4 Prozessor-Datenpfad

Größe: px
Ab Seite anzeigen:

Download "4 Prozessor-Datenpfad"

Transkript

1 4. Vom zu lösenden Prolem hängige Schltung 75 4 Prozessor-Dtenpfd 4. Vom zu lösenden Prolem hängige Schltung Mit den isher kennengelernten Schltungen können ereits viele Prolemstellungen gelöst werden. Nchfolgende Schltung löst die Qudrtische Gleichung x + x + c =. Die Ausgänge R und R geen n, o ds Ergenis zwei reelle Lösungen ht (R =R =, eine reelle Lösung ht (R =, R =) oder keine reelle Lösung ht (R =, R =). DIV / x 4 4 4c SUB- 4c p X p 4c SUB - DIV / x SUB- - ADD n R c R Ds Prolem (qudrtische Gleichung lösen) wird durch die verwendeten Komponenten (Multiplizierer, Addierer,...) und deren Verknüpfungen (z.b. ein Eingng von Multiplizierer ist mit der Zhl verknüpft, der ndere mit,...) gelöst. Soll ein nderes Prolem gelöst werden, enötigt mn ndere Verknüpfungen und ggf. uch ndere Komponenten. Während die Anzhl der Komponenten sowie die

2 76 4 Prozessor-Dtenpfd möglichen Verknüpfungen generell uneschränkt sind, ist die Menge der enötigten unterschiedlichen Rechenkomponenten {Addierer, Sutrhierer,...} sehr üerschur. Diese geringe Menge unterschiedlicher Rechenkomponenten ermöglicht es, Rechen- Schltungen zu uen, die unhängig vom zu lösenden Prolem sind, sog. Universlrechner. 4. Universlrechner: Schltung unhängig vom Prolem Allgemein Bei einem Universlrechner wird die gemischt prllel/serielle Struktur der Prolemlösung (vgl. oige Schltung) serilisiert und der Reihe nch in einzelnen Schritten ereitet. Die durch die Serilisierung nfllenden Zwischenergenisse werden in Speicherelementen (Register, Areitsspeicher) gesichert. Die Verknüpfung der einzelnen Rechenkomponenten (vgl. oige Aildung) entsteht ddurch, dss für jeden Serilisierungs-Schritt usgewählt wird, welche Werte/Zwischenergenisse von welchen Rechenkomponenten verwendet werden sollen und in welchem Speicherelement ds Ergenis gelegt werden soll. Durch die Serilisierung muss jede zur Prolemlösung enötigte rithmetische Komponente nur einml vorhnden sein. Beispiel-Schltung Nchfolgende Aildung zeigt einen solchen Universlrechner. Arithmetische Schltungen Auf der rechten Seite efinden die rithmetischen Schltungen, die der Rechner verwenden knn. Jede enötigte rithmetische Opertion wird durch genu eine entsprechende Schltung repräsentiert. Register ls Quell-Opernden R, R,..., R7 sind Register, in denen die (Zwischen-) Ergenisse gelegt werden können. Mit M und werden Opernden usgewählt, die von den rithmetischen Schltungen verreitet werden sollen. Ht z.b. M den Wert und den Wert, werden die Inhlte von Register R und R4 n die rithmetischen Schltungen ngelegt. Die Eingänge der rithmetischen Schltungen sind lle miteinnder verunden, d.h. die Opernden liegen n llen Schltungen gleichzeitig n.

3 4. Universlrechner: Schltung unhängig vom Prolem 77 Auswhl der Rechenopertion Die Auswhl der Rechenopertion (Addition, Sutrktion,...) erfolgt durch Auswhl des entsprechenden Ergenisses mittels M. Ht z.b. M den Wert und M den Wert, dnn wird ds von Addierer A erechnete Ergenis n die Eingänge ller Register R, R,... R7 gleichzeitig ngelegt. Aspeichern des Ergenisses, Register ls Ziel-Opernd In welches Register ds Additions-Ergenis üernommen werden soll, wird durch den Demultiplexer D festelegt. Ht z.b. D den Wert 4, so wird der invertierte Tkt clk n den Tkteingng von Register R4 ngelegt und Register R4 üernimmt ds Ergenis. Alle nderen Register werden nicht getktet und ehlten somit ihren ursprünglichen Wert. clk reset c BZ M R D D4 D D D D D9 D8 D7 A7 D6 D5 A D4 D D D D Add M M A K D M M M D R7 R6 R5 R4 R R R R MSB M n- 7 A 6 ADD 5 4 SUB - M DIV / 4 p X n M 4 5 M

4 78 4 Prozessor-Dtenpfd Befehlswort-Konstnten Im Befehlswort können in den Bits 4 is Konstnten gelegt werden. Um diese Konstnten in ein Register zu schreien, wird M uf und M uf gesetzt und ds entsprechende Register üer den Demultiplexer D getktet. In der Schltung wird ds MSB uf die oeren n- Bits (n ist die Registerwortreite) erweitert. Ddurch wird ei negtiven Zhlen (er-komplement) ds Vorzeichen eiehlten. Eingänge Der Rechner verfügt üer drei Eingänge, und c, die üer M mit den Registern R, R,... R7 verunden werden können. Soll z.b. der n Eingng nliegende Wert in Register R6 üernommen werden, wird M uf und D uf 6 gesetzt. Bei einer fllenden Flnke des Signls clk entsteht dnn n R6 eine steigende Flnke und ds m Eingng nliegende Dtenwort wird in Register R6 üernommen. ROM: Speichern der Befehlsworte, Progrmme Die Signle von M, M, M, und D kommen us dem ROM R. Die in ROM R gespeicherten Dtenworte legen lso fest, welche Register-Inhlte ls Opernden n die rithmetischen Schltungen ngelegt werden, in welches Register ds Ergenis üernommen wird zw. welcher Eingng,, c in welchem Register gespeichert werden soll. Die im ROM gespeicherten Dtenworte werden deswegen uch Befehlsworte gennnt. Üer den Adresseingng A,... A7 wird usgewählt, welcher Befehl usgeführt werden soll. Die Auswhl erfolgt üer ds Register BZ, dem Befehlszähler. Im Befehlszähler ist die Adresse des gerde usgeführten Befehls gelegt. Bei einer positiven Flnke n der Leitung clk und reset = wird der Befehlszähler durch den Addierer A immer um den Wert erhöht, d.h. es wird der im Speicher der uf den ktuellen Befehl folgende Befehl usgeführt. Im Fll reset = wird ei einer steigenden Flnke uf der Leitung clk der Befehlszähler uf gesetzt, d.h. es wird der n Adresse stehende Befehl usgeführt. Die Menge der im ROM gespeicherten uszuführenden Befehlsworte wird Progrmm gennnt. Tktsignl clk Ds Tktsignl clk treit die Schltung n. Mit jeder steigenden Flnke wird der Befehlszähler BZ so geändert, dss der nächste uszuführende Befehl dressiert wird. Ds entsprechende Befehlswort liegt dnn m Ausgng des ROMs R n und schltet üer die Multiplexer M, M, M, und den Demultiplexer D die gewünschten Dtenpfde frei. Bei der druf folgenden fllenden Flnke wird ds erechete zw. usgewählte Ergenis in ds durch D spezifizierte Register üernommen, d durch den Inverter n dem

5 4. Universlrechner: Schltung unhängig vom Prolem 79 usgewählten Register dnn eine steigende Flnke nliegt. Die Üernhme des Ergenisses ei fllender clk-flnke wird ei der gezeigten Schltung dzu verwendet, die Setup- und Hold-Zeiten der Register einzuhlten. So knn sichergestellt werden, dss sich die n den Registern R,... R7 nliegenden Werte unmittelr vor und unmittelr nch der Üernhme des Ergenisses nicht ändern. Nchfolgende Aildung zeigt den durch ds clk-signl festgelegten zeitlichen Aluf. enötigte Setup-Zeit enötigte Hold-Zeit enötigte Setup-Zeit enötigte Hold-Zeit Zeitpunkt, zu dem ds Ergenis in R, R7 üernommen wird Auswhl der Opernden durch M und, Durchführen Berechnungen (duert in Ahängigkeit der durchzuführenden Opertion unterschiedlich lnge), Auswhl des gewünschten Ergenisses durch M, weiterleiten des Ergenisses durch M, Anpssung des clk-pfds durch D. Zeitpunkt, zu dem ds Ergenis in R, R7 üernommen wird Auswhl der Opernden durch M und, Durchführen Berechnungen (duert in Ahängigkeit der durchzuführenden Opertion unterschiedlich lnge), Auswhl des gewünschten Ergenisses durch M, weiterleiten des Ergenisses durch M, Anpssung des clk-pfds durch D. Zeitpunkt, zu dem der Befehlszähler BZ ktulisiert wird und ds neues Befehlswort m ROM-Ausgng nliegt. A diesem Zeitpunkt werden durch ds geänderte Befehlswort ndere Opernden usgewählt, die dnn durch die rithmetischen Schltungen lufen. Zeitpunkt, zu dem der Befehlszähler BZ ktulisiert wird und ds neues Befehlswort m ROM-Ausgng nliegt. A diesem Zeitpunkt werden durch ds geänderte Befehlswort ndere Opernden usgewählt, die dnn durch die rithmetischen Schltungen lufen.

6 8 4 Prozessor-Dtenpfd Aufgen Verständnisfrgen ) Wozu dienen die Multiplexer M und? Auswhl der Opernden. Die Multiplexer verinden die eiden durch die Steuerleitungen M und usgewählten Register mit einem Opertor-Eingng der rithmetischen Schltungen. ) Wie wird ei dem Rechner usgewählt, welche Opertion (Addieren, Sutrhieren, Multiplizieren,...) usgeführt werden soll? Es werden utomtisch immer lle Opertionen durchgeführt, d.h. Addition, Sutrktion, Multipliktion,... werden gleichzeitig usgeführt. Durch M wird jedoch nur eins der usgerechneten Ergenisse zur Aspeicherung weitergeleitet. c) Welche Funktion ht der Multiplexer M? Auswhl des Eingngs oder des erechneten Ergenisses zur Aspeicherung in ein Ziel-Register. d) Wozu dient der Demultiplexer D? Um Dten in ein Register zu schreien, muss n dem etreffenden Register eine steigende Flnke m Tkt-Eingng nliegen. Der Demultiplexer dient dzu, ds n seinem Eingng nliegende Tktsignl usschließlich n dsjenige Register weiterzuleiten, ds durch die Bits D, D und D im Befehlswort dzu festgelegt wurde.

7 4. Universlrechner: Schltung unhängig vom Prolem 8 e) Wozu dient der Inverter? Der Inverter invertiert ds Tktsignl. Aus einer steigenden Flnke mcht der Inverter lso eine fllende, und us einer fllenden Flnke eine steigende Flnke. Dmit findet ds Schreien von Ergenissen in die Register R,... R7 ei einer fllenden clk-flnke sttt, zeitlich lso mximl weit entfernt von den Zeitpunkten, n denen ein neues Befehlswort m ROM-Ausgng nliegt, ndere Opernden usgewählt werden, Ergenisse erechnet werden und diese Ergenisse dnn n die Register-Eingänge weitergeleitet werden. Auf diese Weise werden die Setupund Hold-Zeiten der Register R,... R7 eingehlten, d.h. die n den Registern R,... R7 nliegenden Dten ändern sich unmittelr vor zw. unmittelr nch einer steigenden Flnke n R,... R7 nicht mehr. f) Wozu dient ds Register BZ? Ds Register BZ ist der sog. Befehlszähler. Im Befehlszähler ist die Adresse des gerde uszuführenden Befehls gelegt. g) Wozu dient der Addierer A? Mit jeder steigenden Flnke m Eingng clk (und reset = ) wird durch den Addierer der im Register BZ stehende Wert um erhöht. Als Folge wird m Ausgng des ROMs ds ls nächstes uszuführende Befehlswort usgegeen. h) Wozu dient der Multiplexer M? Mit dem Multiplexer M knn in Ahängigkeit des Signls reset der Befehlszähler BZ mit initilisiert werden, d.h. ds Progrmm n einer definierten Adresse gestrtet werden?

8 8 4 Prozessor-Dtenpfd i) Wozu wird im oeren rechten Teil der Schltung ds Bit D uf die n Bits... n erweitert? Die Register hen mit eine Wortreite von n Bit. Der Direktopernd ist Bit reit. Mit der gezeigten Erweiterung wird dfür gesorgt, dss die oeren n Bits einen definierten Wert hen. D ds MSB ds Vorzeichen ngit und positiven Zhlen unendliche viele -er und negtiven Zhlen unendlich viele -er vorstehen, knn durch diese Erweiterung die Wortreite ngepsst werden, ohne dss sich der durch die Bitkomintion repräsentiert Wert ändert. Gegeen sind die folgenden Signllufzeiten der rithmetischen Schltungen: Addierer = ns; Sutrhierer = ns; Multiplizierer = 5 ns; Dividierer = 9 ns; Wurzel = 9 ns. j) Wie hoch drf der Rechner mximl getktet werden, wenn die Setup-Zeit ns und die Hold-Zeit 5 ns eträgt? clk-signl kritisch: Zeit zwischen steigender und fllender Flnke unkritisch: Zeit zwischen fllender und steigender Flnke Mximle Zeit: Zeit für Division/Wurzel + Setup-Zeit = 9ns +ns = ns Gesmte Periode: ns = ns Frequenz: µs, MHz; 5 ml so schnell ) 5MHz clk-signl: kritische Zeit: zwischen steigender und fllender Flnke; unkritische Zeit: zwischen fllender und steigender Flnke;

9 4. Universlrechner: Schltung unhängig vom Prolem 8 k) In der CMOS-Technik wird viel Strom ei Pegelüergängen verrucht, d dnn Vcc für einen kurzen Zeitrum vergleichsweise niederohmig mit Msse verunden ist. Wie könnte mn die gezeigte Schltung hinsichtlich dieses Stromverruchs veressern? Bei der gezeigten Schltung liegen nch Auswhl der Opernden n llen rithmetischen Schltungen häufig neue/geänderte Opernden n. Die geänderten Eingngs-Opernden führen ei den rithmetischen Schltungen utomtisch dzu, dss innerhl dieser Schltungen viele Pegelwechsel uftreten. Ds liegt drn, dss ei geänderten Opernden sich uch ds Ergenis ändert und für die Berechnung Pegelwechsel durchgeführt werden. Sold die geänderten Eingngssignle lle Pfde der rithmetischen Schltung durchlufen hen und ds Ergenis erechnet wurde, erreicht die rithmetische Schltung einen sttionären Zustnd, d.h. es treten keine (viel Strom enötigende) Änderungen mehr uf. Eine Möglichkeit zur Reduktion des Stromverruchs wäre lso, dfür zu sorgen, dss keine unnötigen Berechnungen durchgeführt werden müssen. Ds knn ddurch erreicht werden, dss vor die Eingänge jede rithmetische Schltung ein Puffer-Register plziert wird und neue Opernden nur in die Puffer-Register derjenigen rithmetischen Schltung gelden werden, deren Ergenis dnn uch verwendet/gespeichert wird.

10 84 4 Prozessor-Dtenpfd Progrmmierufgen Qudrtische Gleichung In diesem Aschnitt soll für den Universlrechner ein Progrmm zur Berechnung von x, = ± p 4 c erstellt werden. Nchfolgende Aildung zeigt noch einml den Universlrechner. clk reset c BZ M R D D4 D D D D D9 D8 D7 A7 D6 D5 A D4 D D D D Add M M A K D M M M D R7 R6 R5 R4 R R R R MSB M n- 7 A 6 ADD 5 4 SUB - M DIV / 4 p X n M 4 5 M

4 Prozessor-Datenpfad

4 Prozessor-Datenpfad 4 Vom zu lösenden Prolem hängige Schltung 75 4 Prozessor-Dtenpfd 4 Vom zu lösenden Prolem hängige Schltung Mit den isher kennengelernten Schltungen können ereits viele Prolemstellungen gelöst werden Nchfolgende

Mehr

4.1 Vom zu lösenden Problem abhängige Schaltung Vom zu lösenden Problem abhängige Schaltung

4.1 Vom zu lösenden Problem abhängige Schaltung Vom zu lösenden Problem abhängige Schaltung 4 Vom zu lösenden Prolem hängige Schltung 9 4 ProzessorDtenpfd 4 Vom zu lösenden Prolem hängige Schltung Mit den isher kennengelernten Schltungen können ereits viele Prolemstellungen gelöst werden Nchfolgende

Mehr

4.2 Universalrechner: Schaltung unabhängig vom Problem 193

4.2 Universalrechner: Schaltung unabhängig vom Problem 193 4 Universlrechner: Schlung unhängig vom Prolem 9 Auswhl der Rechenoperion ie Auswhl der Rechenoperion (Addiion, Surkion, ) erfolg durch Auswhl des ensprechenden Ergenisses miels M H zb M den Wer und M

Mehr

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

1. Grundlagen der Informatik Digitale Systeme

1. Grundlagen der Informatik Digitale Systeme 1. Grundlgen der Informtik Inhlt Grundlgen digitler Systeme Boolesche Alger / Aussgenlogik Orgnistion und Architektur von Rechnern Zhlensysteme und interne Zhlendrstellung Algorithmen, Drstellung von Algorithmen

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik VU Technische Grundlgen der Informtik Üung 3: Schltnetze 83.579, 205W Üungsgruppen: Mo., 6.. Mi., 8..205 Allgemeiner Hinweis: Die Üungsgruppennmeldung in TISS läuft von Montg, 09.., 20:00 Uhr is Sonntg,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung 0. Motivtion und Einordnung 1. Endliche Automten 2. Formle Sprchen 3. Berechnungstheorie 4. Komplexitätstheorie 1.1. 1.2. Minimierungslgorithmus 1.3. Grenzen endlicher Automten 1/1, S. 1 2017

Mehr

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3 Bruchrechnung W. Kippels 6. Dezemer 08 Inhltsverzeichnis Vorwort Einleitung Die Bruchrechenregeln. Addition gleichnmiger Brüche........................ Addition ungleichnmiger Brüche.......................

Mehr

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen.

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen. Üungen zur Vorlesung Technische Informtik I, SS 2 Strey / Guenkov-Luy / Prger Üungsltt 3 Asynchrone Schltungen / Technologische Grundlgen / Progrmmierre Logische Busteine Aufge : Diskutieren Sie die Unterschiede

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt:

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: .1 Multipliktion Die Multipliktion von lgerischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: c Multipliktor Multipliknd Produkt Kommuttivgesetz (Vertuschungsgesetz)

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 5.0.208 Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS 207/8) Ich

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

3.2 Halbaddierer (HA)

3.2 Halbaddierer (HA) 3.2 Hlddierer (HA) 137 3.2 Hlddierer (HA) Ein Hlddierer it eine Schltung, die zwei Eingng-Bit und zu einem Summen- Bit i und einem Üerluf-Bit (c wie crry = Üerluf) ddiert. Eingng Eingng Summe i Üerluf

Mehr

Wirtschaftsmathematik 00053: Mathematik für Wirtschaftswissenschaftler I Kurseinheit 2: Lineare Algebra II. Autor: Univ.-Prof. Dr.

Wirtschaftsmathematik 00053: Mathematik für Wirtschaftswissenschaftler I Kurseinheit 2: Lineare Algebra II. Autor: Univ.-Prof. Dr. Wirtschftsmthemtik 0005: Mthemtik für Wirtschftswissenschftler I Kurseinheit : Linere Alger II Leseproe Autor: Univ.-Prof. Dr. Wilhelm Rödder 5. Linere Gleichungssysteme und Mtrixgleichungen So verwundert

Mehr

Leitfaden MSC 4.0 MSC TAPI Dokumentation

Leitfaden MSC 4.0 MSC TAPI Dokumentation 1. Instlltion der Jv 64Bit Version Seite 1/7 Um die TAPI Schnittstelle nutzen zu können, enötigen Sie die Jv Version 64Bit. Die ktuelle Version finden Sie unter diesem Link http://www.orcle.com/technetwork/jv/jvse/downlods/jre8-downlods-2133155.html.

Mehr

Lineare Gleichungen mit Parametern

Lineare Gleichungen mit Parametern - - Linere Gleichungen mit Prmetern Neen den lineren Gleichungen mit einer Vrilen zw. einem Pltzhlter existieren uch Gleichungen, die mehrere Uneknnte einhlten. Dei wird die Vrile, die mithilfe von Äquivlenzumformungen

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   FRIEDRICH W. BUCKEL Algerische Kurven. Ordnung ohne x-glied Üersicht üer lle möglichen Formen und Gleichungen Text Nr. 5301 DEO tnd 1. Juli 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR CHULATHEATIK 5301 Algerische Kurven.

Mehr

Kaskadierung von Carry-Look-Ahead-Schaltungen

Kaskadierung von Carry-Look-Ahead-Schaltungen 35 Crr-Look-Ahed 15 Kkdierung von Crr-Look-Ahed-Schltungen Mit einer Kkdierung knn der mit großer Wortreite einhergehenden großen Anzhl n Gttern entgegengewirkt werden Dzu werden Crr-Look-Ahed-Schltungen

Mehr

3.7 Kombinatorischer Multiplizierer Addition und Subtraktion von Gleitkommazahlen

3.7 Kombinatorischer Multiplizierer Addition und Subtraktion von Gleitkommazahlen . 3.7 Komintoricher Multiplizierer 137 Bethnl : 1. 321 1+2.10+3.100=6 3.6 Addition und Sutrktion von Gleitkommzhlen Zur Addition von Gleitkommzhlen wird uf Fetkomm-Addierer und -Sutrhierer zurückgegriffen.

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtisches Institut Prof. Dr. F. Vllentin Dr. A. Gundert Einführung in die Mthemtik des Opertions Reserch Aufge (5+5= Punkte) Sommersemester 4 Lösungen zur Klusur (5. Septemer 4).

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44 Technische Universität München Winter 08/9 Prof. J. Esprz / Dr. M. Luttenerger, C. Welzel 08//0 HA- TA- Diskrete Strukturen Tutorufgenltt Besprechung in KW Bechten Sie: Soweit nicht explizit ngegeen, sind

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5. Einführung Die Gleichung x 9 ht die Lösung. x 9 Z 9 x Die Gleichung x ht die Lösung. x Z x Definition Die Gleichung x, mit, Z und 0, ht die Lösung: x x Ist kein Vielfches von, so entsteht eine neue

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

g) Bestimmen Sie für Fan-In = 4 die Anzahl der Gatterlaufzeiten der Carry-Look- Ahead-Einheit von den Eingängen zu den Ausgängen C 3, GG 0 und PP 0.

g) Bestimmen Sie für Fan-In = 4 die Anzahl der Gatterlaufzeiten der Carry-Look- Ahead-Einheit von den Eingängen zu den Ausgängen C 3, GG 0 und PP 0. 3.5 Crry-Look-Ahed 149 g) Betimmen Sie für Fn-In 4 die Anzhl der Gtterlufzeiten der Crry-Look- Ahed-Einheit von den Eingängen zu den Augängen C 3, GG 0 und PP 0. 2T Ppo T GG. 2T h) Skizzieren Sie für Fn-In

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Dividend / Divisor = Quotient + Rest 9876 : 0054= : 0054= = -10 (negativ bleibt bei 1 mal) 4476 : 0054=018

Dividend / Divisor = Quotient + Rest 9876 : 0054= : 0054= = -10 (negativ bleibt bei 1 mal) 4476 : 0054=018 78 Arithmetische Schaltungen Division Allgemein Bei der Division gilt allgemein: Dividend / Divisor = Quotient + Rest Division zur Basis, wie in der Schule gelernt: 9876 : 54= Runde Teildividend = 9 Passt

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 3

Algorithmen und Datenstrukturen 1 Kapitel 3 Algorithmen und Dtenstrukturen 1 Kpitel 3 Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2008/2009 Kpitel 3: Mschinenmodelle [Dieses Kpitel hält sich eng n ds empfohlene

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c))

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c)) Boolsche Alger In dieser Aufge soll noch einml der Umgng mit der Boolschen Alger geuet werden. Zur Erinnerung deshl hier zunechst noch einml die grundlegenden Regeln (Nummerierung entsprechenend den GTI-Folien):

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Zustand eines digitalen Systems. FB Technologie und Management. Negation, Disjunktion, Konjunktion. Datenverarbeitung 1 (Kapitel 4 Boolesche Algebra)

Zustand eines digitalen Systems. FB Technologie und Management. Negation, Disjunktion, Konjunktion. Datenverarbeitung 1 (Kapitel 4 Boolesche Algebra) FB Technologie und Mngement Zustnd eines digitlen Sstems Schltnetz Dtenverrbeitung 1 (Kpitel 4 Boolesche Algebr) x1 x2 x3 x n =f(x1xn) x1 x2 x3 x n k =f k (x1xn) 1 2 3 m 1 2 Pegelbereiche Signlbereiche

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

6. Spezielle Wahrscheinlichkeitsverteilungen

6. Spezielle Wahrscheinlichkeitsverteilungen 6. Sezielle Whrscheinlichkeitsverteilungen Bisher wurden Whrscheinlichkeitsverteilungen in einer llgemeinen Form drgestellt. In der Pris treten häufig gnz estimmte Whrscheinlichkeitsverteilungen uf, die

Mehr

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen

Mehr

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen.

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen. Üungen zur Vorlesung Technische Informtik I, SS 2 Huck / Guenkov-Luy / Prger / Chen Üungsltt 3 Asynchrone Schltungen / Technologische Grundlgen / Progrmmierre Logische Busteine Aufge : Diskutieren Sie

Mehr

Ausgleichsfunktionen / Interpolation / Approximation

Ausgleichsfunktionen / Interpolation / Approximation HTL Slfelden Ausgleichsfuntionen Seite von 5 Wilfried Rohm, HTL Slfelden Zur Beispielsüersicht Ausgleichsfuntionen / nterpoltion / Approximtion Führen Sie zunächst eine Begriffslärung der oigen Begriffe

Mehr

Universität Heidelberg 13. Oktober 2016 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Nadine Losert

Universität Heidelberg 13. Oktober 2016 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Nadine Losert Universität Heidelerg 13. Oktoer 2016 Institut für Informtik Prof. Dr. Klus Amos-Spies Ndine Losert Zweite Klusur zur Vorlesung Einführung in die Theoretische Informtik Es können mximl 60 Punkte erworen

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

Dreireihige Determinanten

Dreireihige Determinanten LINEARE ALGEBRA Teil 3 3 Gleichungen mit 3 Uneknnten Gleichungen und Gleichungssysteme Dreireihige Determinnten Dtei Nr. 6 03 Stnd 6. Oktoer 04 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 603 Linere Alger 3

Mehr

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen Prof. Dr. H. Brenner Osnrück WS 2014/2015 Vorkurs Mthemtik Vorlesung 3 Die rtionlen Zhlen Definition 3.1. Unter einer rtionlen Zhl versteht mn einen Ausdruck der Form, woei, Z und 0 sind, und woei zwei

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem - Partnerrechnen im 10. Schuljahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem - Partnerrechnen im 10. Schuljahr Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: - Prtnerrechnen im. Schuljhr Ds komplette Mteril finden Sie hier: School-Scout.de Mthe-Tndem für ds. Schuljhr Potenzen:. Potenzgesetze

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

5. Homotopie von Wegen

5. Homotopie von Wegen 28 Andres Gthmnn 5. Homotopie von Wegen In der Prxis wird der Cuchysche Integrlstz meistens in einer äquivlenten Umformulierung verwendet, die wir nun genuer ehndeln wollen. Anschulich esgt sie, dss Wegintegrle

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2017W) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2017W) Lösung Theoretische Informtik und Logik Üungsltt 2 (207W) en Aufge 2. Geen ie jeweils eine kontextfreie Grmmtik n, welche die folgenden prchen erzeugt, sowie eine Linksleitung und einen Aleitungsum für ein von

Mehr

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 2.7.24 Klusur üer den Stoff der Vorlesung Grundlgen der Informtik II (9 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (SS 24) Ich estätige,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k

Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k Grundlgen der Informtik II Prüfung 23.7.212 SS 212 1 Aufg./15 pges 2 Aufge 1. Endliche Automten (1 Punkte) / 1 Gegeen seien die folgenden Sprchen L und ihr Komplement L: k L = w {, } w = n ( m i ) = n

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments von Jule Menzel, 12Q4 5) Lplce-Whrscheinlichkeit eines ufllsexperiments Ergenis ω 1 ω 2 ω 3 ω 4 ω 1 Ω ω 2 ω 3 ω 4 Ergenismenge ist ein Ereignis ist Teilmenge von Ω kurz: c Ω Ws ist ein Ereignis? Beispiel:

Mehr

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch.

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch. Vorlesung Theoretische Informtik Sommersemester 2017 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht grntiert, und einige sind umfngreicher ls klusurtypisch. 1.

Mehr

Automaten mit dot erstellen

Automaten mit dot erstellen Automten mit dot erstellen 1 Ws ist dot? dot ist ein Progrmm zum Kompilieren von dot-dteien in verschiedene Grfikformte, sowie der Nme einer Sprche, mit der mn Grphen spezifizieren knn. Unter Anderem können

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 03 mit Lösungsvorschlägen

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 03 mit Lösungsvorschlägen Dr.-ng. Wilfried Dnkmeier Elektro- und nformtionstechnik WS 22/23 Mthemtik Aufge Mthemtik - Üungsltt 3 mit Lösungsvorschlägen Berechnen Sie ds Doppelintegrl (enötigt zur Berechnung von Verformung und Mterilspnnungen

Mehr