Abbildung 1: Bild us [?] Ds Argument der Exponentilfunktion in ψ ist rein imginär, so dss der Betrg gerde 1 ist. Diese knn ich hier weglssen. / dx ψ 0 cos (kx) = 1 / Mrtin Ueding Seite 7 / 8 Gruppe

9 Ich wende die Potenzformel für den Kosinus n. ψ 0 ψ 0 ψ 0 / dx ψ 1 + cos (kx) 0 = 1 / + 1 / k sin(kx) = nπ k sin x / / / + (n + 1)π ( + 1)nπ sin ψ 0 + ( + 1)nπ = 1 = 1 = 1 ψ 0 = + 1/ ( + 1)nπ Somit ist die, für den Kosinus normierte, Wellenfunktion: ψ(x, t) = β n + n 1/ (n + 1)π cos x exp ( + 1)nπ i (n + 1) π m t Anlog knn eine weitere Wellenfunktion mit dem Sinus ufgestellt werden. Zusmmen sind sie dnn eine Fourierreihe der llgemeinen Lösung, die von den Anfngsbedingungen bhängt. Mrtin Ueding Seite 8 / 8 Gruppe

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 10

Grundlagen der Physik 3 Lösung zu Übungsblatt 10 Grundlgen der Physik 3 Lösung zu Übungsbltt Dniel Weiss 5. Dezember Inhltsverzeichnis Aufgbe - Dynmik im Kstenpotentil Aufgbe - Minimlenergie des hrmonischen Oszilltors 3 Aufgbe 3 - Näherung relistischer

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

Felder und Wellen WS 2018/2019. Φ = q. 4πǫ 0. q z

Felder und Wellen WS 2018/2019. Φ = q. 4πǫ 0. q z Felder und Wellen WS 28/29 Musterlösung zur 6. Übung 5. Aufgbe Die Entfernung eines Punktes von der Ldung wird mit r bezeichnet, drus folgt Φ = q 4πǫ r Aus dem Cosinusstz für ds DreieckqP folgt r 2 = z

Mehr

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2 Diskrete Energien 1. 8 entdeckten Mrc Fries und Andrew Steele uf einem Meteoriten sogennnte Crbon Whiskers, lnggestreckte Nnostrukturen us Kohlenstoff, von denen ngenommen wird, dss sie im Rum um junge

Mehr

Ferienkurs Quantenmechanik 1 Sommer 2009

Ferienkurs Quantenmechanik 1 Sommer 2009 Physikdeprtment Technische Universität München Ahmed Omrn Bltt Ferienkurs Quntenmechnik 1 Sommer 009 Quntenmechnik in einer Dimension Lösungen 1 1-dimensionle Probleme 1.1 Unendlich hoher Potentiltopf

Mehr

Ferienkurs Quantenmechanik Sommer 2010

Ferienkurs Quantenmechanik Sommer 2010 Physikdeprtment Christoph Schnrr & Michel Schrpp Technische Universität München Bltt 4 - Lösungsvorschlg Ferienkurs Quntenmechnik Sommer Näherungsverfhren Ritzsches Vritionsverfhren Für ds ngegebene Potentil

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Theorie der Kondensierten Materie I WS 2016/2017

Theorie der Kondensierten Materie I WS 2016/2017 Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Theorie der Kondensierten Mterie I WS 06/07 Prof. Dr. A. Shnirmn Bltt PD Dr. B. Nrozhny, M.Sc. T. Ludwig Lösungsvorschlg.

Mehr

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11 Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Mathematik III - Blatt 3

Mathematik III - Blatt 3 Mthemtik III - Bltt 3 Christopher Bronner, Frnk Essenberger FU Berlin 7.November 6 Aufgbe Die Länge der Kurve, deren Bhn die Lösung der Gleichung ist, lutet x 3 + y 3 3 L( γ ds π γ γ(t dt. Abbildung :

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

6.3.1 Das Modell freier Elektronen

6.3.1 Das Modell freier Elektronen 6.3. DIE SCHRÖDINGER GLEICHUNG 3 6.3. Ds Modell freier Elektronen Ein Elektron mit der Msse m befindet sich im potentilfreien Rum. Die Wellenfunktion Ψ des Elektrons ist eine Lösung der Schrödinger-Gleichung

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

$Id: integral.tex,v /04/28 13:32:32 hk Exp hk $

$Id: integral.tex,v /04/28 13:32:32 hk Exp hk $ Mthemtik für Ingenieure II, SS 009 Dienstg 8.4 $Id: integrl.tex,v 1.4 009/04/8 13:3:3 hk Exp hk $ Integrlrechnung.3 Die Integrtionsregeln Mit den bisherigen Beispielen hben wir die meisten Integrle behndelt,

Mehr

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer 4. Potentiltopf Gruppe Neumnn: Sebstin Guttenbrunner Drio Knebl Mri Kortschk Corneli Reinhrter Peter Schntl Gerld Schwrzbuer Ein rechteckiger, eindimensionler Potentiltopf ist ein einfches Modell, ds ls

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Ferienkurs Experimentalphysik Übung 1 - Musterlösung

Ferienkurs Experimentalphysik Übung 1 - Musterlösung Ferienkurs Experimentlphysik 4 11 Übung 1 - Musterlösung 1. Freie Wellenpkete (** Betrchten Sie ein Elektron, ds sich mit dem Impuls p = k in x-richtung bewegt. Wie lutet die zugehörige Wellenfunktion

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze Rolnd Meissner Bodestrße 7, D-06122 Hlle, E-Mil: rolndmeissner@gmx.de Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der reltivistischen Krftgesetze Abstrct The reltivistic term of Force

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

2 Blatt - Festkörperphysik 2-2D Gitter

2 Blatt - Festkörperphysik 2-2D Gitter Heiko Dumlich April 9, Bltt - Festkörperphysik - D Gitter. (Oberflächen kubisch rumzentrierter Kristlle) ) In Abbildung () befinden sich die drei Drufsichten der (), () und () Ebenen des kubisch-rumzentrierten

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

6.5 Stückweise konstantes Potential: Potentialtopf

6.5 Stückweise konstantes Potential: Potentialtopf Skript zur 8. Vorlesung Quntenmechnik, Freitg den 3. Mi,. 6.5 Stückweise konstntes Potentil: Potentiltopf Wir betrchten nun ds stückweise konstnte Potentil < V() = V < < > V V Aus den llgemeinen Bemerkungen

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit Mthemtik für Ingenieure III, WS 9/ Montg. $Id: otentil.te,v. 9// :: hk E $ Potentilfelder. Wegunbhängige Integrierbrkeit Definition.: Seien U R n offen und F : U R n ein stetiges Vektorfeld. Dnn heißt

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a Prof. Dr. H. Brenner Osnbrück WS 203/204 Anlysis I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f: [, b] R knn mn f(t)dt b ls die Durchschnittshöhe der Funktion

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Bitte denken Sie daran, erklärenden Text zu schreiben.

Bitte denken Sie daran, erklärenden Text zu schreiben. Mthemtik Nme: Lösungen Vorbereitung Nr. Kursstufe K Punkte: / Note: Schnitt:.0. Bitte denken Sie drn, erklärenden Tet zu schreiben. Pflichtteil (etw 0..40 min) Ohne Tschenrechner und ohne Formelsmmlung

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Übungsaufgaben Vektoranalysis

Übungsaufgaben Vektoranalysis Kllenrode, www.sotere.uos.de Übungsufgben Vektornlysis. Bestimmen ie die Quellen des Feldes A B. Lösung: Rechenregeln (Produktregel) verwenden, du die Abkürungen C A und D B : ( A B) ( C D) D ( C) C (

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Übungsaufgaben Partielle Differentialgleichung Wellengleichung

Übungsaufgaben Partielle Differentialgleichung Wellengleichung Kllenrode, www.sotere.uos.de Übungsufgben Prtielle Differentilgleichung Wellengleichung 1. Ein n einer Seite eingespnnter Stb soll ls schwingende Site mit einem offenen Ende ngenähert werden. ösen Sie

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnbrück WS 20/202 Mthemtik für Anwender I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f :[,b] R knn mn f(t)dt b ls die Durchschnittshöhe

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Komplexe Integration

Komplexe Integration Komplexe Integrtion Michel Hrtwig 23. April 2004 Der Unterschied zwischen reeller und komplexer Integrtion Vorbemerkung: Aus Gründen der Anschulichkeit, hbe ich weitgehend uf eine exkte mthemtische Drstellung

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ.

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ. 24 UNEIGENTLICHE INTEGRALE 146 für lle t [, b] und lle x D mit x x < δ. Für lle x D mit x x < δ gilt lso = F (x) F (x ) b f(x, t) dt b b f(x, t) dt + f(x, t) f(x, t) dt + ɛ 3(b ) (b ) + ɛ 3 + ɛ 3 = ɛ.

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Dirac sche Deltafunktion: ( =11 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Dirac sche Deltafunktion: ( =11 Punkte) Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Übungen zur Klssischen Theoretischen Physik III (Theorie C Elektrodynmik) WS -3 Prof. Dr. Alexnder Mirlin Bltt : Lösungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 4

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 4 Jens Träger Sommersemester 006 15.05.006 1. Aufgbe Als totles Differentil bezeichnet mn ds Differentil einer Funktion mehrerer Vriblen nch llen ihren Vriblen. Dbei wird für jede Vrible die prtielle Ableitung

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

5.5.1 Wellenkette ******

5.5.1 Wellenkette ****** 5.5. ****** Motivtion Identische Hnteln sind n einem vertiklen Torsionsbnd befestigt. Durch Auslenkung einer Hntel wird eine lngsm verlufende Welle erregt, so dss sich die Welleneigenschften sehr gut beobchten

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel)

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel) Etrkpitel für M. Integrtion durch Substitution (Umkehrung der Kettenregel Beispiel : Berechnen Sie ds Integrl I = + d D die Wurzel eine innere Funktion ht, substituieren wir diese und leiten dnn b... z

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr