Wichtige Systemstrukturen und deren Differenzialgleichungen (DGL):

Größe: px
Ab Seite anzeigen:

Download "Wichtige Systemstrukturen und deren Differenzialgleichungen (DGL):"

Transkript

1 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie 3 Systeme im Zeitbereich ( t ) 3. Allgemeines Wichtige Systemstrukturen und deren Differenzilgleichungen (DGL): ) Bsp.: OPV x e : u e x : u K p : V u = R 2 /R b) Bsp.: Vriometer im Flugzeug (Anzeige der Steig- und Sink-Geschwindigkeit) x e : Flugzeug-Höhe x : Zeigeruschlg

2 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie c) Bsp.: Wsser-Tnk x e : q = einströmende Wssermenge x : h = Füllhöhe im Tnk d) Bsp.: RC - Tiefpssfilter T = R C 2

3 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie e) Bsp.: RC - Hochpssfilter T = R C f) Bsp.: RLC - Glied 3

4 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie Generelles zu DGL:.) x (t), und dessen Ableitungen, befinden sich stets uf der.. Seite der DGL. x e (t), und dessen Ableitungen, befinden sich stets uf der.. Seite der DGL. 2.) Ableitungen von x (t), d.h. uf der linken Seite der DGL, kennzeichnen. (die dzu führen, dss der zu einem x e gehörende sttionäre Endwert für t zeitverzögert eintritt. Dies kennzeichnet Trägheit bzw. Speicherwirkung). 3.) Die höchste vorkommende Ableitung von x (t) kennzeichnet die Anzhl von..... im System. Die höchste vorkommende Ableitung von x (t) kennzeichnet die Anzhl von..... im System. Die höchste vorkommende Ableitung von x (t) kennzeichnet die... der DGL. Bsp. f): x ( t) DGL 2. Ordnung 2 Energiespeicher im System 2 Zeitkonstnten (T und T 2 ) 4.) llgemeine Form einer DGL, für ein System n-ter Ordnung: [ b jetzt: (t) weggelssen für Klrheit ] n n d x... 3 x 2 x x 0 x = b 0 x e b x e... b m d m x e * einzelne Terme können fehlen (dnn werden die entsprechenden Koeffizienten = 0 gesetzt) * für die korrekte Drstellung von Zeitkonstnten und Verstärkungsfktoren muss der 0 Koeffizient = sein! * für ndere Zwecke, z.b. der Überführung einer DGL in die Zustndsrumdrstellung, muss der - Koeffizient der höchsten vorkommenden Ableitung von x = sein. 4

5 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie 3.2 Aufstellen von DGL Prozedur in elektrischen Netzwerken: (im Bsp. mit Mschenstz, nur Msche).) Mschenstz ufstellen. 2.) Eingngsgröße ( u e ) uf die rechte Seite, lle nderen Terme uf die linke Seite der DGL. 3.) u über welchem Element entspricht der Ausgngsgröße ( u )? Diese u umbenennen in u. 4.) Generell: sobld in den folgenden Schritten Integrle uftuchen: gesmte DGL (lle Terme) differenzieren. 5.) Die u's über llen nderen Elementen müssen nun ls Funktion von u drgestellt werden. Die Gemeinsmkeit zwischen dem Element, über dem die u bfällt, und llen nderen Elementen in der Msche, ist der Strom in dieser Msche, denn dieser ist in llen Elementen der Msche gleich. Über diesen (gleichen) Mschenstrom knn die u, die über llen nderen Elementen bfällt, uf u umgeformt werden. Dzu: 5.) Die u über einem nderen Element so usdrücken, dss der i durch dieses Element sichtbr wird: u t uc = ic ul = L i R = R i R L C 0 5.b) Ersetze i (durch ds ndere Element) durch i welcher durch ds Element fließt, über dem u bfällt. z.b. RC-Tiefpss (C m Ausgng): ersetze i R durch i C 5.c) Stelle i durch ds u -Element so dr, dss u sichtbr wird. z.b. RC-Tiefpss: i C = C d uc = C u c = C u 5.d) 5. bis 5.c für lle nderen Elemente usführen (wenn noch ndere Elemente vorhnden sind). 6.) Zur korrekten Drstellung von Zeitkonstnten und Verstärkungsfktoren: DGL so umformen, dss der 0 Fktor = wird, d.h. lle Terme durch 0 dividieren. Formeln wichtigster elektrischer Buelemente: - für Widerstände: u = R R i R - für Kondenstoren: und uc = ic C t 0 i = C C u C - für Spulen: und ul = L i L i L = L t 0 u L 5

6 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie Beispiel zum Aufstellen einer DGL: gegebenes System: RC Tiefpssfilter 6

7 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie 3.3 Lösen einer DGL Die Lösung einer DGL ist der. der Ausgngsgröße x für t 0. Unterscheidung: * die Lösung einer homogenen DGL: x _h * die prtikuläre Lösung einer DGL: x _p * die gesmte Lösung einer DGL: x = x _h x _p ) die Lösung einer homogenen DGL Beschreibt ds Zeitverhlten des x llein ufgrund von... des Systems, nicht jedoch ufgrund eines Eingngssignls. Andere Bezeichnungen: - Eigenvorgng (us einem Anfngszustnd) -.. b) die prtikuläre Lösung einer DGL Beschreibt ds Zeitverhlten des x llein ufgrund eines spezifischen (prtikulären) (x e ), nicht jedoch ufgrund von Anfngsbedingungen. Anderen Bezeichnungen: - Erzwungener Vorgng (bei Erregung us dem Nullzustnd) -. c) die gesmte Lösung einer DGL Ergibt sich us der Überlgerung (d.h. der Addition) der Lösungen der homogenen DGL und der prtikulären Lösung der DGL: Denn, beides knn zugleich vorliegen: - eine Anfngsbedingung und - ein Eingngssignl x = x_h x_p 7

8 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie Beispiel zum Lösen einer DGL: gegebenes System: RC Tiefpssfilter.) Die Lösung der homogenen DGL: u _h =? 8

9 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie 2.) Die prtikuläre Lösung der DGL: u _p =? 9

10 Hochschule für Technik und Wirtschft Dresden Prof. Hns-Dieter Seelig, Ph.D. Fkultät Elektrotechnik Lehrvernstltung Systemtheorie 3.) Die gesmte Lösung der DGL: u =? 0

x x x Eine solche Verzweigung ist als Verzweigung der vom Signal getragenen Information

x x x Eine solche Verzweigung ist als Verzweigung der vom Signal getragenen Information 73 3.4.4 Signlflußplndrstellung Neben dem bisher behndelten rein mthemtischen Modellen in Gleichungsform zur Beschreibung des Signlübertrgungsverhltens dynmischer Systeme eistiert noch eine bildliche und

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

Elektro- und Informationstechnik SS Mathematik 1 - Übungsblatt 8 Lösungsvorschläge

Elektro- und Informationstechnik SS Mathematik 1 - Übungsblatt 8 Lösungsvorschläge Mthemtik 1 - Übungsbltt 8 Lösungsvorschläge Aufgbe 1 (Drehung von Koordintensystemen) Gegeben ist der Vektor =[x y ] T (Spltenvektor) im x-y-koordintensystem. Seine Komponenten sollen in dem um den Ursprung

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

täglich einmal Scilab (wenigstens)

täglich einmal Scilab (wenigstens) Dr. -ng. Wilfried Dnkmeier Elektro- und nformtionstechnik SS 2012 Mthemtik Mthemtik 1 - Übungsbltt 8 täglich einml Scilb (wenigstens) Aufgbe 1 (Drehung von Koordintensystemen) Gegeben ist der Vektor =[x

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

6.4 Die Cauchysche Integralformel

6.4 Die Cauchysche Integralformel Die Cuchysche Integrlformel 6.4 39 Abb 6 Integrtionswege im Fresnelintegrl r ir 2 r 6.4 Die Cuchysche Integrlformel Aus dem Cuchyschen Integrlst folgt eine fundmentle Formel für die Drstellung einer holomorphen

Mehr

Grundlagen der Algebra

Grundlagen der Algebra PH Bern, Vorbereitungskurs MATHEMATIK Vorkenntnisse 0 Grundlgen der Algebr Einleitung Auf den nchfolgenden Seiten werden grundlegende Begriffe und Ttschen der Algebr erläutert: Zhlenmengen, Rechenopertionen,

Mehr

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch Hilfsmittelfreie Aufgben us dem Mthemtik-Pool zum Abitur 015 T. Wrncke m301 Abi015_M_Pool1_A1 Anlysis Gegeben sind die in IR definierten Funktionen f, g und h durch ( ) f = + 1, ( ) 3 g = + 1 und ( ) 4

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

R. Brinkmann Seite Brüche, Terme und lineare Funktionen zur Vorbereitung einer Klassenarbeit. b)

R. Brinkmann  Seite Brüche, Terme und lineare Funktionen zur Vorbereitung einer Klassenarbeit. b) R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösungen Linere Funktionen VBKA I Brüche, Terme und linere Funktionen zur Vorbereitung einer Klssenrbeit E E ) + = 8 0 0 ) 5 5 = 6 b) 7 9 = 8 7 56 b) 5 :

Mehr

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =

Mehr

Die Group Method of Data Handling eine Verwandte der neuronalen Netze?

Die Group Method of Data Handling eine Verwandte der neuronalen Netze? Die Group Method of Dt Hndling eine Verwndte der neuronlen Netze? Fchhochschule Merseburg Beispiele für Anwendungen der GMDH : 2 Beispiele für Anwendungen der GMDH (2): 3 Beispiele für Anwendungen der

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Dirac sche Delta-Funktion

Dirac sche Delta-Funktion Anhng A Dirc sche Delt-Funktion Die Dirc sche Deltfunktion wurde 927 von Dirc eingeführt, ber erst im Jhre 950 von Schwrtz in seiner Distributionstheorie mthemtisch exkt ls Limes einer Funktionenreihe

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengng Wirtschftsingenieurwesen (Bchelor) Prktikum Grundlgen der Elektrotechnik und Elektronik ersuch Spnnungsteiler Teilnehmer: Nme ornme Mtr.-Nr. Dtum der ersuchsdurchführung: Spnnungsteiler

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() = Aufgbe : ( VP) Berechnen Sie ds Integrl ( ) 0 4 d Aufgbe : ( VP) Lösen Sie die Gleichung 4e + 6e = 4 Aufgbe

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

3 Zerlegen in Faktoren (Ausklammern)

3 Zerlegen in Faktoren (Ausklammern) 3 Zerlegen in Fktoren (Ausklmmern) 3.1 Einführung 3 + 3b = 3 ( + b) Summe Produkt Merke: Hben lle Summnden einer lgebrischen Summe einen gemeinsmen Fktor, so knn mn diesen gemeinsmen Fktor usklmmern. Die

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x...

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x... LINEARE GLEICHUNGSSYSTEME () x x x... x b n n () x x x... x b n n () x x x... x b n n.............. (m) x x x... x b m m m mn n m Inhltsverzeichnis Kpitel Inhlt Seite Bestimmung von Funktionstermen Ds

Mehr

Informatik 1. Zwischentest Freiwilliger Zwischentest zur Selbstevaluation

Informatik 1. Zwischentest Freiwilliger Zwischentest zur Selbstevaluation Fkultät Informtik Institut für technische Informtik, Professur für Mikrorechner Informtik Zwischentest Freiwilliger Zwischentest zur Selbstevlution ieser Test ist zur Selbsteinschätzung der ernleistungen

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2 Diskrete Energien 1. 8 entdeckten Mrc Fries und Andrew Steele uf einem Meteoriten sogennnte Crbon Whiskers, lnggestreckte Nnostrukturen us Kohlenstoff, von denen ngenommen wird, dss sie im Rum um junge

Mehr

4 Prozessor-Datenpfad

4 Prozessor-Datenpfad 4. Vom zu lösenden Prolem hängige Schltung 75 4 Prozessor-Dtenpfd 4. Vom zu lösenden Prolem hängige Schltung Mit den isher kennengelernten Schltungen können ereits viele Prolemstellungen gelöst werden.

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt:

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: .1 Multipliktion Die Multipliktion von lgerischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: c Multipliktor Multipliknd Produkt Kommuttivgesetz (Vertuschungsgesetz)

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Integralrechnung. Andreas Rottmann. 15. Oktober 2003

Integralrechnung. Andreas Rottmann. 15. Oktober 2003 Integrlrechnung Andres Rottmnn 15. Oktober 2003 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 1.1 Integrtion ls Umkehrung des Differenzierens........... 2 1.2 Integrtionsregeln...........................

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Signale und Systeme VL 7. LTI-Systeme und DGL

Signale und Systeme VL 7. LTI-Systeme und DGL LTI-Systeme und GL Zeitkontinuierliche LTI-Systeme Gegenüberstellung zeitkontinuierlich zeitdiskret Linere ifferenzengleichungen Übertrgungsfunktion Zusmmenfssung Übungen Litertur und Quellen 9.06.206

Mehr

A n n e xiii. Kugelförmiger Faraday-Käfig im Feld einer ebenen Welle

A n n e xiii. Kugelförmiger Faraday-Käfig im Feld einer ebenen Welle A n n e xiii Kugelförmiger Frdy-Käfig im Feld einer ebenen Welle Wir nehmen n, der Käfig hbe eine vollständig geschlossene, kugelförmige Metlloberfläche, und wollen ermitteln, welche Ströme in dieser Metlloberfläche

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Numerische Integration

Numerische Integration Numerische Integrtion Bei vielen Problemen des nturwissenschftlichen Rechnens treten Integrle uf, die nicht in expliziter Form drgestellt werden können, sei es, dß kein geschlossener Ausdruck für eine

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

5.2 Quadratische Gleichungen

5.2 Quadratische Gleichungen Mthemtik mit Mthd MK..0 0_0_Qud_Gleih.xmd Einfhe qudrtishe Gleihungen. Qudrtishe Gleihungen ef.: Eine Gleihung, in der x höhstens qudrtish (in der zweiten Potenz) vorkommt, heißt qudrtishe Gleihung. Gewöhnlihe

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschften Seitenverhältnisse und Winkel in rechtwinkligen Dreiecken Beispiel: Wenn in einem Dreieck ABC zum Beispiel die Seite genu so

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeprtment E13 WS 211/12 Üungen zu Physik 1 für Mschinenwesen Prof. Dr. Peter Müller-Buschum, Dr. Ev M. Herzig, Dr. Volker Körstgens, Dvid Mgerl, Mrkus Schindler, Moritz v. Sivers Vorlesung 24.11.211,

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Abitur 2018 Mathematik Geometrie VI

Abitur 2018 Mathematik Geometrie VI Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität 1. Einleitung 1.1 Technische Informtik 1.2 Systemgrundlgen 1.3 Systemeinteilung SS 2002 Technische Informtik 2 Einleitung 1 1.1 Technische Informtik Eingebettete Systeme Heterogene Systeme Hrdwre/Softwre

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

16.5 Lösungen zu den Unterrichtsmaterialien

16.5 Lösungen zu den Unterrichtsmaterialien Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Aufgbe 1 Erstelle mit frbigen Büroklmmern Modelle für die in Tbelle 16.6 (in Unterrichtsmterilien) gezeigten DNA-Teilstränge des Hämoglobins

Mehr

Zustand eines digitalen Systems. FB Technologie und Management. Negation, Disjunktion, Konjunktion. Datenverarbeitung 1 (Kapitel 4 Boolesche Algebra)

Zustand eines digitalen Systems. FB Technologie und Management. Negation, Disjunktion, Konjunktion. Datenverarbeitung 1 (Kapitel 4 Boolesche Algebra) FB Technologie und Mngement Zustnd eines digitlen Sstems Schltnetz Dtenverrbeitung 1 (Kpitel 4 Boolesche Algebr) x1 x2 x3 x n =f(x1xn) x1 x2 x3 x n k =f k (x1xn) 1 2 3 m 1 2 Pegelbereiche Signlbereiche

Mehr

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3 Bruchrechnung W. Kippels 6. Dezemer 08 Inhltsverzeichnis Vorwort Einleitung Die Bruchrechenregeln. Addition gleichnmiger Brüche........................ Addition ungleichnmiger Brüche.......................

Mehr

Abb. 1: Klassische Rhombenfigur

Abb. 1: Klassische Rhombenfigur Hns Wlser, [216931] Rhombenfiguren 1 Worum geht es Es wird ein Beispiel einer Rhombenfigur vorgestellt, bei der im grfentheoretischen Sinne jeder Punkt den Grd 4 ht. 2 Problemstellung: Grd 4 Die Abbildung

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

Lösungsvorschlag zur 9. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 9. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Ptrizio Neff.6. Lösungsvorschlg zur 9. Husüung in Anlysis II im SS Husufge (6+8+8+8+6+8 Punkte): Berechnen Sie folgende Integrle, sofern sie existieren.

Mehr

1. Einpoliger Erdschluss a. Bestimmen Sie die Elemente der Ersatzschaltung im Mit-, Gegen- und Nullsystem.

1. Einpoliger Erdschluss a. Bestimmen Sie die Elemente der Ersatzschaltung im Mit-, Gegen- und Nullsystem. Lösungen zur schriftlichen Prüfung us VO Energieversorgung m 9.04.20 Hinweis: Bei den Berechnungen wurden lle wischenergebnisse in der technischen Nottion (Formt ENG ) drgestellt und uf drei Nchkommstellen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

2 Der Grundgedanke der Methode der Finiten Elemente

2 Der Grundgedanke der Methode der Finiten Elemente Der Grundgednke der Methode der initen Elemente Der Grundgednke der E-Methode sei n einem einfchen chwerk (Bild -) erläutert. ür dieses seien die Verschiebungen der Knotenpunkte und die Normlkräfte unter

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Die Versiera der Agnesi

Die Versiera der Agnesi Vermischte Aufgben: Anlysis und Geometrie S.. 1 Die Versier der Agnesi Am 16. Mi 014 zeigte Google ls Erinnerung n den 96. Geburtstg der itlienischen Mthemtikerin Mri Getn Agnesi ein sogennntes Doodle.

Mehr

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS GS 0.06.207 - m7_3t-_lsg_cas_gs.pdf Abiturprüfung 207 - Mthemtik 3 Technik A I - Lösung mit CAS Teilufgbe Gegeben sind die Funktionen f mit f ( ) Definitionsmenge D f IR. mit IR \ {0} und der e Teilufgbe.

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Massendichte und Massenzunahme des Weltalls

Massendichte und Massenzunahme des Weltalls rtin Bock Diefflen, 700 ssendichte und ssenzunhme des Weltlls Ich will den Nmen meinen Brüdern verkünden, inmitten der emeinde dich preisen Die ihr den Herrn fürchtet, preist ihn, ihr lle vom Stmm Jkobs,

Mehr

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 7: Berechnung von Ein- und Umschaltvorgängen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Ein- und Umschaltvorgänge Einführung Grundlagen der Elektrotechnik

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Universität Ulm Abgabe: Freitag,

Universität Ulm Abgabe: Freitag, Universität Ulm Abgbe: Freitg, 19.06.2009 Prof. Dr. W. Arendt Robin Nittk Sommersemester 2009 Punktzhl: 38+7 13. Zeige: Lösungen Prtielle Differentilgleichungen: Bltt 5 Sei (, b) ein reelles Intervll.

Mehr