Übungsaufgaben Digitale Signalverarbeitung

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben Digitale Signalverarbeitung"

Transkript

1 Komplexe Zhle ud Wertefolge: Üugsufge Digitle Siglverreitug Ei pr Grudüuge zum Awärme M zerlege die folgede komplexe Zhle i Rel- ud Imgiärteil. Zusätzlich sid die Zhle i Versorschreiweise drzustelle ud ls Vektor i die komplexe Zhleeee eizutrge: x = 3+i -i, x = i. (+i) (+i). (-i), x (+i) =i. 3 (- i), x =e.5. iπ Gegee ist die Wertefolge x = {, +i, i, i-, -, -i, -i}. Bereche Sie die Wertefolge: x. exp(-iπ/) i. x Betrg[x] Phse[x] 3 Gegee ist ei Dtestz X mit N = 8 komplexe Zhlewerte: Re {X} = {, 5,,, -, -,, 3} Im{X} = {, 3, -,,, -3, 5, } 3 Wie lutet der kojugiert-komplexe Dtestz X *? 3 Bereche Sie de Betrg ud die Phse der Wertefolge. Gegee ist eie weitere Wertefolge Z mit N = 8 komplexe Zhlewerte: Re {Z} = {,,,, -,, -, -} Im{Z} = {,, -, 5, -, -,, }. Wie lutet die Dtefolge X.Z?. Bereche Sie die Folge X.Z*..c Bereche Sie die Folge i.x. Kotiuierliche Sigle: Bild zeigt ei zeitkotiuier liches Sigl x(t). Skizziere Sie die folgede Sigle: x(t - s) x( s - t) x(t - s) x(t) + x( s - t)].s( s - t) (s(t) = Stufefuktio) x(t).[δ(t +,5 s) - δ(t-,5 s)] (δ(t) = Dircfuktio) Bild zeigt ei zeitkotiuier liches Sigl h(t). M skizziere die folgede Sigle: x(t) h(t + 3 s) h( s - t) h(t).[s(t + s) - s(t - s)] (s(t) = Stufefuktio) h(t/).δ(t + s) (δ(t) = Dircfuktio) c Aus de eide i Bild gezeigte Sigle skizziere Sie die folgede Sigle: x(t).h(t + s) x(t).h(-t), - h(t) t/s x(t - s).h( s - t) x( s - t).h(t - s) d Vo de eide, i Bild ud Bild drgestellte Sigle sid die gerde ud ugerde Ateile zu ermittel. Bild : Kotiuierliche, zeithägige Sigle x(t) ud h(t) - t/s Prof. Dr. N. Stockhuse, WS /3 Seite

2 Zeitdiskrete, zyklische Sigle: Bild ud zeige zwei zeitdiskrete, zyklische Sigle x ud x. Folgede Sigle sid zu skizziere: x x ( - ) x ( + ), x. x ( - ) x ( - ). δ( - 3), - Die eide, i Bild ud Bild drgestellte Sigle x ud x sid i ihre gerde ud ugerde Ateile zu zerlege. Beide Wertefolge esitze zyklische Chrkter. x 8 c Mit de eide, i Bild ud Bild drgestellte Sigle ist eie zyklische Fltug durchzuführe. Welche Werte der Fltug sid gültig? d Vo de eide, i Bild ud Bild drgestellte Sigle ist die Kreuzkorreltiosfuktio zu ermittel. Welche Werte der KKF sid gültig? - 8 Bild : Diskrete, zyklische Sigle x ud x Kotiuierliche Fltug: Der i Bild 3 gezeigte Dreieckimpuls g(t) etspricht der Impulstwort eies ichtkusle Iterpoltiosfilters. Die i Bild 3 drgestellte Im puls folge x(t) ist durch de folgede mthemtische Ausdruck gegee: + g(t) u(t) = δ(t-m. T) [V] m=- Die Dirc-Folge wird de Eigg eies Systems gelegt. M estimme ds Ausggssigl des Systems y(t) = u(t) g(t) für die folgede Werte vo T: T = s T = s T = 3/ s T = s Gegee ist die die Dirc-Impulsfolge u(t) = + m=- (-) m. δ(t-m. T) [V] M estimme ud skizziere ds Ausggssigl y(t) des Systems mit der i Bild 3 gezeigte Impulstwort, we x(t) mit T = s desse Eigg gelegt wird. Bild : Iterpoltio eier Atstfolge mit eiem ichtkusle Filter - -T - u(t) -T T t / s V V V V V V c Die i Bild gezeigte Impulstwort g(t) defiiert ei echoehftetes System, i ds ei Dreieckimpuls (Bild ) eigespeist wird. Trge Sie ds Ausggssigl i Bild c ei. t g(t) x e (t) x (t) c 3 t / ms t / ms Bild : Modellierug eies echoehftete System durch eie gewichtete Dirc-Folge t / ms Prof. Dr. N. Stockhuse, WS /3 Seite

3 Zyklische Fltug Ds diskrete, zyklische Sigl x = {,,,,, 8,,, 5,,, } soll mit der i Bild 5 drgestellte diskrete, ichtkusle Impulstwort g zyklisch gefltet werde. Welche Werte vo y sid gültig? c Welcher mthemtische Opertio etspricht dieses Filter? Ei zyklisches, diskretes Sigl x ist folgedermße defiiert: x = {,,,,,,,,, } Bild zeigt die ichtkusle, diskrete Impulstwort g.,5 -,5 g - Bild : Nichtkusle Impulstwort eies Digitlfilters g g z x g z c Bild : Zyklische Fltug eier diskrete Wertefolge Welche sttische Üertrgugsfktor k esitzt die Impulstwort g? k = Welche oere Grezfrequez esitzt ds Filter, we die Atstfrequez der diskrete Wertefolge de Wert f T = khz esitzt? f g = Hz c Zeiche Sie die zyklische Impulstwort g z i Bild ei. d Zeiche Sie die (zyklische) Fltugssumme y = x g z i Bild c ei. e Welche Werte der zyklische Fltugssumme y sid ugültig? {} = { } Kotiuierliche Korreltio: Die eide i Bild 7 ud 7 gezeigte Sigle u (t) ud u (t) werde ls Wlsh-Fuktioe ezeichet ud spiele eie wichtige Rolle i der Bildverreitug. U u (t) Wie groß ist die Eergie W ud W der eide Sigle, we die Amplitude i eide Fälle U = mv eträgt? -U W = Eiheit - - W = Eiheit u (t) Zeiche Sie die Autokorreltiosfuktioe AKF (t) ud AKF (t) ud die Kreuzkorreltiosfuktio KKF(t) der eide i Bild 7 ud 7 gezeigte Sigle. U -U Bild : Korreltio vo orthogole Sigle - - Prof. Dr. N. Stockhuse, WS /3 Seite 3

4 Systemfuktioe: I Bild 8 ist i vereifchter Form die zeitkotiuierliche Sprugtwort h(t) eies Wegsesors drgestellt. h(t) i V/mm g(t) Eiheit: Zeiche Sie Impulstwort g(t) des Sesors i A. 8 ei. (Sklierug ud Eiheit gee!) Wie lässt sich der Frequezgg G(f) us g(t) ereche? - Bild : Sprugtwort ud Impulstwort eies Wegsesors I Bild 9 ist die Impulstwort g(t) eies elektroische Systems gegee, desse Eigg der i Bild 9 drgestellte Impuls u(t) gelegt wird. g(t) / khz u(t) / mv y(t) Eiheit: c h(t) Eiheit: d x g (t) / mv e x u (t) / mv f Bild : Systemfuktioe ud Ausggssigl eies elektroische Systems Zeiche Sie ds Ausggssigl y(t) des Systems i Bild 9c ei. (icl. Sklierug ud Eiheit!) Zeiche Sie die Üerggsfuktio h(t) des Systems i Bild 9d ei. (Sklierug ud Eiheit!). c Zeiche Sie jeweils de gerde ud de ugerde Ateil vo u(t) i Bild 9e ud 9f ei. d Welche Eergie W x esitzt ds Sigl u(t)? W u = Eiheit: e Welche sttische Üertrgugsfktor esitzt ds System? k = Eiheit: 3 Eie Elektrode esitzt die Impedz Z(f) = R/( + iπf t) mit dem Wirkwiderstd R = 8 Ω ud der Grezfrequez f g = Hz? Welche Impedz esitzt die Elektrode ei f = f g? Z(f g ) = Ω 3 Welche Spugsmplitude U esitzt ds Ausggssigl ei der Frequez f = f g, we die Amplitude des hrmoische Eiggssigls I e = 5 µa eträgt. U = mv Prof. Dr. N. Stockhuse, WS /3 Seite

5 3 Um welches Zeititervll t ist ds Sigl u (t) gegeüer dem Sigl i e (t) verschoe? 3c Wie lutet die Impulstwort g(t) der Elektrode? (Eiheite echte!) Diskrete Fourier-Trsformtio: g(t) = t = Eiheit: ms Ds Spugssigl u(t) ergit sich us der Summe folgeder Eizelsigle: u(t) = - cos( π [Hz] t) + si( π [Hz] t) + 8 cos( π [Hz] t - π/) [V] Ds Sigl u(t) wird der Atstrte f T = Hz digitlisiert. Der Dtestz u esteht us N = Werte. Trge Sie die diskrete Frequezwerte f des Fourierspektrums U(k) i Telle ei. Trge Sie die jeweils de Relteil Re{U(k)} ud de Imgiärteil Im{U(k)} des Fourier spektrums U(k) i Telle ei c Trge Sie ds Amplitude-Betrgspektrum U(k) i Telle ei. d Trge Sie ds Leistugsspektrum P(k) des diskrete Sigls u(k) i Telle ei. e Wie groß ist die Gesmtleistug P ges des Sigls u(t)? P ges = V f Ds ursprügliche Messsigl u(t) wird um t =.5 s verschoee, so dss uf diese Weise ds Sigl u s (t)=u(t - t ) etsteht. Trge Sie jeweils de Relteil Re{U (k)} ud de Imgiärteil Im{U (k)} des etsprechede Fourier spektrums U (k) i Telle ei. s s s k f k / Hz Re{U(k)} Im{U(k)} U(k) P(k) Re{U s (k)} Im{U s (k)} Telle : Diskrete Spektrlfuktioe der digitlisierte Wertefolge u Bdegreztes Ruschsigl I Bild ist ds zweiseitige Leistugsdichte-Spektrum P(f) eies degrezte Rusch- Prozesses drgestellt. 8 P(f ) i (mv) Hz P(f ) Eiheit: f/khz Bild : Leistugsdichtespektrum eies Ruschprozesses ud desse Atstfolge f/khz Prof. Dr. N. Stockhuse, WS /3 Seite 5

6 Welche Leistug esitzt der Ruschprozess? P u = Eiheit: Wie groß ist die Effektivspug U eff des Ruschprozesses? U eff = mv c Ds degrezte Ruschsigl wird ohe Atilisigfilter mit der Frequez f T = khz getstet. Trge Sie ds Spektrum des Atstsigls i Bild ei. (icl. Sklierug ud die Eiheit) Korreltio vo kustische Sigle Bild zeigt zwei im Astd vo h = cm positioierte Mikrofoe, die ds Sigl eier Ruschquelle erfsse. Die Atstrte eträgt f T = 5 khz. Um die FFT utze zu köe, werde jeweils N = Werte erfßt.. Welche Schritte sid zu uterehme, um us de eide Messsigle x ud x die Kreuzkorreltiosfuktio Φ zu ereche?.:.: 3.:.: Ruschquelle Mikrofo dϕ Mikrofo d = cm Bild : Ortug eier Geräuschquelle mit Hilfe der KKF. Die Ruschquelle erzeugt ei weißes Rusche, ds ei ideles Tiefpßfilter mit der Grezfrequez f g = khz durchläuft. Die Amplitude des Spugsdichte-Spektrums des Ruschsigls eträgt u r = 8 mv/ Hz. Zeiche Sie ds Leistugsdichte-Spektrum P(f) des Ruschprozesses i Bild ei..3 Welche Effektivspug esitzt ds Ruschsigl? U eff = mv Φ (t) Eiheit: P(f) Bild : KKF der Mikrofosigle (Liks) ud Leistugsdichtespektrum des Ruschsigls (Rechts). Die i Bild drgestellte Ruschquelle wird ch liks verschoe. Ds rechts stehede Mikrofo immt u ds Ruschsigl mit eier Verzögerug vo t = 5 µs gegeüer dem liks stehede uf. Zeiche Sie die etsprechede Kreuzkorreltiosfuktio i Bild ei ud skliere Sie die Amplitude der KKF..5 Um welche Fktor erhöht sich die Effektivspug eies weiße Ruschsigls, we m desse Bdreite verdoppelt? Fktor =. Befidet sich die Ruschquelle seitlich ee de Mikrofoe, so ergit sich die mximle Siglverschieug. Um wieviel Positioe müsse die Sigle gegeseitig verschoe werde, we m vo eier Schllgeschwidigkeit vo v s = 3 m/s usgeht? Prof. Dr. N. Stockhuse, WS /3 Seite = f/khz

7 Prof. Dr. N. Stockhuse, WS /3 Seite 7

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden.

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden. . Poteze mit gze Epoete Wird der Potezegriff f egtive Epoete erweitert, d köe ch sehr kleie Zhle gt drgestellt werde. Ws edetet 0? Die Defiitio wird so festgelegt, dss die isherige Potezgesetze gültig

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

multipliziert und der Ausdruck dann in Real- und Imaginärteil aufgespaltet: Zur Berechnung der Phase werden Zähler und Nenner zunächst mit 1 F F

multipliziert und der Ausdruck dann in Real- und Imaginärteil aufgespaltet: Zur Berechnung der Phase werden Zähler und Nenner zunächst mit 1 F F 8 requezgg lierer Sstee 9 t t t e e e Jede Differetitio etspricht lso eier Multipliktio it! Setze wir diese ere i die Differetilgleichug 87 ei, so erhlte wir ür de requezgg ergit sich lso 88 Beispiel:

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

9. Jahrgangsstufe Mathematik Unterrichtsskript

9. Jahrgangsstufe Mathematik Unterrichtsskript . Jhrggsstufe Mthetik Uterrichtsskript. Die ioische Forel Beispiel: Auftrg: Bereche die Gestfläche der oe stehede Figur uf zwei verschiedee Arte!. Möglichkeit. Möglichkeit: Teilflächeerechug Mit Zhleeispiel

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen:

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen: Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Block Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeschltet!. Bereche Sie vo Hd ud Bechte Sie dei die Reihefolge der Opertioe:

Mehr

Bildverbesserung. Operationen im Frequenzraum

Bildverbesserung. Operationen im Frequenzraum Bildverbesserug Operatioe im Frequezraum Begriffsdefiitioe Der Ortsraum ist die übliche Repräsetatio vo Bilder. Jedem Bildpukt ist eie bestimmte Koordiate eideutig zugeordet. Der dazu duale Raum ist der

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse!

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse! ohe Hilfsmittel. Bereche! ) 0 Üugsufge BLF ) lg 0, 0 c) 0 d) 0, 0 e) f) 00% vo 0, 7. Löse! ) 0, ) lg c) ( ) 0 0. Wie groß ist die Fläche des Kreises? ), cm² ) 5, cm² c) 6,5. Gi Defiitios ud Werteereich!

Mehr

Thema: Integralrechnung (Grundlagen und Flächenberechnungen)

Thema: Integralrechnung (Grundlagen und Flächenberechnungen) Q GK Mathematik-Vh Vorereitug zur. Kursareit am..7 Thema: Itegralrechug Grudlage ud Flächeerechuge Checkliste Was ich alles köe soll Ich kee de Begri des krummliige Trapezes ud weiß, dass sei Flächeihalt

Mehr

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse mthphys-olie WURZELFUNKTIONEN Grphe der -te Wurzelfuktio.5.5.5 0.5 0 0.5.5.5.5.5 5 5.5 6 6.5 7 7.5 8 = = = mthphys-olie Wurzelfuktioe Ihltsverzeichis Kpitel Ihlt Seite Die Wurzel ud Wurzelgesetze Die eifche

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

2. Zeitdiskrete Signale

2. Zeitdiskrete Signale Uiversity of Applied Sciece 2. Zeitdiskrete Sigale Defiitioe Elemetarsigale Impuls-Folge δ(): (Dirac-Folge, Delta-Folge, Eiheitsimpuls) δ ( ) : : MATLAB-Erzeugug: 5; ; (-:)'; d[zeros(++,)]; d(+); Prof.

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Bildverarbeitung 2. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K.

Bildverarbeitung 2. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Bildverrbeitug 2 Dipl.-Ig. Guido Heisig Digitle Videotechik, SS 2, TFH Berli, Dipl.-Ig. G. Heisig G. Heisig, K. Brthel Bildipultio x(,) Mipultio y(,) Bildpuktopertioe Nchbrschftsopertioe Geoetrische Trsfortioe

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 05 a de Realschule i ayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Die Skizze zeigt de Grudriss eies Hafebeckes. Ei Schiff befidet

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Formel- und Tabellensammlung zum Aktuariellen Grundwissen

Formel- und Tabellensammlung zum Aktuariellen Grundwissen Formel- ud Tellesmmlug zum Aturielle Grudwisse Schdeversicherugsmthemti A. Zufllsvrile X, Y seie (disrete oder stetige Zufllsvrile. Verteilugsfutio: F( = P( X (Verteilugs-Dichte: f ( F ( = ei differezierrer

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

1. Wirkungsweise und Betriebsverhalten von PM-GS-Motoren

1. Wirkungsweise und Betriebsverhalten von PM-GS-Motoren Atori: Wirugsweise eies P-GS-otors 4.. Wirugsweise ud Betriebsverhlte vo P-GS-otore. Drehzhl- Drehmomete- Keliie eletrische otore ist ds Drehmomet bzw. die treibede Krft proportiol dem Produt us Erregerfluss

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Berechnen Sie folgende Integrale durch Anwendung entsprechender Integrationsverfahren und vereinfachen Sie das Ergebnis. c) dx

Berechnen Sie folgende Integrale durch Anwendung entsprechender Integrationsverfahren und vereinfachen Sie das Ergebnis. c) dx Mathematik II für Elektrotechik, Medietechik ud Iformatik, SS 9.6.9 Aufgabe : Itegratiosverfahre ( Pukte a 7P., b 8P., c P. ) Bereche Sie folgede Itegrale durch Awedug etsprecheder Itegratiosverfahre ud

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER Elektrotechik ud Iformatiostechik Istitut für Nachrichtetechik, Vodafoe Chair Dr. Emil Matus - Digitale Sigalverarbeitugssysteme I/II - Übug 3 ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER.

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten.

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten. 7. Poteze mit rtiole Expoete Eiführedes Beispiel: Wir versuche ls Potez vo zu schreie. Bei dieser Erweiterug solle die isherige Potezgesetze gültig leie. x mit poteziert x x ( ) ( ) log 8 Also defiiere

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1 Gleihuge/Ugleihuge sltt Seite Gleihuge Aufge (Wurzel π37) Fide lle e (x, y, z) R 3 des Gleihugssystems M stellt ds System um zu x z y = 6 x z y = 36 x 3 z 3 y 3 = x z = y 6 x z = y 36 x 3 z 3 = y 3 Aus

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

44. Lektion: Stehende Wellen

44. Lektion: Stehende Wellen 44. Lektio: Stehede Welle H. Zabel 38. Lektio: Schwiguge 1 15.Schwiguge Lerziel Stehede Welle etstehe aus der Überlagerug vo laufede Welle a feste oder lose Ede. Die Superpositio vo eilaufeder ud reflektierter

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studiekolleg ei de Uiversitäte des Freisttes Byer Üugsufge zur Vorereitug uf de Mthemtiktest . Polyomdivisio:. Dividiere Sie! ) ( 6 8 ):( ) Lös.: ) ( 9 7 0 8 9):(6 ) Lös.: 7 9 c) ( - ):() Lös.: d) (8 9

Mehr

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n)

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n) Übug &Praktikum zur digitale Nachrichtetechik Thema: Faltug Diskrete Faltug Wird ei zeitdiskretes Sigal ( T ) x mit Hile eies Sigalverarbeitugssystems oder eies Sigalverarbeitugsblocks weiter bearbeitet,

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213)

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213) A. Bertrd sches Seheprdoxo, Modellierug V Zwei Pukte zufällig i Kreis (S. /) I Abb..58 sid 5 Sehe gezeichet, vo dee 7 kürzer ls die Dreiecksseite sid. Die reltive Häufigkeit ist,8. Bei große Versuchszhle

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube FORMELSAMMLUNG ARITHMETIK y Mrcel Lue EINFÜHRUNG... DIE OPERATIONS-STUFEN... OPERATIONE 1. STUFE: ADDITION UND SUBTRAKTION... BEZEICHNUNGEN... VORZEICHENREGEL... RECHENOPERATION. STUFE... MULTIPLIKATION:...

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Monotonie einer Folge

Monotonie einer Folge Mootoie eier Folge 1 E Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Terme und Formeln Potenzen I

Terme und Formeln Potenzen I Terme ud Formel Poteze I Die Mrgrit philosophic ist die älteste gedruckte llgemeie Ezyklopädie us dem Jhr 0 i lteiischer Sprche. Ds Werk ethält ls Uiversits literrum ds gesmte Wisse des späte Mittellters.

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesug 8: Spektre periodischer Sigale Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma Spektre vo Sigale Eiführug Sigale köe auf uterschiedliche Arte beschriebe werde Zeitbereich

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses.

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses. Der Hz-Schwigkreis besteht aus eier Spule hoher Iduktivität ud eiem Kodesator. Wird ei solcher Schwigkreis kurzfristig mit elektrischer Eergie versorgt, so führt er eie stark gedämpfte Schwigug aus. Aufgezeichet

Mehr

Entstehen soll eine unendliche trigonometrische Reihe der Form n

Entstehen soll eine unendliche trigonometrische Reihe der Form n utoriu Mthe M Fourier Reihe & Fourier rsfortio. Fourier Reihe Die Fourier Reihe ist für die Medietechi ud speziell die Nchrichtetechi eie der wichtigste Eleete. Ds hägt dit zuse, dss sie es eröglicht,

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 00 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 I eiem Hadbuch zur Wetterkude fide Sie im Kapitel Erdatmosphäre die

Mehr

Kunming Metallurgy College Physik 2. Semester Frühjahr Skript Aufgaben Vokabular DE CH

Kunming Metallurgy College Physik 2. Semester Frühjahr Skript Aufgaben Vokabular DE CH Kumig Metallurgy College Physik 2. Semester Frühjahr 2015 Skript Aufgabe Vokabular DE CH Autor: Herbert Müller (herbert-mueller.ifo) Quelle: Physik-Skript 2. Semester der Hochschule Ahalt (D) wikipedia.org

Mehr

( ) a ) ( ) n ( ) ( ) ( ) a. n n

( ) a ) ( ) n ( ) ( ) ( ) a. n n Pre-Study 7 orste Shreier 77 Wiederholu Diese Fre sollte Sie ohe Skript etworte köe: W ist der Sius zw. der Cosius immer NULL? Ws versteht m uter eier Phsevershieu? Ws wird im Eiheitskreis sekreht /wereht

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 2010 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1.0 Lekt ma eie Schiffschaukel auf eie Afagshöhe vo 2,00

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Potenzen und Wurzeln

Potenzen und Wurzeln Poteze ud Wurzel.) Poteze mit türliche ud gze Epoete: Epoet Potez: Bsis Ei Produkt us gleiche Fktore lässt sich ls Potez schreie er: ( ) ( ) ( ) ( ) 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 (

Mehr

21 OM: Von der Änderung zum Bestand - Integralrechnung ga

21 OM: Von der Änderung zum Bestand - Integralrechnung ga 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga I diesem Olie-Mteril werde die Frge geklärt, wie weit der Formlismus ei der Etwicklug des Itegrls uszuführe ist ud wie eie schuliche Begrüdug des Huptstzes

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas).

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas). Etropie etrachtug vo wahrscheiliche ud uwahrscheiliche Zustäde eies Systems. A eispiel: Gas Vakuum Gas eide Zustäde habe die gleiche Iere Eergie (ideales Gas). Übergag vo ach A ist keie Verletzug des Eergiesatzes.

Mehr

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9 Techische Uiversität Müche SS 2006 Zetrum Mathematik Blatt 3 Prof. Dr. J. Hartl Dr. Haes Petermeier Dr. Corelia Eder Dipl.-Ig. Marti Nagel Höhere Mathematik 2 (Weihestepha). Jeder der Bewoher eies Stadtviertels

Mehr

Hans Walser, [ a] Approximation der Zykloide Idee: R. W., F.

Hans Walser, [ a] Approximation der Zykloide Idee: R. W., F. Has Walser, [2229a] Approximatio der Zykloide Idee: R. W., F. Abrolle eies regelmäßige -Ecks Wir rolle ei regelmäßiges -Eck auf eier Gerade ab ud verfolge de Weg eies partikuläre Eckpuktes. Beim Dreieck

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5 Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Blok Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeshltet!. Berehe Sie vo Hd: : 9 9. Berehe Sie vo Hd: / /. Zu welhe Zhleege ln,

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1 Mthemtik Grudlge Poteziere ud Rdiziere Mthemtik Grudlge für Idustriemeister Semirstude S-Std. (45 mi) Nr. Modul Theorie Üuge 4 Poteziere ud Rdiziere Ihlt 4 Poteziere ud Rdiziere... 4. Poteziere... 4..

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,

Mehr