Zwei-Punkt Randwertprobleme. Fahed Bakar

Größe: px
Ab Seite anzeigen:

Download "Zwei-Punkt Randwertprobleme. Fahed Bakar"

Transkript

1 Zwei-Punkt Rndwertprobleme Fhed Bkr

2 Contents Inhltsverzeichnis II 1 Zwei-Punkt Rndwertprobleme (RWP) Zwei-Punkt Rndwertprobleme Vritionle Formulierung des RWP Glerkin-Approximtion Spektrl-Glerkin-Verfhren (SGV)

3 1 Zwei-Punkt Rndwertprobleme (RWP) 1.1 Zwei-Punkt Rndwertprobleme Sei D R, p, q und f : D R Abbildungen. u : D R mit: Gesucht ist eine Funktion Im Folgenden seien d dt du(x) (p(x) ) + q(x) u(x) dx = f(x) (1.1) u() = u(b) = 0 (1.2) p(x) C 1 ([, b]) und p(x) p 0 0 für lle x (, b) q(x) C([, b]) und q(x) 0 für lle x (, b) D := (, b) Definition (klssische Lösung). Sei f C(D) eine Funktion u C 2 (D) C([, b]), die (1.1) und (1.2) erfüllt, nennt mn eine klssiche Lösung. Beispiel 1. Sei D = (0, 1) p,q,f Konstnten mit p, q 0, Dnn ist u(x) = f q [ 1 ( exp( s x) + exp( s (1 x)) 1 + exp( s) eine Lösung von (1.1), (1.2) und u C 2 (D) C([, b]). )], s = q p Definition (schwche Ableitung). Mn sgt, dss eine messbre Funktion D k u : D R (k N) die k-te schwche Ableitung einer messbren Funktion u : D R ist, flls für lle ϕ(x) C c D k u(x)ϕ(x)dx = ( 1) k u(x)ϕ (k) (x)dx D D (D). 1

4 1.1 Zwei-Punkt Rndwertprobleme 2 Definition (Sobolev-Räume). Für p 1, r N ist der Sobolev-Rum W r,p (D) definiert durch: W r,p (D) = {u(x) L p (D) D k u(x) L p (D), 0 k r} Flls p = 2 schreiben wir H r (D) := W r,2 (D). Auf H r (D) ist die Norm r u H r := ( D k u L 2) 1 2 definiert. Auf der Menge H0(, 1 b) := {u H 1 u() = u(b) = 0} ist die Norm k=0 u H 1 0 := D 1 u L 2 definiert. Definition (strke Lösung). Sei f L 2 (D). Eine Funktion u H 2 (D) H 1 0(D), die (1.1) und (1.2) für fst lle x D erfüllt, nennt mn eine strke Lösung. Beispiel 2. Sei D = (0, 1), p = 1, q = 0 und Dnn ist eine Lösung gegeben durch: 1 flls 0 x 1 2 f(x) := 1 flls 1 x 1 2 x 2 u(x) := x flls 0 x x2 + 3x 1 flls 1 x u(x) / C 2 (D), d D 2 u(x) = f(x) und f uf dem Intervll D nicht stetig ist. u H 2 (D) H 1 0(D) ist ber eine strke Lösung.

5 1.2 Vritionle Formulierung des RWP Vritionle Formulierung des RWP Sei ϕ(x) Cc (D). Wenn mn ϕ(x) mit (1.1) multipliziert und über [, b] integriert, dnn erhält mn: ϕ(x)(p(x)u (x)) + ϕ(x)u(x)q(x)dx = durch prtielle Integrtion des ersten Terms erhält mn: [ϕ(x)(p(x)u (x))] b + p(x)ϕ (x)u (x) + ϕ(x)u(x)q(x)dx = f(x)ϕ(x)dx f(x)ϕ(x)dx der erste Term fällt weg, d lut Vorussetzung ϕ() = ϕ(b) = 0 ist. Es gilt lso: p(x)ϕ (x)u (x) + ϕ(x)u(x)q(x)dx = f(x)ϕ(x)dx für lle ϕ(x) Cc Wir schreiben (D). (u, ϕ) := p(x)ϕ (x)u (x) + ϕ(x)u(x)q(x)dx Dnn gilt: l(ϕ) := f(x)ϕ(x)dx (u, ϕ) = l(ϕ) für lle ϕ(x) C c (D). Definition (schwche Lösung). Eine schwche Lösung für ds RWP (1.1), (1.2) ist eine Funktion u H 1 0(D), die (u, v) = l(v) (1.3) für lle v H 1 0(D) erfüllt. Mn nennt ds Problem dnn uch vritionles Problem. Wir können nun unsere Forderungen n p und q lockern. Im Folgenden seien p(x) L (D) und p(x) p 0 0fst überll in D für ein p 0 q(x) L (D) und q(x) 0fst überll in D Wir bezeichnen mit V := H 1 0(D). Auf V knn mn die sogennnte Energienorm

6 1.2 Vritionle Formulierung des RWP 4 definieren. v E := (u, u) 1 2 = ( p(u ) 2 + qu 2 ) 1 2 Stz 1 (Poincré Ungleichung). Flls D beschränkt ist, dnn gibt es eine Konstnte K p 0 so dss u L 2 K p u H 1 0 (D). Bemerkung 1. (, ) ist eine symmetrische Bilinerform. E ist die durch (, ) induzierte Norm uf V. E ist äquivlent zu H 1 0 (D) mit D p u H 1 0 (D) u E ( p L + q L Kp) u H 1 0 (D) Stz 2 (Lx-Milgrm). Sei H ein Hilbertrum mit Norm und l ein beschränktes, lineres Funktionl uf H. Sei : HxH R eine beschränkte, koersive Bilinerform. Dnn gibt es ein eindeutig bestimmtes u l H so dss (u l, v) = l(v) für lle v H gilt. Stz 3 (Existenz und Eindeutigkeit). Sei f L 2 (D). Dnn ht (1.3) eine eindeutige Lösung u V. Beweis. V ist ein Hilbertrum, (, ) : V xv R ist eine Bilinerform. u H 1 0 (D) ist eine Norm uf V. Es gilt: l(v) = < f, v > L 2 (D) f L 2 (D) v L 2 (D) K p f L 2 (D) v H0 1 (D) für lle v V. D f lut Vorussetzung beschränkt ist, ist uch l beschränkt. (, ) ist koersiv, flls (v, v) β v H 1 0 für lle v V ist. (v, v) = v 2 E = D p(x)v (x) 2 + q(x)v(x) 2 dx p 0 D v (x) 2 dx = p 0 v 2 H0 1 lle v V Drus folgt, dss (, ) korsiv ist. für (v, w) v E w E ( p L + Kp 2 q L ) v 2 H w H für lle v, w V 0 1 Drus folgt, dss (, ) beschränkt ist. D nun l( ) beschränkt ist, (, ) koersiv und beschränkt, folgt us dem Lx- Milgrm-Stz, dss ein eindeutiges bestimmtes u V existiert, sodss (1.3) für lle v V erfüllt ist.

7 1.3 Glerkin-Approximtion 5 Bemerkung 2. Es gelten die Annhmen us A1. Sei f L 2 (D). Jede strke Lösung von (1.1), (1.2) ist uch eine schwche Lösung. Flls eine schwche Lösung u H0(D) 1 ebenflls in H 2 (D) liegt, dnn ist u uch eine strke Lösung. 1.3 Glerkin-Approximtion Definition Sei Funktion ũ Ṽ mit Ṽ V ein endlich dimensionler Unterrum von V. Eine (ũ, v) = l(v) (1.4) für lle v Ṽ nennt mn Glerkin-Approximtion. Stz 4. Es gelten die Annnhmen A2. Sei f L 2 (D). Dnn ht (1.4) eine eindeutige Lösung ũ Ṽ. Der Beweis verläuft genu so wie der Beweis von Stz 3. D Ṽ endlichdimensionl ist, gibt es liner unbhängige Vektoren φ 1,..., φ J Ṽ, die Ṽ ufspnnen. D.h. Ṽ = spn{φ 1,..., φ J }. Wir können lso ũ lso Linerkombintion dieser Vektoren drstellen. ũ = J u j φ j j=1 mit u 1,..., u J R. D ũ (1.4) erfüllt, gilt: J ( u j φ j, v) = j=1 J u j (φ j, v) = l(v) j=1 für lle v Ṽ. Wir hben lso J Unbeknnte in einer lineren Gleichung. Es ist nun nheliegend v = φ i für i = 1,..., J zu wählen. Ddurch erhält mn J Gleichungen für J Unbeknnte. Diesen Zusmmenhng knn mn uch folgendermßen drstellen. Wir definieren A R JxJ und b R J durch ij = (φ i, φ j ) und b i = l(φ i ) für i, j = 1,..., J. Dnn ist ds Gleichungssystem durch Au = b gegeben. Stz 5. Die Mtrix A ist positiv definit. D.h. die Gleichung Au = b ht eine eindeutige Lösung.

8 1.4 Spektrl-Glerkin-Verfhren (SGV) 6 Beweis. Sei v 0. v T Av = J J (φ i, φ j )v i v j = i=1 j=1 J J J ( v i φ i, φ j )v j = ( v i φ i, j=1 i=1 i=1 j=1 J v j φ j ) = (v, v). (v, v) = v 2 E > 0, d v 0. Drus folgt, dss die Mtrix A positiv definit ist und die Gleichung Au = b eindeutig lösbr. Stz 6 (Beste Approximtion). Flls u V (1.3) und ũ Ṽ (1.4) erfüllen, und Ṽ V ein Unterrum von V ist, dnn gilt: u ũ E u v E für lle v Ṽ. Beweis. D Ṽ V (u, v) = (ũ, v) für lle v Ṽ (u, v) (ũ, v) = (u ũ, v) = 0 für lle v Ṽ (u ũ, u ũ) = (u ũ, u) (u ũ, ũ) = (u ũ, u) (u ũ, v) = (u ũ, u v) für lle v Ṽ. u ũ 2 E = (u ũ, u ũ) = (u ũ, u v) u ũ E u v E u ũ E u v E für lle v Ṽ. Definition (Glerkin-Projektion). Die Glerkin-Projektion P G : V Ṽ ist eine orthogonle Projektion mit u P G u E = u ũ E bzw. (P G u, v) = (u, v) für lle v Ṽ 1.4 Spektrl-Glerkin-Verfhren (SGV) Es gibt nun zwei Methoden um den Unterrum Ṽ zu konstruieren. Einml die Finite-Elemente-Methode und eiml ds Spektrl-Glerkin-Verfhren. Wir schreiben Au := d du(x) (p(x) ) + q(x)u(x) mit dem Differenzilopertor A. dx dx Ds SGV verwendet die Eigenvektoren von A um den Untterrum Ṽ zu konstruieren. Sei G die Green s Funktion, die zusmmen mit A die Dirc-Delt-Funktion erzeugt. D.h. AG = δ(x y) mit < x < b, G(, y) = G(b, y) = 0. Dnn folgt

9 1.4 Spektrl-Glerkin-Verfhren (SGV) 7 drus, ds die Lösung durch gegeben ist, denn: Au = A u(x) = G(x, y)f(y)dy = G(x, y)f(y)dy := (Lf)(x) AG(x, y)f(y)dy = δ(x y)f(y)dy = f(x) Drus folgt, dss L 1 = A ist und deshlb A und L 1 die selben Einheitsvektoren hben. Der Hilber-Schmidt Spektrlstz begründet dnn die Behuptung, dss die Eigenvektoren von A den Unterrum Ṽ ufspnnen. Stz 7 (Hilbert-Schmidt Spektrlstz). Sei H ein bzählbr undendlichdimensionler Hilbertrum und L ein beschränkter linerer Opertor, der symmetrisch und kompkt ist. Seien λ j die Eigenwerte von L mit λ j λ j+1 und φ j die dzugehörigen Eigenvektoren. Dnn gilt: (i) lle Eigenwerte λ j sind reell und λ j 0 für j (ii) Die Eigenvektoren φ j können so gewählt werden, dss sie eine Orthonormlbsis für den Wertebereich von L bilden. (iii) für jedes u H gilt: Lu = j=1 λ j < u, φ j > φ j Hier noch einfügen wie Definition Der Rum D(A α ) H(α R)ist ein Hilbertrum mit Sklrprodukt < u, v > α =< A α u, A α v > und induzierter Norm u α = A α u. Bemerkung 3. < u, v > 1 =< A 1 2 u, A 1 2 v >=< Au, v >= (u, v) für lle u, v H. 2 Lemm 1. Sei α > 0 und λ J+1 der (J+1)-te Eigenwert, dnn gilt: (i) u P J u λ α J+1 u α (ii) A α (I P J ) L = λ α J+1 Lemm 2. Sei u die Lösung von (1.3) und u J die Lösung von (1.4). Für β+1 > α gilt: (i) u u J α λ (β+1 α) J+1 f β, insbesondere gilt (ii) u u J E λ 1 2 J+1 f L 2 Beweis. u u J α = A α (u u J ) L 2 = A α 1 A(u u J ) L 2 D (u u J ) = (I P J )u und Au = f gilt, folgt: u u J α = A α 1 (I P J )f L 2 A β+α 1 (I P J ) L A β f L 2

10 1.4 Spektrl-Glerkin-Verfhren (SGV) 8 mit Lemm 1 folgt: u u J α λ β+α 1 J+1 und wenn mn α = 1 und β = 0 setzt, folgt (ii) 2

Lineare Probleme und schwache

Lineare Probleme und schwache Vritionsrechnung Kpitel 7 Linere Probleme und schwche Lösungen 7.1 Qudrtische Funktionle Der einfchste Typ von Funktionlen, die ein Minimum hben können, sind die qudrtischen Funktionle. Sei ein Gebiet

Mehr

Lösung 4: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung

Lösung 4: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung D-MATH Linere Algebr II FS 217 Dr. Meike Akveld Lösung 4: Reelle innere Produkte, Normen und Grm-Schmidt Orthogonlisierung 1. Seien v (i) 1, v (i) 2, v (i) 3 R 3, sodss B i = (v (i) 1, v (i) 2, v (i) 3

Mehr

Numerische Mathematik Sommersemester 2013

Numerische Mathematik Sommersemester 2013 TU Chemnitz 5. Februr 2014 Professur Numerische Mthemtik Prof. Dr. Oliver Ernst Dipl.-Mth. Ingolf Busch Dipl.-Mth. techn. Tommy Etling Numerische Mthemtik Sommersemester 2013 Musterlösungen zu nicht behndelten

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Lösung 18: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung

Lösung 18: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung D-MATH Linere Algebr I/II HS 217/FS 218 Dr. Meike Akveld Lösung 18: Reelle innere Produkte, Normen und Grm-Schmidt Orthogonlisierung 1. Seien v (i) 1, v (i) 2, v (i) 3 R 3, sodss B i (v (i) 1, v (i) 2,

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Universität Ulm Abgabe: Freitag,

Universität Ulm Abgabe: Freitag, Universität Ulm Abgbe: Freitg, 19.06.2009 Prof. Dr. W. Arendt Robin Nittk Sommersemester 2009 Punktzhl: 38+7 13. Zeige: Lösungen Prtielle Differentilgleichungen: Bltt 5 Sei (, b) ein reelles Intervll.

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

Mathematik III. Vorlesung 85. Riemannsche Mannigfaltigkeiten

Mathematik III. Vorlesung 85. Riemannsche Mannigfaltigkeiten Prof Dr H Brenner Osnbrück WS 2010/2011 Mthemtik III Vorlesung 85 Riemnnsche Mnnigfltigkeiten Georg Friedrich Bernhrd Riemnn (1826-1866) Die Kugeloberfläche einer Kugel mit Rdius r besitzt den Flächeninhlt

Mehr

Kapitel II. Beschränkte Operatoren und kompakte Operatoren. 3. Beschränkte Operatoren im Hilbertraum.

Kapitel II. Beschränkte Operatoren und kompakte Operatoren. 3. Beschränkte Operatoren im Hilbertraum. Kpitel II. Beschränkte Opertoren und kompkte Opertoren. 3. Beschränkte Opertoren im Hilbertrum. 3.1. Definition. Seien H 1 und H 2 Hilberträume. Eine linere Abb. A : H 1 H 2 heißt ein (linerer) Opertor.

Mehr

4.3 Symmetrische Operatoren

4.3 Symmetrische Operatoren 98 Kpitel 4. Hilberträume und symmetrische Opertoren 4.3 Symmetrische Opertoren Eine Abbildung zwischen Hilberträumen wird meist ls Opertor bezeichnet. Von besonderer Bedeutung sind die lineren Opertoren,

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

ORTHOGONALPOLYNOME UND GAUSS-QUADRATUR

ORTHOGONALPOLYNOME UND GAUSS-QUADRATUR ORTHOGONALPOLYNOME UND GAUSS-QUADRATUR ALLGEMEINE CHARAKTERISTIKA Stz Es sei ω C(, b), ω(x) > für x (, b) eine positive Gewichtsfunktion Dnn ist für f, g C[, b] ein Sklrprodukt (f,g) := (f,g) ω := ω(x)f(x)g(x)

Mehr

Analysis 3 Zweite Scheinklausur Ws 2018/

Analysis 3 Zweite Scheinklausur Ws 2018/ Anlysis 3 weite Scheinklusur Ws 8/9..9 Es gibt 8 Aufgben. Die jeweilige Punktzhl steht m linken Rnd. Die Mximlpunktzhl ist 7. um Bestehen der Klusur sind Punkte hinreichend. Die Berbeitungszeit beträgt

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Schwache Lösungstheorie

Schwache Lösungstheorie Kpitel 3 Schwche Lösungstheorie Bemerkung 3.1 Motivtion. Dieses Kpitel stellt eine Erweiterung des Lösungsbegriffes von prtiellen Differentilgleichungen vor die schwche Lösung. Diese Erweiterung ist us

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den 19 REGELFUNKTIONEN 107 Kpitel 7: Integrtion Notwendigkeit des Integrlbegriffes und Hinweise zu seiner Präzisierung liegen uf der Hnd. Betrchten wir etw den physiklischen Begriff der Arbeit, die im einfchsten

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Einführung und Beispiele

Einführung und Beispiele Kpitel 8 Prtielle Differentilgleichungen/Rndwertprobleme Prof. R. Leithner, E. Znder Einführung in numerische Methoden für Ingenieure 8/2 Einführung und Beispiele Prof. R. Leithner, E. Znder Einführung

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Lösungen zu den Übungsaufgaben

Lösungen zu den Übungsaufgaben Lösungen zu den Übungsufgben Aufgbe A.2. Ist k L () mit k(x)dx = und ist f : beschränkt, Lebesgue-messbr und stetig in x, dnn gilt lim r r k(x y r )f(y)dy = f(x). Lösung A.2. Zunächst ist mit der Substitutionsregel

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

6 Totale Differenzierbarkeit

6 Totale Differenzierbarkeit 6 Totle Differenzierbrkeit Sei U R offen. Eine Funktion f : U R ist differenzierbr in einem Punkt x U (Stz 14.6 in [EAI] genu dnn, wenn sie liner pproximierbr ist in x in dem Sinne, dss eine Zhl c R und

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulssungsprüfung Stochstik, 2.0.2 Wir gehen stets von einem Mßrum (Ω, A, µ) bzw. einem Whrscheinlichkeitsrum (Ω,A,P) us. Die Borel σ-algebr uf R n wird mit B n bezeichnet, ds Lebesgue Mß uf R n wird mit

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Lineren Algebr Lösungen Wintersemester 9/ Universität Heidelberg Mthemtisches Institut Lösungen Bltt Dr. D. Vogel Michel Mier Aufgbe 44. b 4 b b 4 ( )b Fll : = ( )b 4 b ( ) b ( ) ( )(b ) b

Mehr

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b].

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b]. Krlsruhe Institute of Technology 3 Integrtion (3.1) ) Z = {x,...,x n } mit = x < x 1 < < x n = b heißt eine Zerlegung von [,b] in endlich viele Teilintervlle. Z (oder Z [, b]) sei die Menge ller Zerlegungen

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Lösungen zur Probeklausur Lineare Algebra 1

Lösungen zur Probeklausur Lineare Algebra 1 Prof. Dr. Ktrin Wendlnd Dr. Ktrin Leschke WS 2006/2007 Lösungen zur Probeklusur Linere Algebr Ausgbe: 2. Dezember 2006 Aufgbe.. Geben Sie die Definition des Begriffs Gruppe n. Eine Gruppe ist eine Menge

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Anlysis Vorlesungssript Enno Lenzmnn, Universität Bsel 7. November 213 5 Konvergenz- und Approximtionssätze 5.1 Monotone und Dominierte Konvergenz Wir strten mit einem grundlegenden Stz der Integrtionstheorie,

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. r. H. Spohn r. M. Prähofer Zentrlübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik 14. Stetigkeit der Umkehrfunktion Mthemtik für Physiker 3 (Anlysis ) http://www-m5.m.tum.de/allgemeines/ma903

Mehr

Unbestimmtes Integral, Mittelwertsätze

Unbestimmtes Integral, Mittelwertsätze Unbestimmtes Integrl, Mittelwertsätze Ist f R-integrierbr, dnn knn f(x)dx einfch bestimmt werden, wenn eine Stmmfunktion F (x) von f existiert und beknnt ist. Wir wissen, dss dnn uch F (x) = F (x) + C

Mehr

Kurzes Ergebnis zu dualen Basen:

Kurzes Ergebnis zu dualen Basen: Kurzes Ergebnis zu dulen Bsen: Lemm 1 Es sei V ein Vektorrum der Dimension n mit Bsis B = {v j } n j=1, und B = {vj} n j=1 die dzu dule Bsis von V Dnn ist der Koeffizientenvektor eines beliebigen Elements

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Variationsrechnung Kapitel 2. Die erste Variation. 2.1 Definition der ersten Variation

Variationsrechnung Kapitel 2. Die erste Variation. 2.1 Definition der ersten Variation Vritionsrechnung Kpitel 2 Die erste Vrition 2.1 Definition der ersten Vrition Sei R n und F : R R n R eine Funktion. Für J in 1.1, lso J u = F x, u x, u x dx 2.1 und wenn folgendes gilt: 1. J u wohldefiniert

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

65 Lineare Algebra 2 (SS 2009)

65 Lineare Algebra 2 (SS 2009) 65 Linere Algebr 2 (SS 2009) 67 Einschub: Explizit Implizit Vorbemerkung Wir betrchten die Ebene R 2, den dreidimensionlen Rum R 3, oder llgemeiner den R n Wenn wir geometrische Objekte in der Ebene, wie

Mehr

Dirac sche Delta-Funktion

Dirac sche Delta-Funktion Anhng A Dirc sche Delt-Funktion Die Dirc sche Deltfunktion wurde 927 von Dirc eingeführt, ber erst im Jhre 950 von Schwrtz in seiner Distributionstheorie mthemtisch exkt ls Limes einer Funktionenreihe

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick uf die letzte Vorlesung 1. Ljpunov-Funktion 2. Rndwertprobleme 3. Lösbrkeit und Eindeutigkeit Ausblick uf die heutige Vorlesung 1. Vritionsrechnung 2. Brchistochrone 3. Euler-Lgrnge Gleichung

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018 HM I Tutorium 14 Lucs Kunz 9. Februr 218 Inhltsverzeichnis 1 Theorie 2 1.1 Uneigentliche Integrle............................. 2 1.1.1 Typ 1.................................. 2 1.1.2 Typ 2..................................

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

2. Grundlagen der Funktionalanalysis

2. Grundlagen der Funktionalanalysis Existenz eines neutrlen Elements: 1 v = v α, β K und v, v 1, v 2 V. 2. Grundlgen der Funktionlnlysis Die Funktionlnlysis beschäftigt sich mit Vektorräumen und stetigen Abbildungen uf diesen. Wichtig ist

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y KAPITEL 18 UND 19 H. KOCH 1. VORLESUNG VOM 08.01.2018 Kpitel 18 Definition 1 (Zerlegungen, Treppenfunktionen, Regelfunktionen) Sei < b. 1. Eine Zerlegung τ von [, b] besteht us einer Zhl N N und (N + 1)

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

6.4 Die Cauchysche Integralformel

6.4 Die Cauchysche Integralformel Die Cuchysche Integrlformel 6.4 39 Abb 6 Integrtionswege im Fresnelintegrl r ir 2 r 6.4 Die Cuchysche Integrlformel Aus dem Cuchyschen Integrlst folgt eine fundmentle Formel für die Drstellung einer holomorphen

Mehr

1 Differentialrechnung

1 Differentialrechnung 1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale Doppel- und Dreifchintegrle Sei [, b] ein Intervll des R 2 oder R 3 (lso ein Rechteck bzw. ein Quder), i.e. [, b] = [, b ] [ 2, b 2 ] oder [, b] = [, b ] [ 2, b 2 ] [ 3, b 3 ]. Für Intervlle des R 2 bzw.

Mehr

Einführung in die Numerische Mathematik Vordiplomsklausur,

Einführung in die Numerische Mathematik Vordiplomsklausur, Institut für Angewndte Anlysis und Numerische Simultion Prof Dr C Eck, Dr M Schulz, Dipl- Mth J Giesselmnn Universität Stuttgrt Sommersemester 9 Einführung in die Numerische Mthemtik Vordiplomsklusur,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Randwertaufgaben bei gewöhnlichen Differentialgleichungen. Christin Maribelle Kramer

Randwertaufgaben bei gewöhnlichen Differentialgleichungen. Christin Maribelle Kramer Rndwertufgben bei gewöhnlichen Differentilgleichungen Christin Mribelle Krmer 17.06.2013 Kpitel 0 Seite 2 Inhltsverzeichnis 1 Einleitung 3 1.1 Deutsch................................ 3 1.2 Englisch................................

Mehr

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch Prmeterintegrle Integrle können uc von Prmetern bängen, denken wir nur n die Gmm-Funktion, die definiert ist für x > durc Γ(x) = t x e t dt Hier ist x der Prmeter, von dem der Integrnd und dmit uc ds Integrl

Mehr

Anfangswertprobleme. Reguläre Systeme 1. Ordnung Lösbarkeit AWP und RWP. Lipschitzstetigkeit. Existenz und Eindeutigkeit einer Lösung

Anfangswertprobleme. Reguläre Systeme 1. Ordnung Lösbarkeit AWP und RWP. Lipschitzstetigkeit. Existenz und Eindeutigkeit einer Lösung Anfngswertprobleme Reguläre Systeme 1. Ordnung Lösbrkeit AWP und RWP Hnnh Schuster Ncim Seddiki SS 2014 Definition (Anfngswertproblem): Es werden Differentilgleichungen folgender Form mit y(t) := [0, T

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Verfhren Mthemtik für Studierende der Biologie und des Lehrmtes Chemie Dominik Shillo Universität des Srlndes 6. Vorlesung, 4..7 (Stnd: 4..7, 4:5 Uhr) Shreibe,,n.......... n, n,n Führe den Guÿlgorithmus

Mehr

6 Numerische Integration

6 Numerische Integration Numerik I 251 6 Numerische Integrtion Ziel numerischer Integrtion (Qudrtur): Näherungswerte für f(t) dt. Wozu? Eine Apprtur liefere Messwerte x i = x i + ε i. Angenommen, die Messfehler ε i sind stndrdnormlverteilt

Mehr

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer 4. Potentiltopf Gruppe Neumnn: Sebstin Guttenbrunner Drio Knebl Mri Kortschk Corneli Reinhrter Peter Schntl Gerld Schwrzbuer Ein rechteckiger, eindimensionler Potentiltopf ist ein einfches Modell, ds ls

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mthemtik für Ingenieure I (Wintersemester 2007/08) Kpitel 6: Integrlrechnung R R Volker Kibel Otto-von-Guericke Universität Mgdeburg (Version vom 21. Dezember 2007) Stetige oder monotone Funktionen

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Riemann-integrierbare Funktionen

Riemann-integrierbare Funktionen Kpitel VI Riemnn-integrierbre Funktionen 26 Ds Riemnn-Integrl ls Grenzwert von Zwischensummen 27 Der Huptstz der Differentil- und Integrlrechnung nebst Folgerungen 28 Äquivlente Definitionen des Riemnn-

Mehr

Langzeitverhalten von ODE Lösungen

Langzeitverhalten von ODE Lösungen Euler Verfhren für Systeme von ODEs Bemerkung zum Lngzeitverhlten Häufig ist von Interesse (z.b. in der Klimvorhersge), wie sich Lösungen y(t) der ODE ẏ = F (y) für sehr grosse t qulittiv verhlten, und

Mehr

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Sebstin Lngendörfer e Integrlrechnung Zustzunterlgen zur Vorlesung Anlysis II Sommersemester 2014 Dieses Bltt enthält

Mehr

Elemente der Funktionalanalysis

Elemente der Funktionalanalysis Elemente der Funktionlnlysis Vorlesungsskript Sommersemester 2014 von Mrkus Kunze ii Vorwort Ds vorliegende Skriptum fsst die Vorlesung Elemente der Funktionlnlysis zusmmen, die ich im Sommersemester 2014

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Kriterien für starke und schwache Konvergenz in L 1

Kriterien für starke und schwache Konvergenz in L 1 Technische Universität Berlin Institut für Mthemtik Bchelorrbeit Im Studiengng Mthemtik Kriterien für strke und schwche Konvergenz in L 1 vorgelegt von Thoms Jnkuhn betreut durch Dr. Hns-Christin Kreusler

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr