]ä;#i. ;;#f I I. ----l: r-foory" lnnl*t. J:it llbtas'vesädes. "", llzu$1abs.4. 2oru#' : iüsilff,'" l*_.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "]ä;#i. ;;#f I I. ----l:---- --r-foory" lnnl*t. J:it llbtas'vesädes. "", llzu$1abs.4. 2oru#' : iüsilff,'" i3_*@---fso-oo.ors. l*_."

Transkript

1 Bevom. Bezksschostefege as beehee() Uteehme() Bezksumme 20 Datum Feuestättebesched N Objektumme Mak Betam Zum Echbeg Emetha Rego Haove , Te. 0557/ Fax Mak de Mak Bedam, SFM, Zum Echbeg 6, 3860 Emmetha Legeschaf Dagma Geze Roseweg Haove Daga Geze Rodbake HaRove Adeugsbesched Fü de o.g. Legeschaft egeht fogede Feuestätte besched Seh geehte Geze, hemt setze ch fest, dass $e a de achfoged aufgefühte Aage das fachgeechte Ausfuhe de dot geate Schostefegeabete ehab des hefu agegebee Zetaums zu veaasse ud d u chfü h e zu asse habe t. *t N. (AuSta dot ode Vewes auf Ahag) 2. Zet- 4. Zet- aum aum t \ L- -_ AUZUUeqe Ausüfühede Abete Rechtsgudage des Aogasetug des Aogaseug Abgasetugdes bs bs 30,0e c$ff* (Dasma q ;;#f ;; Gezet, Aufsteaum Aufsteaum Kee) Geze, o,-ezeses ä;# * Geze,Aufsteaumkee) Kee) Geze, Aufsteaum Gas-Hezkesset e4^sde (Dagma \.Jdg. "3 vs- Aufsteaum Geze, Aufstetaum * ü"u;- N?. deaage {a;^^;; N ou# ü;ä;j" ",.. e. 3 9Ä;;s; oe Äage f _ f JU.uv. os * Kee) s Kee) ; ähch x - J-dftc ähch fooy" Jt btasvesädes ^. C"!-""""L (Dasma -^ *_.z,ugabs4 vu"vve" üsff," "", zu$abs.4 f!e---aezwe.ahe Jahg ae zwe Messug -- gem..smsäügs * Täge öffetche Vewatug gemäß $ 8 Schostefege-Hadweksgesetz vom g (schfhwg - BGB. s.2242), zut. geädet duch At. des Gesetzes vom os.z.z02 (Budesgesetzbatt tbgb. Te S. 2467) ud damt "Behöde" ach g Abs. 4 Nedesächssches Vewatugsvefahesgesetz vom 03.2"976 (NVwVfG - Nedesächssches Gesetzud Veodugsbatt [Nds.GVB. 976, S. 3 j ). Feuestättebesched N vom 02..5

2 Zetäume ohe Jahesagabe bedeute jähche Ausfühug. Mt * gekezechete Abete wude m Jah 2A5 scho duchgefüht. Bemekuge Ko kets ee de festgesetzte Abete ( ha ts best m m uge )!...., J 2. üe Koste des Vefahes habe Se zu tage, geguduq Zu -. De Festsetzuge desem Feuestättebesched beuhe auf $ 4 des Schostefegehadweksgesetzes (SchfHwG) Aufgud de Date des Kehbuchs wude festgestet, dass de obe geate (o.9.) Legeschaft de obe ähe bezechete Aage betebe wede. Dese Aage sd ach de Veodug übe de Kehug ud Übepüfug vo Aage (Keh- ud Übepüfugsodug - KÜO)3 ud ach de Este Veodug zu Duchfühug des Budes-mmssosschutzgesetzes (Veodug übe kee ud mttee Feueugsaage -.BmSchV)a zu kehe, zu übepüfe ud / ode zu übewache. Aufgud desse st das Ausfüheasse de o.g. Schostefegeabete efodech, we se sch m Ezee koket aus de Vogabe de zu de o.g. Numme ud Aage ewes geate Rechtsgudage egebe. Nach $ Abs. SchfHwG sd Se as Egetüme dazu vepfchtet, de festgesetzte Abete duch ee gemäß $ 2 Abs. ud 2 SchfHwG hefü Betacht kommede Schostefegebeteb fstgeecht / ehab de vogegebee Zetäume ausfühe zu asse. Dese Besched esetzt ae vohege Beschede mt sofotge Wkug. De Zetaum de Zetäume, ehab desse / dee de auszufühede Abete vo he zu veaasse ud duchzufühe zu asse sd, beuhe ausscheßch auf sachgeechte Euäguge ud sd vehätsmäßg. he ege de Efahugswete des Schostefegehadweks fü de Efodechket des Duchfühes de festgesetzte Maßahme ach mee Emttuge aufgud de o.g. Voschfte eem hefü agemessee Zetahme zugude. Hwese auf de Rechtsaqe Das fstgeechte Duchfühe de o,g. Abete st m vo he, sofe dese Abete cht vo m sebst ode mee Mtabete duchgefüht wude, ach $ 4 SchfHwG jewes übe e Fombatt (s. Aage 2 de KÜO), das he vo dem/de de Abete ausfühede Schostefege/- wahhetsgemäß ud vostädg ausgefüt zu übegebe ode hem Auftag dekt a mch zu übemtte st, ehab vo 4 Tage ach dem etzte Tag des jewes festgesetzte Zetaums achzuwese. Veatwotch fü das Übemtte de Fombätte a mch bebe jedem Fae Se. De Nachwes st ebacht, we m das Fombatt zugegage st. Dese Besched gt bs zu ächste Feuestätteschau. Sote sch vohe scho Adeuge egebe, wd e duch ee eue Besched esetzt. Nach $ Abs.2 SchfHwG sd m Adeuge a keh- ud übepüfugspfchtge Aage, de Ebau eue Aage ud de betebahme stgeegte Aage uvezügch mtzutee. Uvezügch heßt, ohe e schudhaftes Vezöge hesets - was wedeum bedeutet, dass Se m Regefa sofot de tatve egefe müsse, um m Veädeuge, z.b. m Hezvehate, azuzege, damt de Betebs- ud Badschehet auch küftg gewähestet st. Mtzutee st heach auch das dauehafte Stege ee keh- ud übepüfugspfchtge Aage. 2u2.. *? vom * At vct s (BGB v0 2ö 240 (BGB Gesetz zu Neuegeug des Schostefegeweses (BGB., Sete 2242). s.2e2). s 38) Feuestättebesch ed N, 966, vem C2.. 5

3 De Kosteastetschedug beuht auf S 20 SchfHwG. Heach wede zu Deckug des Vewatugsaufwads fü das Easse deses Beschedes Koste (Gebühe ud Ausage) ehobe, de as öffetche Last des Gudstücks vo he zu tage sd. Hschtch de Höhe dese Koste wede ch he Kostefestsetzugsbesched übesede. Rec htg b.eh.efs be eh g q Küze ee spezfzete Rechug / ee Gege dese Besched köe Se ehab ees Moats ach Bekatgabe schftch, pe EMa mt quafzete eektosche Sgatu ode zu Nedeschft des Ukudsbeamte de Geschäftsstee Kage ehebe bem Veuvatugsgecht Haove, Leohadtstaße5, 3075 Haove. De Kage st zu chte gege bevom. Bez.-Schostefegemeste Mak Betam, Zum Echbeg 6, Haje, 3860 Emmetha Hwes_e zu WKuq des K3qeehebeg.uC voäufge Rechtsschutz. Das Kageehebe hat ach $ 4 Abs. 2 Satz 2 SchfHwG kee aufschebede Wkug; d.h., auch we Se kage, müsse Se de Festsetzuge deses Beschedes deoch Foge este. De Aodug de aufschebede Wkug ka abe gemäß $ 80 Abs. 5 de Vewatugsgechtsodug (VwGO)u be de o.g. Veuuatugsgecht beatagt wede. Mt feudche Güße t) t/ ffw*&,t t (Datum (U ) tesch ft) vom 9"M äz 99 Budesgesezbtatt Gesetzes vcm 7 Ju 2008BGB Feuestätteheschec N 960 "-e 00-4 (BGB ) Te S 68ö, zl) etzt geädet duch g 62 Abs. des $ 0j0 - vom 02 5

4 - Mak Betam Datum de Abetsausfühug U- /ü ^ Z&o(f Schostefegemeste & Gep Fachkaft Rauchwamede Zum Echbeg Emmetha Teefo Fax ach $ Absatz2 KüO Estmessug ach S 4 Absatz 2. BmSchV ü Wedekehede Messug ach S 5 Absatz 3. BmSchV E, ^cöae tf ach ah R 4 4 Absatz Ahc az 5 tqh\/ Wedehougsmessug. BmSchV L_. \A/aoh S Wedehougsmessug ach $ 5 Absatz 5 BmSchV Ausfetgug fü,_ Wedehougsmessug j --f Ma Mak. YYvvvvvyvvs\/vL (,.J J -T\v\){JLAL,.-\ V! Mak Betam, SFM, Zum Echbeq 6, 3860 Emmetha Bete be/aufste u de Egetüme gsot de Aage 966,00 / F-0 Dagma Geze Roseweg 3 3A457 Haove Dagma Geze Roseweg 3 3Q457 Haove Nutzugsehet Aufsteot. Aufsteaum, Kee übe das Egebs de Übepüfug ud Messug f"*jg.""gu fu g"f*g" " "*. ud übepüfug vo Aage Bestoffe gemäß de Veodug übe de Kehug (Keh- ud Ubepüfugsodug - KUO) vom6. Ju 2009 (BGB. S.292), ach Rechtsveoduge ach S Absatz Satz 3 SchfHwG ode de Este Veodug zu Duchfühug des Budes-mmssosschutzgesetzes (Veodug übe kee ud mtt- Beschegug ä.ö Feueugsaage t6"^,h^--h-^^^ BmSchV DüC^h\//^^ vom öa ^^,,^-.^A o^d o öo\ ee Jaua 200, BGB. S 38) Lestugsbeech/ Lestug be de Messug Neestug Vaat, VKS 7. 9BB 7 kw Beeat Bee Hestee, Typ, Heste-N., Echtug 9BB Lestugsbeech/Lestug be de Messug Bestoff ohegebäse 9, vs usvqos v kw Nvv Feuestätteat Edgas Eugds _" - A.d"" Hezug At d" jhezkesse Übepüfugsegebs gemäß XÜO v = Odug, X = magehaft, - = cht zuteffed).vebeugsuft/lüftug..v,5abgasabzug.e.ug,t"t,m va --,^2. Feuestätte sa a de Stömugsscheug y 9. O-Gehatt m Abgas 26_g 2a. Befestgug/Abstäde V 5b. Beehöhe,f 0. uvedjteco-gehat,.^.,^-^-.,/ 2b. äußee Zustad "t" oo 5c. a adee Stee 6, Abgaskappe 7. _. Yebdugsstück Fogede Mäge wude festgestet Es wude kee Mäge festgestet, L-_ De Mäge N. stee zzt. och kee umttebae Gefah da, ee Übepüfug duch ee Fachbeteb wd empfohe. sd aus Schehetsgüde bs! zu besetge. Aufgud de festgestete Mäge st ee zusätzche Übepüfug de Feueugsaage efodech. Messegebs gemäß. BmSchV Gezwete CO-Gehat 000ppAbgasveust t%.q9 CO-Gehat "tgg3s ----ycs m A!^.f ß o/ -,,^t.,^-^-sauestosehattebeas %.* Q<aofffa* 9y"k{ t, - Das Messegebs etspcht de Veodug. Messu sche h Das uessegebs etspcht cht de Veodug, we Absasveuse übe % De Betebe st vepfchtet, de otwedge Vebesseugsmaßahme a de Aage zu teffe De Messug st bs zu wedehoe, ff Bemekuge - -_g t"-_d. " t f kat o s u m m e ( ) U tesch ft des Scho ste Hqe -_ M RAVoo3C5&-s *_-_*-*.--_"----_ * besetge sd, ode das Messegebs cht de Veodug jetspcht, gebe Se m btte Nachcht, sobad de Mäge besetgt sd bzw. de wedehougsmessug efoge ka.

5 Mak Betam Schostefegemeste & Gep Fachkaft Rauchwamede Zum Echbeg Em metha Teefo, Fax ßmSchV Ma Mak.Betam(Öt-oe.de ßmSchV BmSchV MefK.Eeftfam., SFM, ZUf Echbeg 6, 38.Q0 EmmethA 966,OC Dagma Geze Rodbake Haove _-,!99 Feueugs_qas_-e, Wämeaustausche Hestee. Typ. Hestet-N., 988 ab";e, u"t"tt". yp-""te-n.. eb8 Aufsteaum. Kee ube das Egebs de Übepüfug ud Messug a ee Feueugsaage fü gasfömge Bestoffe gemäß de Veodug übe de Kehug ud Übepüfug vo Aage (Keh uc Ubepüfugscdug - KU0) vom 6 Juf 2009 (BGB L S 2e2), ach j Rechtsveoduge ach S Absatz Satz 3 SchfHwG ode de Este Veodug zu Duchfühug des Budes-mmsso$chutzgesetzes (Veodug übe kee ud mtt- Vaat, VKS 7/, F-üX Nutzugsehet Aufsteot ffesthegltg / Dagma Geze Roseweg Haove -Lqu_99bv-y9m?6.Jauä 200, BGB L_q-3jL Echtug LestugsOeec Lestug be G;Messug tetestu"s 7 kw Echtug --- AÄ""t Lestugsbeechfe,st,,g G de- tvessug aesoff ohe Gebäse 9, kw E dgas feuestafeat t Oetage Hezkesse Hezug f,= magehaft, = cht zuteffed) 6,9 % 4 PP* *?" duch ee Fachbeteb wd empfohe De tväge N sc aus Schehetsgüde bs zu besetge. Aufg u d de festgestete Mäge st ee zusätzche Übepüfug de Feueugsaage efodech Messegebs gesq. emsöfv j - Gezwete GO-Gehat 000 Das Messegebs etspcht de Veodug. pp* Abgasveust Yo y*y_ge,t Oas Messegebs etspcht cht de Veodug, we - Absasveuse übe % De Betebe st vepfchtet, de otwedge Vebesseugsmaßahme a de Aage zu tee De Messug st bs zu wedehoe. ßeme ku ge Messgeäte-cetfkatosumme() vrav N t 5 Fas Mäge festgestet wcde s, eje ehab ee Fst z. besetge sd, oce das \essegebs cht de VefüdL[J etspcht, gebe Se m btte Nachcht, sobad de Mäge Le setgt sc bzw. cje.sämtche Rechtsvoschfte dese Eeschegug bezehe sch auf de jewes getede Fassug WedehougsmessLJg efoge ka.

M i t t w o c h, 1 7. J u l i 2 0 1 3

M i t t w o c h, 1 7. J u l i 2 0 1 3 M i t t w o c h, 1 7. J u l i 2 0 1 3 M a n k a n n s e i n e M e i n u n g j a m a l r e v i d i e r e n! J a h r 2 0 1 3 : F r i e d r i c h f o r d e r t D e u t s c h e z u m e h r D a t e n s c h

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Begleitmaterial zum Buch

Begleitmaterial zum Buch egetmte zum uch etet vo Mg. Ev Swy u t We t we? Vebe e Sätze mt em chtge Nme. Fo Pu Nko Ko Vkto Emm... t e ckche ebe Mäche, eh gee cht.... ht ee Sptzme vo eem Refet übe Aute.... ht chefe Zähe u mu ee Zhpge

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Sechs Module aus der Praxis

Sechs Module aus der Praxis Modu l 1 : V o r b e r e i tung für d a s Re i te n L e r n s i tuatio n : De r e r ste Ko n ta k t K i n d u n d P fe r d d a r f : 1 2 0 m i n. D i e K i n d e r so l l e n d a s P f e r d, s e i n e

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER

HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER I. VERGABEKRITERIEN 1. D i e g a s t i e r e n d e Gr u p p e k o m m t a u s e i n e m a n d e r e n B u n d e s l a n d. 2. D i e g e p l a n t

Mehr

Versicherungsmathematische Formeln und Sätze WS 2001/02

Versicherungsmathematische Formeln und Sätze WS 2001/02 Pof. D. Detma Pfefe Vescheugsmathematsche Fomel ud Stze WS 200/02 Zsechug effete Zssatz: totale Zsetag aus dem fagsaptal "" ehalb ees Jahes Bawet des ach eem Jah fllge Kaptals "" Edwet des ach eem Jah

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2.

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2. INHSERZEIHNIS S IRKIHE ERHEN ER SOFFE HEEROGENE ZUSNSGEBIEE 3. Geche 3. afgehalt 3.3 Sezfche olue v 3. Ethale 3.5 Etoe.6 af/ga Geche, Feuchte uft 3 ÄREÜBERRGUNG 6 3. äeletug 6 3. äeübegag 7 3.3 äeübetagug

Mehr

ev. Jugend Böckingen Freizeit Programm 2015

ev. Jugend Böckingen Freizeit Programm 2015 v. Jugd Böckig Fzt Poga 2015 Zltlag fü 9-13 Jähig 2. - 15. August 2015 Wi sog fü gaos ud uvgsslich Fzt i Mt ds Hohloh Walds, i Etthaus kl gütlich Dof. Dikt vo Bauhof ba gibt s täglich fischst Milch du

Mehr

n 4 Dr. A. Brink Dr. A. Brink 1

n 4 Dr. A. Brink Dr. A. Brink 1 E. Tlgugsechuge Aufgabe E/3 E Ked ee chuldsue vo. s übe Jahe ach de Mehode de quaalswese-achschüssge Auäelgug zuückzuzahle. Eel e de Jahesauä sowe de Rückzahlugsae ud eselle e ee Fazpla fü ee Jaheszssaz

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Fomelsammlug tschaftsmathemat / Statst Fomelsammlug fü de Lehveastaltug tschaftsmathemat / Statst zugelasse fü de Klausue zu tschaftsmathemat ud Statst de Studegäge de Techsche Betebswtschaft Veso vom

Mehr

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart: E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge

Mehr

Analysen und Ergebnisse der Qualifizierungsberater im IV. Quartal 2009

Analysen und Ergebnisse der Qualifizierungsberater im IV. Quartal 2009 Aalys Egbiss d Qalifizibat im IV. Qatal 9 IV. Qatal 9 Batg Aalys d Qalifizibat Im. Qatal ds Jahs 9 wd Btib bzw. Uthm bat. I Uthm wd i Qalifizibdaf fü 1.7 Mitabit* aalysit. Ei Fakäftbdaf xistit i 17 Uthm.

Mehr

Re ch n e n m it Term e n. I n h a l t. Ve re i n fac h e n vo n Te r m e n Ve r m i s c h t e Au fg a b e n... 8

Re ch n e n m it Term e n. I n h a l t. Ve re i n fac h e n vo n Te r m e n Ve r m i s c h t e Au fg a b e n... 8 Re ch n e n m it Term e n I n h a l t B e re c h n e n vo n Z a h l e n te r m e n........................................................ We rt e vo n Te r m e n b e re c h n e n........................................................

Mehr

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern)

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern) HTL Jebach. eeechug Maheak Sask.. Gudbegffe ee = egeläßg wedekehede Zahlug 4 weselche Mekale ee ee a) eehöhe ) glechblebede ee ) veädelche ee a) egeläßg (z.b. Idex-ageaß) ) egellos b) eedaue Azahl de eezahluge

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Deskriptive Statistik und moderne Datenanalyse

Deskriptive Statistik und moderne Datenanalyse homas Cleff Destve tatst ud modee Dateaalse Ee comutegestützte Efühug mt Ecel ud AA 0XX /. Auflage Fomelsammlug Cleff Destve tatst ud modee Dateaalse Gable Velag Wesbade 0XX GableL Zusatzfomatoe zu Mede

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Finanzmathematik II: Barwert- und Endwertrechnung

Finanzmathematik II: Barwert- und Endwertrechnung D. habl. Bukhad Uech Beufsakademe Thüge Saalche Sudeakademe Sudeabelug Eseach Sudebeech Wschaf Wschafsmahemak Wesemese 004/0 Fazmahemak II: Bawe- ud Edweechug. Bawee ud Edwee vo Zahlugsehe. Effekve Jaheszssaz

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Chapter 1 : þÿ b e t a t h o m e C o d e A n g e b o t e c h a p t e r

Chapter 1 : þÿ b e t a t h o m e C o d e A n g e b o t e c h a p t e r Chapter 1 : þÿ b e t a t h o m e C o d e A n g e b o t e c h a p t e r þÿ D e r B e t - a t - H o m e P o k e r B o n u s w i r d a l s 1 0 0 % i g e M a t c h p r ä m i e b i s z u 1. 5 0 0 v o n. 9 O

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Finanzmathematik Folien zur Vorlesung

Finanzmathematik Folien zur Vorlesung Fazmahemak Fole zu Volesug FINANZMAHEMAI. Zsechug.. Gudbegffe de Zsechug.. De ve Fageselluge de Zsechug.3. Beechug des Edkapals.4. Beechug vo Afagskapal, Zssaz ud Laufze.5. Uejähge Vezsug.6. Sege Vezsug.

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Chapter 1 : þÿ b e t a t h o m e B e d e u t u n g c h a p t e r

Chapter 1 : þÿ b e t a t h o m e B e d e u t u n g c h a p t e r Chapter 1 : þÿ b e t a t h o m e B e d e u t u n g c h a p t e r þÿ 2 2. 0 9. 2 0 1 1, B ö r s e n w e l t P r e s s e s c h a u : B e t - a t - h o m e. c o m, D e u t s c h e B a n k, W e s t a g. n

Mehr

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule Bildelement: Jugendliche in der Schule Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE So schaffst du deine Ausbildung Bildelement: Logo SO SCHAFFST DU DEINE AUSBILDUNG Schließ deine Ausbildung

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Übungsaufgaben zur Finanzmathematik - Lösungen

Übungsaufgaben zur Finanzmathematik - Lösungen Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (

Mehr

Wir feiern 25jähriges Jubiläum feiern Sie mit!

Wir feiern 25jähriges Jubiläum feiern Sie mit! W f 25jähgs Juläum f S mt Zhlch Juläums-Akto, gussoll Vkostug, Fchtug, Gwspl ud l gut Lu wt S d Edlwss-Apothk. Ut dm Motto GESUND VON KOPF BIS FUSS wd 1.2.2014 gz Woch lg usgg gft. Nütz S us Juläumswoch

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

Unser Interview mit Frau N. FLS* *Name von der Redaktion geändert.

Unser Interview mit Frau N. FLS* *Name von der Redaktion geändert. Unser Interview mit Frau N. FLS* *Name von der Redaktion geändert. Frau N. FLS* stellt sich vor Name: Frau N. FLS* Alter: 27 Ausbildungsabschluss an der FLS: Fremdsprachenkorrespondentin (E/S) und Europakorrespondentin

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

E i n b a u-b a c k o f e n O I M 2 2 3 0 1 B i t t e z u e r s t d i e s e B e d i e n u n g s a n l e i t u n g l e s e n! S e h r g e e h r t e K u n d i n, s e h r g e e h r t e r K u n d e, v i e

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen ORMESRI Zuammehäge zwche de etale Stoffezahle etale Reflexogad ( ( geamt ( ( fü läche etale Retamogad ( a ( b a b Setale amogad ee laaallele latte au otoem homogee Medum ( ( mt

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Firmenkurzporträt. message 4 you Seite 2

Firmenkurzporträt. message 4 you Seite 2 Fmkuzpotät Nm ud Stz d Uthm D Uthm mt ut m-hop, Ihb Tob Mü ud ht Stz d Lubch Stß 12 35423 Lch Ob-Bg. Uthmggtd Ggtd d Uthm t d Motg ud d Hd mt Gchktk, wch dutchdwt ow d gzd EU-Läd vtb wd. D Kozpt ht k Dktvtb

Mehr

INSPIRIERENDE FAKTEN über hochwertigen ladenbackofen HTB

INSPIRIERENDE FAKTEN über hochwertigen ladenbackofen HTB BACKEN WAR NOCH NIE SO EINFACH E fac he u u t ve scr tou ee ch Ko tr oll e. u o T, Bl e backe ato k f Perso es. f O s e t ler a to pf k o fu sk g t l Mu tellu s E -Programmeauswähle- INSPIRIERENDE FAKTEN

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Optimierung des Leistungsprogramms eines Akutkrankenhauses. Neue Herausforderungen durch ein fallpauschaliertes Vergütungssystem

Optimierung des Leistungsprogramms eines Akutkrankenhauses. Neue Herausforderungen durch ein fallpauschaliertes Vergütungssystem 0 Ttel: Utettel: Optmeu des Lestuspoamms ees Akutkakehauses Neue Heausfodeue duch e fallpauschaletes Veütussstem Autoe: Pof. D. Steffe Fleßa (Koespodez) Dpl.-Kff. Btta Ehmke Dpl.-Kfm. Reé Hema Adesse:

Mehr

Vo r d ä c h e r-ca r p o r t s. Vo r d ä c h e r-ca r p o r t s a u s Sta h l Ed e l s ta h l u n d. Gl a s. En g i n e e r i n g

Vo r d ä c h e r-ca r p o r t s. Vo r d ä c h e r-ca r p o r t s a u s Sta h l Ed e l s ta h l u n d. Gl a s. En g i n e e r i n g a u s Sta h l Ed e l s ta h l u n d Gl a s 2 Ve r z i n k t e Sta h l k o n s t r u k t i o n m i t g e k l e bt e n Ec h t g l a s- s c h e i b e n Da c h ü b e r s p a n n t d i e Fr ü h s t ü c k s

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten Kraftfahrzeugverkehr Deutschlad 2010 (KD 2010) Abschlussverastaltug am 24. Aprl 2012 bem BMVBS Bo Hwese zum Hochrechugsverfahre für de Arbet mt de Date Prof. Dr. Wlfred Stock IVT Isttut für agewadte Verkehrsud

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Was für eine Marke sind wir eigentlich?

Was für eine Marke sind wir eigentlich? Was fü ei Ma sind wi eigtlich? Investie Sie 10 Mint. stimm Sie Ih Standot, gewinn Sie Ekntnisse e Chanc, Risik nd Handlsoption dch Makbild. Z Stdie Die Stdie Was fü ei Ma sind wi eigtlich? ist ei standsafnahme

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

Wir können auch unkompliziert Ihre eigenen Zeichen, Logos, etc. in bestehende oder neue Schriftsätze integrieren. Kontakt: piktogramme@creadrom.

Wir können auch unkompliziert Ihre eigenen Zeichen, Logos, etc. in bestehende oder neue Schriftsätze integrieren. Kontakt: piktogramme@creadrom. . ü ü ü ü ü ü,, Ü ü,,, ä. ö,, ( 000, ). () - ä. ü,., ä ü, ü. ü ä. ö,,. ä. : @. ) ) -. >.. ) ü ä. ü. _ 0 _ (-) Ω ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) * * 5%... ä. ä ü ( ). Ω = Ω 0 4 5 6 0 4 5 6,,,, ü ö é ü.

Mehr

Leitfaden. für neue Mitarbeiterinnen und Mitarbeiter im Evangelischen Regionalverband Frankfurt

Leitfaden. für neue Mitarbeiterinnen und Mitarbeiter im Evangelischen Regionalverband Frankfurt La ü Ma Ma Ea Raa Fa L Ma, Ma, W a D Ha ö Sa Fa Ga a J C W a L, a Ea Raa Ja 2001 a. Ga Ha Sä, a K Fa aa. A ä ä A D, O Ka, a K Fa ü M Sa ä. Daa : D a K Fa a ü Sa M,. S Pa, Ra H a A a L M. I, a S a ü. E

Mehr

Technische Fachhochschule Berlin University of Applied Sciences

Technische Fachhochschule Berlin University of Applied Sciences Technische Fachhochschule Belin Univesity of Applied Sciences TFH Belin Fachbeeich III Bauingenieu- und Geoinfomationswesen Luxembuge St. 10 13353 Belin Pof. D. Jügen Schweikat Telefon: 030) 45 04-2038/2613

Mehr

Formelsammlung Finanzmanagement

Formelsammlung Finanzmanagement UNIERSIÄ REGENSBURG Lehsuhl fü Beebswschafslehe, sbesodee Fazdeslesuge UNI.-PROF. R. LUS RÖER Uvesässaße 3, 9353 Regesbug, el. (94) 943-73 Fomelsammlug Fazmaageme e Symbol espch de de jewelge easalug vewedee

Mehr

IT-Remarketing Rücknahme und Wiedervermarktung von gebrauchten IT-Produkten. Warenaufnahme, Funktionstest und Aufbereitung

IT-Remarketing Rücknahme und Wiedervermarktung von gebrauchten IT-Produkten. Warenaufnahme, Funktionstest und Aufbereitung Waeaufahme, Fuktiostest ud Aufbeeitu Eeicht de Alteätetaspot use Remaketilae, wid jedes Geät übe eie Seieumme automatisch i usee Datebak efasst. Damit ka jedezeit de aktuelle Status achvollzoe wede. Use

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Bauer s Weihnachtslieder Teil 1 (für 2 Melodieinstrumente, Bass & Gitarre - sehr leicht)

Bauer s Weihnachtslieder Teil 1 (für 2 Melodieinstrumente, Bass & Gitarre - sehr leicht) Gitarre in C Part 1 1.Trompete in Bb Part 1 2.Trompete in Bb Part 2 Bass Guitar in C Part 3 bb b b b b bb b b 3 3 3 3 (für 2 Melodieinstrumente, Bass Gitarre sehr leicht) Eb.(D) Bb7.(A7) Eb.(D) Eb7.(D7)

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Begleitmaterial zum Buch

Begleitmaterial zum Buch eetmte zum uch u Ie Ket Fucht vo e Ie Ket 1. We heßt Iku Vte? 2. Au wechem Gu tüzte Iku zu oe? & Veeechft mbh, We 2013 u Voefu A Ete uteuchte e Voefu eue. Voekoche D t ee e Güe, wum Vöe köe. & Veeechft

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

Große Neueröffnung. 2batt auf Alles. vom 11. bis 16. Mai. toom.de

Große Neueröffnung. 2batt auf Alles. vom 11. bis 16. Mai. toom.de Gß Nuöffug vm 11. b 16. Ma % 5 1, 2batt auf All Ra *! g u b t B tm.d * Nu gültg vm 11. b 16.5.215 m tm Baumakt Btbug, Südg 45. Augmm d all Dt- ud Svcltug, ja!-mbl Pdukt, Büch, Zgatt, Ztchft, Gtäk, Süßwa,

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Der Bereich Wirtschaftswissenschaften der Ernst-Moritz-Arndt- Universität Greifswald

Der Bereich Wirtschaftswissenschaften der Ernst-Moritz-Arndt- Universität Greifswald Der Bereich Wirtschaftswissenschaften der Ernst-Moritz-Arndt- Universität Greifswald Sachstandsbericht 2004 PR O F. D R. M A N FR ED JÜ RG EN M A TS CH K E G R EI FS W A LD 20 04 Im pr es su m ISBN 3-86006-209-3

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Begleitmaterial zum Buch

Begleitmaterial zum Buch eetmte zum uch u t De Ee Meh e Häfte e Ee t vo We beeckt. 1. Vom Wet u eehe echet e? 2. Dewee w e uch e et. & Veeechft mbh, We 2013 u t Ozee u Kotete De ößte Oze heßt. Zwche weche Kotete et e? & Veeechft

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Chapter 1 : þÿ b e t a t h o m e O n l i n e - L i v e - S t r e a m i n g c h a p t e r

Chapter 1 : þÿ b e t a t h o m e O n l i n e - L i v e - S t r e a m i n g c h a p t e r Chapter 1 : þÿ b e t a t h o m e O n l i n e - L i v e - S t r e a m i n g c h a p t e r þÿ h a t a u c h v e r s c h i e d e n e G e s e l l s c h a f t s w e t t e n i m P r o g r a m m, d a z u B e

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

( sicher ein paar Tränen)

( sicher ein paar Tränen) Peter Alexader Ud machmal eist ( sicher ei paar Träe) für dreistimmige Frauechor ud Klavier Musik: Ralph Siegel Text: Güther Behrle Chorbearbeitug: Pasquale Thibaut ud Peter Schur (peter.schur.de) Klavierpartitur

Mehr

Richtlinien für die Ausbildung zum Video School Trainer und zur Video School Trainerin

Richtlinien für die Ausbildung zum Video School Trainer und zur Video School Trainerin Rchtl fü d Ausbldug zum Vdo School Ta ud zu Vdo School Ta Rchtl fü d Ausbldug zum Vdo School Ta ud zu Vdo School Ta Impssum Budsvostad SPIN Dutschlad. V. Budsbüo Rbcca Schö Kustma Staß 3 c 82327 Tutzg

Mehr

MISKOLC ACCOMMODATION BROCHURE UNTERKUNFTSKATALOG. 1 www.hellomiskolc.hu

MISKOLC ACCOMMODATION BROCHURE UNTERKUNFTSKATALOG. 1 www.hellomiskolc.hu O OOO OU UUO 1 www ,,,, x, x - Y w q - w ww, q w, w w w w w O 16 Ox -w? Y! w - -x, Y x, w! w w w,, w w - ü ü,, w-w, w w - ü w w w, w x w 80 ü :, w w- - w w w W ü ä,,, w W w ä x, w ä W w,, ü ä ä - w, w,

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr