Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7"

Transkript

1 Lösungen zu delta Fit für die Oberstufe Lösungen zu den Seiten 6 und 7. a) 4 = ; 9 = 4; = 6 X G; L = { 6} b) ( 4) + 8 = ( + 4); = 4; + 0 = ; 4 = ; = =, X G; L = {,} 4 c) + 7 = 0; + 7 = 0; = 7 G; L = { } + d) + = 0; + = 0; = X G; L = { } e) ( ) (4 + ) = 0; = 0; 4 7 = 0; 4 = 7; = 0, X G; L = { 0,} f) + = 0; = = ; = X G; = X G; L = { ; } g) 6 + = 0; = 6 ± 6 8 = 6 ± 7 = ± 7 ; 4 4 = ( + 7 ) X G; = ( 7 ) X G; L = { ( + 7 ); ( 7 ) } h) (7 ) 7(7 ) = 7 ; 8(7 ) (7 ) = 0; 7(7 ) = 0; = 7 X G; L = {7} i) 6 = 0; ( 6)( + ) = 0; = 6 X G; = X G; L = { ; 6} j) 6 = 0; = 6; = 6 G; = 6 X G; L = { 6 } k) + = 0; + = 0; L = { } l) = 0; = 0; ( + + 4) = 0; = 0 G; = 0; D = 6 = < 0; L = { } m) + = 0; ( + ) = 0; ( )( ) = 0; = 0 G; = X G; = X G; L = { ; } n) ( 9)( ) = 0; ( )( + )( )( + ) = 0; = X G; = X G; = X G; 4 = X G; L = { ; ; ; }

2 Lösungen zu delta o) 9 = 0; = 0; = ; = X G; = G; L = { } p) a = 0; a = 0; = a > 0 wegen a X + ; = a X G; = a X G; L = { a ; a } q) (log 0 ) = ; log 0 = ± ; = 0 X G; = 0 X G; L = { 0 ; 0 } r) + 4 = 0; + 4 = 0; + 4 = 0; ( 4)( ) = 0; 4 = 0; = 4 = ; = X G; = 0; = = 0 ; = 0 X G; L = {0 ; } s) sin = ; sin = ; X ]0 ; π[: = π 6 X 6; = π 6 X G; L = { π 6 ; π 6 } t) cos = ; X ] π ; π [: = π ; = π X G; L = π u) = 8 ; = 4 ; = 4; 4 = 0; ( )( + ) = 0; = X G; = X G; L = { ; } v) ( + )( ) = 0; ( + )( 4)( + ) = 0; = X G; = 4 X G; = X G; L = { ; ; 4}. a) I = + eingesetzt in b) I + = 0 II 4 + = ergibt II + = 4 + ( + ) = ; I II = ; = eingesetzt in I: = ; = 0; = ; = ; = 4 eingesetzt in I ergibt = 4 + = 6; L = {( 4 ; 6)} L = {( ; )} c) I = 0 d) I + = II + = 0 II = + 8 I + II 6 = 0; = 6; = II + = 0; : eingesetzt in II ergibt + = (identisch mit I) + = 0; Das Gleichungssstem hat unendlich viele Lösungen: = ; L = {( ; )} L = {( ; ) = + }

3 Lösungen zu delta. a) 4 > 0; > 4; > 7; L = ]7 ; [ b) 0, 4; 0, ; 6; L = [ 6 ; [ c) ( + ) < 0. Fall: > 0 + < 0 > 0 < : nicht möglich. Fall: < 0 + > 0 < 0 > < < 0; L = ] ; 0[ d) < ; 6 < 7; L = ]6 ; 7] e) ( ) 0 Da stets 0 ist, muss entweder = 0 sein oder 0; ; L = {0} t [ ; + [ f) ( )( ) < 0 Vorzeichen der Faktoren bei negativem Produktwert: + + d. h. () > 0 > < ; < < + + d. h. () > 0 < > ; nicht möglich + + d. h. () < 0 > > ; nicht möglich d. h. (4) < 0 < < ; < 0 L = t ] ; [ g) ( ) > 0 Wegen > 0 für jeden Wert von X muss > 0, also > sein: L = ] ; [ h) + > 0 gilt für jeden Wert von X : L = D f ma achsensmmetrisch zur -Achse punktsmmetrisch zum Ursprung a) b) \{ ; } + c) 0 d) e) f) zu e) O

4 4 Lösungen zu delta zu f) 4 O a) f() + f() b) f() 0 + f() 0 + c) f() 0 + f() 0 d) f() 4 f() 4 e) f() 0 f() 0 f) keine Aussage möglich 6. Allgemein: = m + t mit m = B A B A bzw. A A a) =, b) + 4 = + 4 = ; + 4 = ( ); = 7 ; = 0 c) = d) = 4 e) = f) = = 6 = ; = ; = = B A B ( A A B ) 7. a) P a = ( 6 ) 6,% b) P b = a) c) P c = ( ) 4 = e) P e = 6 ( 6 ) 6 = ( Start p p m w 0, 0,4 0,0 0,80 FB FB FB FB 64,6% d) P = d ( 6 ) 6 66, % 6 ) = , % f) P = f ( 6 ) ( Messebesucher: m männlich w weiblich FB: Fachbesucher(in) FB: kein(e) Fachbesucher(in) 6 = 0 6,% 6 ) = ( 6 ) ( 0,p + 0,0( p) = 0,40; 0,p + 0,0 0,0p = 0,40; 0,p = 0,0; p = 0,0 0, = 4 : Insgesamt 4 7,% der Messegäste sind männliche Fachbesucher b) P FB (m) = 0, = 0, ,6% Die augewählte Person ist mit einer Wahrscheinlichkeit von etwa 79% männlich. 6 + ) 7,7%

5 Lösungen zu delta 9. () a) Das Dreieck ABC ist gleichschenklig, da BC = + cm = 4 cm = CA ist; somit gilt H =. m CA = ; m h b = ; h b : = + t; B X h b : = 8 + t; t =,8; h b : = 0,6 +,8; da H = ist folgt H =,8: H (,8). tan α = ; α 9 ; γ 80 9 = 6 0 h b C * h c C * C C * H (,8) C * 6 A 4 4 B 0 C * C * 4 b) Für C * ( 4) und für C * ( ) ist das Dreieck ABC * bzw. das Dreieck AC * B rechtwinklig. Hinweis: C *, = ± AB = ± Für C * ( + ) und für C * 4 ( ) ist das Dreieck ABC * bzw. das Dreieck AC * 4 B gleichseitig. Hinweis: C *, 4 = ± AB = ± C * ( h); A Viereck ACBC * = AB (h ) AB = 6 (h ) 6 = = h = h 8; h 8 = ; h = 0; C * ( 0) C * 6 ( h*); A Viereck AC * = 6 BC 6 6 (h* ) = 8 h*; 8 h* = ; h* = ; C * 6 ( ) Hinweis: C *,6 = C ± 4 = 6 ± 4 () a) Beispiele: g OD ER; DOR = EDO; DE = RO (= 0 = ) : das Trapez ODER ist gleichschenklig; das Trapez ODER ist achsensmmetrisch zur R E Geraden g mit der Gleichung = 4. b) MO = ( 4) + ( ) = MD = 4 + ( ) = ME = + 4 = M MR = ( ) + 4 = Da MO = MD = ME = MR ist, ist M der Mittelpunkt des Umkreises des Trapezes ODER. O D

6 6 Lösungen zu delta c) S (Skizze nicht maßstäblich) g s = s = M* = 4; da die Geraden SO und g von dem Parallelenpaar ER und OD geschnitten werden, gilt nach dem. Strahlensatz für die X-Figur OSM*: s 7 s = 4 ; 4s 8 = s ; s = 8; S (4 8) R E s 7 O 4 M* D s 0. a) r* π = 4r π; r* = 4r ; r* = r: r* ist doppelt so groß wie r. b) V Luft usw. = 4 cm 7,0 cm 7,4 cm 6 4 (,7 cm) π 7, cm 9, cm = 9,9 cm : 9,9 cm 0,46 = 4,6% 7, cm Von der Packung ist also weniger als die Hälfte Inhalt. c) h = 6 cm; r = 6 cm; V = r πh = (6 cm) π 6 cm = 6π cm 679 cm A = r π + rπh = (6 cm) π + 6 cm π 6 cm = 44π cm 4 cm. S s h p h s D C A ϕ M B Basishöhe h s jeder der vier Seitenflächen: h s = (8 cm) + ( cm) = 7 cm ; h s 8, cm; A p (6 cm) cm 8, cm = 6 cm + 0 cm = 8 cm V p = (6 cm) 8 cm = 96 cm tan ϕ = 8 ; ϕ 6, V k = ( cm) π 8 cm = 48π cm 0,8 cm s = SA = ( cm) + (8 cm) = (8 + 64) cm = 8 cm ; s 9, cm; A K = ( cm) π + cm π SA = 8 π cm + cm π 8 cm = 8 π cm π cm 77 cm V P 96 cm V K 0,8 cm 64% Die Pramide nimmt etwa 64% des Kegelvolumens ein.

7 Lösungen zu delta 7 Kann ich das? Lösungen zu Seite 6. Nullstelle(n) Polstelle(n) D f ma a) = 0 = \ {} b) = 0; = = \ { } c) = 0. Funktion f f f Nullstelle(n) Polstelle(n) = 0 = 0 = 0 Verhalten für + f() 0 + f() + f() + Verhalten für f() 0 f() + f() Der Graph verläuft durch die Quadranten III und I II und I III und I Achsenpunkte des Graphen Smmetrieverhalten: Der Funktionsgraph ist Gleichungen der Asmptoten des Graphen punktsmmetrisch zum Ursprung = 0; = 0 smmetrisch zur -Achse = 0; = punktsmmetrisch zum Ursprung = 0; = 4 4. a) lim + = lim = + = 0, ± ± b) lim [ ( + 4 ) ] = lim [ ( ) ] = ± ± c) lim 6 + = lim = 0 + = 0 ± ± k 4. lim k = lim 8 + ± + ± + ( 4 ) = 0, = k ; k = ; k = 6. a) Nummer der Figur Umfangslänge der Figur ( in cm) Flächeninhalt der Figur (in cm ) () U = 4a = 4 8 = A = a = 8 = 64 () () (n) a = a = 4 U = 6a = 6 4 = 4 a = a = a = U = 0a = 0 = 0 a n = a n U n = ( n + ) 4 n = 4 + n A = a = ( a ) = 4 = A = 4 a = 4 ( a ) = 4 = 6 A n = n ( a = n 8 n = 7 n n ) = n ( ) = n b) lim U n = 6 lim A n = 0 n + n + 6. Funktionsgleichung a) b) c) d) Wertetabelle D C A B Graph (4) () () ()

8 8 Lösungen zu delta Kann ich das? Lösungen zu den Seiten 8 und 84. a) () m() = ( ) ( ) = = 4 lim ( + ) = 4 + () m() = ( ) ( ) = + = 4 lim ( + ) = 4 Wegen lim m() = lim m() = 4 ist lim m() = 4. + b) () m(h) = ( + h) ( ) + h lim ( + h) = h 0+ () m() = ( h) ( h) = + h + h = h = + h h = h = ( + )( ) = + ; > = ( + )( ) = + ; < h( h) h h( +h) h lim ( h) = 0+ Wegen lim ( + h) = lim ( h) = ist lim m(h) =. h 0+ h 0+ h 0+ = + h = + h; h > 0 = h = h; h > 0 V(r + h) V(r). Der Term (h > 0) bedeutet die mittlere Volumenzunahmerate, wenn die Radiuslänge um h h zunimmt. 4 V(r + h) V(r) = (r +h) π 4 r π 4 = π(r + r h + rh + h r ) 4 = π h (r + rh + h ) = 4 h h h h π (r + rh + h ); V (r) = lim [ 4 π (r + rh + h ) ] = 4 π r = 4r π: Dies ist der Kugeloberflächeninhalt. h 0 f( + h) f(). a) f () = lim = lim ( + h) ( ) = lim 4h h + h 0 h h 0 h h 0 h h(4 + h) = lim = lim [ (4 + h) ] = 4 h 0 h h 0 Ableitungsfunktion: f : f () = 4; D f = f( + h) f() b) f () = lim ( + h) = lim ( + h) = lim ( + h) = lim h h h h h ( + h) = lim ( + h) = h 0 h 0 h 0 h 0 h 0 Ableitungsfunktion: f : f () = ; D = \ {0} f 4. a) f() = 4 + ; f () = 8 + ; f () = f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = 8; t p : = 8 b) f() = + 4; f () = ; f () = f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = ; t p : = + Schnittpunkt von t p mit der -Achse: = 0; 0 = + ; + = ; : =,; S (, 0) Steigung von n p : 0,; n p : = 0, + t*; da P X n p ist, gilt = 0, + t*; 0, t* =,; n p : = 0, +, Schnittpunkt von n p mit der -Achse: = 0; 0, +, = 0;, 0, =,; : 0, = ; S ( 0) A = S ( +,) =, S P r Umkreis = ( +,) =,7; A = Umkreis,7 π 44,; Prozentsatz: etwa, 44, % c) f() = ( ) = ; f () = 6 ; f () = 6 oder (Produktregel) f() = ( ); f () = ( ) + ( 0) = + = 6 f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = ; t p : =

9 Lösungen zu delta 9 d) f() = ; f () = ; f () = 6 4 f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = ; t p : = + e) f() = ; f () = ; f () = 4 f() = ; f () = 0,; t p : = 0, + t; da P X t p ist, gilt = 0, + t; t = 0,; t p : = 0, + 0, f) f() = + ; f () = ( + ) ; f () = ( + ) ( ) ( )(4 + 4) ( + ) = 4 = ( + ) + 8 ( + ) ( + ) = ( + ) ( + ) = 6 ( + ) f() = 0,; f () = ( + ) = 0,; t : = 0, + t; da P p X t ist, gilt 0, = 0, + t; p t = ; t p : = 0, + Schnittpunkt von t p mit der -Achse: = 0; 0 = 0, + ; + 0, 0, = ; : 0, = ; S ( 0) Steigung von n p : ; n p : = + t*; da P X n p ist, gilt 0, = + t*; t* =,; n p : =, Schnittpunkt von n p mit der -Achse: = 0;, = 0; +, =,; : = 0,7; S (0,7 0) A = S ( 0,7) 0, = 0, S P r Umkreis = ( 0,7) = 0,6; A = Umkreis 0,6 π,; Prozentsatz: etwa 0,, % g) f() = + ; f ( ) ( + ) () = ( ) = 6 ( ) ; f () = ( 6)( 6) ( ) = ( ) = 4 ( ) 4 ( ) f() = ; f () =,; t p : =, + t; da P X t p ist, gilt =, + t; t = 0,; t p : =, 0, h) f() = ( + ) = ; f () = = 4 + 8; f () = 8 f() = 9; f () = ; t p : = + t; da P X t p ist, gilt 9 = + t; t = ; t p : =. Bei beiden Abbildungen ist einer der beiden Graphen, der andere. a) Die rote Kurve ist, die grüne Kurve ist. Begründung: Die Abszissen der Punkte von, in denen eine horizontale Tangente besitzt, stimmen mit den Nullstellen der durch dargestellten Funktion überein, aber nicht umgekehrt. b) Die grüne Kurve ist, die rote Kurve ist. Begründung: Die Tangentensteigung von nimmt zu, demgemäß ist steigend; umgekehrt ist dies nicht der Fall. 6. a). Art: f() = + 4 ; f () = + 4 = + 8. Art: f () = ( + 4) + ( + 0) = = + 8 b). Art: f(r) = 8r + 6r ; f (r) = r = 8 + r. Art: f(r) = ( 4r)( 4r); f (r) = (0 4)( 4r) + ( 4r)(0 4) = 4 + 6r 4 + 6r = 8 + r c). Art: f() = ; f () = +. Art: f() = = ; f () = ( 0) ( ) = 4 + = + d). Art: f(a) = a 4 a = a 9 ; f (a) = 9a 8. Art: f (a) = 4a a + a 4 a 4 = 4a 8 + a 8 = 9a 8 7. b =, da S ( 0) X ist; c =, da S ( 0) X ist. Der Graph hat eine schräge Asmptote; somit ist n = = (das Zählerpolnom hat den Grad ). a( + )( ) Wegen f() = ist = ; a =. ( + )( ) Als Funktionsterm ergibt sich f() = = =. = +

10 0 Lösungen zu delta f() f(0) 8. Für > 0 gilt = = 4 = ; lim = 0; 0+ f() f(0) für < 0 gilt = = 4 = ; lim = 0 = lim : 0 0+ Die Funktion f: f() = 4 ; D f =, ist also an der Stelle 0 = 0 differenzierbar, und es ist f (0) = Q ( ); Gleichung der Parabel P : = a( ) + ; Q X P : = a ( ) + ; a = P : = ( ) + = + + = + Steigung von P (und von P ) im Punkt Q:. Ableitung: = ; an der Stelle = : m tq = 4 = Gleichung der Tangente t Q : = + t; Q X t Q : = + t; = 4 + t; 4 t = t Q : = Parabel P : = f() = + b + c Q X P : = + b + c; + 4 b + c = 7 (I) f () = + b; f () = 4 + b = m tq = ; b = 6; eingesetzt in (I) 6 + c = 7; c = Gleichung von P : = + 6 = ( ) + 9 = ( ) + 4 a) Der Teil der Parabel P links oberhalb des Punkts R ( 4) b) Der Teil der Parabel P links unterhalb des Punkts R ( 0). 0. a) = ist eine doppelte Nullstelle von f; f besitzt keinen Pol, also keine senkrechte Asmptote. lim f() = lim 4 + = lim = ; besitzt somit eine waagrechte ± ± ± Asmptote mit der Gleichung =. f() = 4 + ; + Etremstellen: f () = (4 4)( + ) ( 4 + ) ( + ) = ( + ) = 4 4 ( + ) = 4( ) ( + ) f () = 0: 4( ) = 0; : 4 ( + )( ) = 0; = ; = Monotonietabelle: < < = < < = < < f () f () > 0 f () = 0 f () < 0 f () = 0 f () > 0 Vorzeichenwechsel von f () von + nach von nach + Graph steigend Hochpunkt A ( 4) fallend Tiefpunkt C ( ) steigend Wertetabelle: f(),8,9,,6 4,0,0 0,0 0,4 0,8,, A C* a B D( ) E( ) A* a O C

11 Lösungen zu delta b) Tangentengleichungen: f( ) = 4; f ( ) = 0 4 = 0; t : = 4 A f(0) = ; f (0) = 4; t B : = 4 + f() = 0; f () = 0; t C : = 0 Streckenhalbierung: AB = + LE = LE; CB = + LE = LE; AB = CB (I) m AC = 4 = ; = + t; da A X AC ist, gilt 4 = + t; t = ; AC: = + B liegt auf AC, da = = 0 + ist, also ist wegen (I) B Mittelpunkt der Strecke [AC]. Rechteck AA*CC*: A*( 0), C*( 4); A Rechteck AA*CC* = 4 LE LE = 8 FE Flächeninhalt des Quadrats: Für die Länge d jeder der Diagonalen eines Quadrats der Seitenlälnge a gilt d = a. AC = + 4 LE = 0 LE = a ; : a = 0 LE A Quadrat = a = 0 FE Die Quadratfläche ist um FE, das sind ( =) %, größer als die Rechtecksfläche. 8. Der Graph verläuft durch den Ursprung O (0 0), da f(0) = 0 ist. (Weitere) gemeinsame Punkte mit der -Achse: ( ) = 0; = 0 (siehe oben) D = = 6 9 < 0; also hat G mit der -Achse f (und mit der -Achse) nur den Ursprung gemeinsam. Punkte von, in denen die Tangente horizontal ist: f () = g + = = ( 4 + 4) = ( ) S S Für = 0 und für = gilt f () = 0; f(0) = 0; f() = = 4. Im Ursprung O (0 0) und im Punkt W ( 4 ) besitzt G W f die horizontale Tangente t O : = 0 bzw. t W : = 4. Monotonietabelle: O < < 0 = 0 0 < < = < < f () f () < 0 f () = 0 f () > 0 f () = 0 f () > 0 Vorzeichenwechsel von f () Newton sches Näherungsverfahren: n + = n g( ) n g ( n ) ; n X. Dabei ist g() = und g () = ( ) ; Anfangsnäherung für S ist =, : S,8 von nach + kein Vorzeichenwechsel Graph fallend Tiefunkt O steigend Terrassenpunkt W n n g( n ) g'( n ) n + 0,00 0,849 7,87,9,9 0,070 6,7,8,8 0,00 6,448,8 steigend

12 Lösungen zu delta. f() = 0 ; f () = 0 4 = 4 4 = 4 ( a) = 4 ( + )( ) f besitzt nur die Nullstellen 0, und. Monotonietabelle: < < = < < 0 = 0 0 < < = < < f () f () > 0 f () = 0 f () < 0 f () = 0 f () < 0 f () = 0 f () > 0 Vorzeichenwechsel von f () Der Graph besitzt andere Etrempunkte als, der Graph ebenfalls; wird also durch den Graphen dargestellt.. D f ma = \ { 4; 0} Achsenpunkte: hat mit der -Achse keinen Punkt gemeinsam. Gemeinsamer Punkt mit der -Achse: f() = 0; 6 + = 0; 6 = ; : 6 = S ( 0) Verhalten für ± : lim = lim ± ± von + nach = 0 = 0 fallend kein Vorzeichenwechsel fallend von nach + Graph steigend Hochpunkt Terrassenpunkt Tiefpunkt Die -Achse (Gleichung: = 0) ist also horizontale Asmptote von. An den Stellen = 0 und = 4 hat f Pole (. Ordnung, also Pole mit Vorzeichenwechsel: Für 4 gilt f(). Für 4 + gilt f() +. Für 0 gilt f(). Für 0 + gilt f() +. Senkrechte Asmptoten: = 4 und = 0 Etrema: f () = 6( + 4) (6 + )( + 4) ( + 4) = steigend ( + 4) = ( + 4) = 6( ) ( + 4) f () = 0: = 0; D = = 6 = 6 < 0. Da f überall in D f differenzierbar ist und f () für jeden Wert von X D f ungleich null ist, hat keine lokalen Etrempunkte. 6 ( ) Tangente im Punkt S ( 0): f ( ) = [( ) + 4 ( )] = 4 6 = t S : =, + t; wegen S X t S ist 0 =, ( ) + t; t = t S : =, Verschiebung von um Einheiten nach rechts: f*() = f( ) 6( ) + f*() = ( ) + 4( ) = = 6 4 ; D = \ { ; } f* 6 ( ) Da f*( ) = ( ) 4 = 6 4 = f*() ist, ist G punktsmmetrisch zum Ursprung f* [und somit punktsmmetrisch zum Punkt S ( 0)]. S * * * O

13 Lösungen zu delta Kann ich das? Lösungen zu Seite 6. a) Zeichnung: D C M F A 0 B O b) Größe ϕ des Winkels BOD: O Teildreieck: ϕ B M D Volumen der Pramide P: Das Teildreieck BDO ist aufgrund der vorliegenden Smmetrie gleichschenklig mit Basis [BD]. Es gilt: AB + AD = BD BD = AB + AD = (6 cm) + (6 cm) = 6 cm; OB = ( ) cm; OB = ( cm) + ( cm) + ( cm) = 9 cm; sin ϕ = BD = 6 cm OB 9 = cm ; ϕ = 9,47... ; ϕ = BOD 8,9 V P = AB OM = (6 cm) cm = 44 cm Oberflächeninhalt der Pramide P: Aufgrund der Smmetrie der Pramide gilt: A P = AB + 4 A Dreieck BOC = (6 cm) + 4 BC OB ( BC ) = = (6 cm) cm 6 cm 9 cm = ( + ) cm 84 cm c) Die Pramide P* ist ( cm 6 cm =) 6 cm hoch, also halb so hoch wie die Pramide P. V Pramidenstumpf = V P V P* = V P ( ) V P = 7 8 V P = cm = 6 cm

14 4 Lösungen zu delta. A ( 4 7 ); B ( 9 0); ( 4) AB = 9 7 ( 0 ) ( = ) ; ( 4 ) a = ; ( 4 4 a AB = ; = = a + 4 ; = a + 4; 4 a 8a = ; : 8 a = 4; a = (wegen a X AB = + + ( ) = = ; a ) + + ( 4 a ) = + ) a + 4 ;. a) Kugel K M ( 7 4); r = K : ( ) + ( 7) + ( + 4) = b) Kugel K M ( 7 4) Berechnung der Radiuslänge r: MA = ( ) ( = 0 8 ) ; r = MA = ( 8) = 89 K : ( ) + ( 7) + ( 4) = 89 c) Kugel K M ( 7 8) Der Betrag der -Koordinate von M gibt den Abstand des Kugelmittelpunkts M von der - -Ebene, also die Radiuslänge von K, an: r = 8. K : ( ) + ( 7) + ( 8) = 64 Koordinaten des Berührpunkts: B ( 7 0), da B in der - -Ebene liegt (also = 0 ist) und senkrecht unter M liegt (also = und = 7 ist); B entsteht durch senkrechte Projektion von M in die - -Ebene. 4. O (0 0 0); S (9 9 ); T (4 7) K: = 40; = 40; ( + ) + ( 4) + ( ) = 40; + 9 ( + ) + ( 4) + ( ) =, d. h. M ( 4 ) und r = ; OM = ( 4 ) ; OM = 9 < : O liegt innerhalb der Kugel K. SM = ( SM = 8 > : S liegt außerhalb der Kugel K. ( ) ) ( = 4 ) ; TM = ( 4 4 ( ) 7 ) ( = 7 ) ; TM = 99 < : T liegt innerhalb der Kugel K.

15 Lösungen zu delta. A (4 4 ); B ( ); C (4 ) AB = ( 4 ( 4) ) ( = 4 ) ; AB = 0 = : 4 CB = CB ( = 0 = : v ϕ ( ) ) = ( 4 ) ; Wegen CB ist das Dreieck ABC gleichschenklig mit Basis [CA]. Wegen AB CB = ( ) ( ) + ( ) + ( 4) 4 = 0 ist das Dreieck ABC außerdem rechwinklig (mit dem rechten Winkel bei B). AB = Kugelgleichung in Vektorform: Da B Mittelpunkt der Kugel ist und A und C auf der Kugel liegen, gilt r = AB = CB = 0 : K: ( ) = 0 6. u u = ( 6 ), Flächeninhalt des Parallelogramms: u v = ( 6 ( ) 6 ( ) A P = u v = ( 6 ) ) ( 6 ) ( = ( 6) ( ) ( ) ( 6) 6 ) ( = ) v = 0 + ( 0) + 40 = 800 = 0 Winkelgröße ϕ: u = 44 = ; v = 4 ; u v = u v sin ϕ; sin ϕ = u v u 0 = v = 4 4 ; ϕ 87, 7. D a C d b d b A a B () Summe der Quadrate über den vier Seiten: a + b + a + b = a + b () Summe der Quadrate über den Diagonalen: d + d = = a + b + a + = a + a = a + b b = b + b + a a Da () = () ist, folgt die Behauptung. b + b =

16 6 Lösungen zu delta 8. a = ( ) ; b = ( ) ; n = ( ) ( ) ( = 6 6 ) ; n a = = = 0; n b = ( ) = = 0 9. A ( 7); B ( 4 9), C ( 4 ) a) A ( 0); B ( 4 0); C ( 4 0) b) AB = ( 4 ( ) 9 7 ) ( = 7 ) ; AC = ( 4 ( ) 7 ) ( = ) ; AB AC = ( 7 ) ( ) ( = 6 ) ; AB AC = 84 = ; A ABC = AB AC = 6 ; A B = ( 4 ( ) 0 0 ) ( = 7 0 ) ; A C = ( 4 ( ) 0 0 ) ( = 0 ) ; A B A C = ( 7 0 ) ( 0 ) ( = ) ; A B A C = 6; A A B C = A B A C = 8; A A B C = 8 A ABC 6 = 90, %, d. h.: Der Flächeninhalt des Dreiecks A B C ist um etwa 9, % kleiner als der Flächeninhalt tdes Dreiecks ABC.

17 Lösungen zu delta 7 Kann ich das? Lösungen zu Seite 46. a) f: f() = u(v()) = ( ) = ; g: g() = v(u()) = ( ) = 6 = ; D f = = D g b) f: f() = u(v()) = sin(cos ); g: g() = v(u()) = cos (sin ); D f = = D g. f() = ; zu D = \ [ ; ] gehören 0; ; und 0. f ma g() = ( ) = ; zu D gehören ± ; ± und ± 0. g ma. a) f () = cos ; f (π ) = π cos π = π 0,04 b) f () = = (4 ) = ; f () = 0,707 c) f () = 4 4 (4 + ) 4 + ( 4) = ( 4) = ( 4) ; f (8) = 4 6 = 0,44 d) f () = sin (); f (π) = sin (π) = 0 e) f () = cos ; f ( π sin ) = 0 f) f () = ( + ) ( ) ; f () = 0 4. = sin () (schwarz); = cos () (blau); = 4sin () (rot). Es ist f () = < 0 für jeden Wert von X D f = + = D f. Also ist f überall streng monoton abnehmend. Wertmenge: W f = ] ; [ O Umkehrfunktion: = ; = ( ) ; = ( ), da X f : f () = ( ) ; D f = W f = ] ; [. = ; hoch + ; und vertauschen:

18 8 Lösungen zu delta 6. a) = 4 ; = 4 ; + + = 4 T P r A ϕ O R t p ε S b) () P X : P = f() = ; P ( ); m OP =. Die Tangente t P steht senkrecht auf OP; also ist m tp = m = OP. () f() = 4 ; f () = = 4 ; m 4 t P = f () = = 4. c) t P : = + t; P X t P : = + t; t = + = 4 ; t P : = + 4 Schnittpunkt S von t P mit der -Achse: 0 = + 4 ; = 4; S (4 0) Schnittpunkt T von t P mit der -Achse: T (0 4 ) Flächeninhalt des Dreiecks OST: A OST = 4 4 FE = 8 FE 4,6 FE 7. a) V(r) = r π r π = 7 r π b) r = V 7π ; r(v) = V 7π 8. G g = s Q S O B P A B* t f = r t g 4 A* Die Graphen und G g haben den Punkt S ( ) gemeinsam. Tangente t an in Punkt S: f () = r r ; f () = r; t : = r + t; S X t : = r + t; t = r; t : = r + r Schnittpunkt von t mit der -Achse: A ( r 0) Schnittpunkt von t mit der -Achse A* (0 r) Tangente t am G g im Punkt S: g () = s s ; g () = s; t : = s + t*; S X t : = s + t*; t* = s; t : = s + s Schnittpunkt von t mit der -Achse: B ( s 0) Schnittpunkt von t mit der -Achse: B* (0 s) Flächeninhalt des Dreiecks BAS: A BAS = ( r + s ) = r s rs Flächeninhalt des Dreiecks B*A*S: A B *A*S = ( s + r) = r s A B *A*S = rs A BAS

19 Lösungen zu delta 9 9. π π O π_ π π π G F π π π_ π π π a) hat den Punkt T (0 ) mit der -Achse gemeinsam. Gemeinsame Punkte von mit der -Achse: f() = sin + cos = 0 : ( cos ) tan = ; = π 6 ; = π 6 ; = π 6 S ( π 6 0); S ( π 6 0); S ( π 6 0) Etrempunkte: f () = cos sin = 0; : ( cos ) tan = ; 4 = π ; = π ; = 4π 6 f ( π ) = f () = sin cos f ( 4 ) = sin ( π ) cos ( π ) = > 0: Der Punkt T ( π ) ist ein Tiefpunkt von. f ( ) = sin π f ( 4p ) = Der Punkt H ( π cos π = < 0: ) ist ein Hochpunkt von. f ( 6 ) = sin 4π cos 4π = > 0: Der Punkt T ( 4π ) ist ein Tiefpunkt von. b) F () = sin + cos = f(); D F = D f f ( π ) = sin ( π ) + cos ( π ) = cos + sin = F()

20 0 Lösungen zu delta Kann ich das? Lösungen zu Seite 68. a) e e + = 0; e = 0; e = 0; e = ; = 0 X G; L = {0} b) ln ( e ) = 0; e = ; e = ; e = ; = 0 X G; L = {0} c) ln + k = 0; + k = ; + k = ; + k = 0; D = 4k ;, = ± 4k Fallunterscheidung: I. D = 4k > 0, 4k < ; k < 4 ; < k < ; da k > 0 ist: 0 < k < Es gibt zwei Lösungen X G, wenn 0 < k < ist: L = { 4k ; + 4k } II. D = 4k = 0; k = : nicht möglich, da k > 0 ist; k = : Es gibt genau eine Lösung, nämlich = X G: L = { } III. D = 4k < 0: Es gibt keine Lösung X G; also ist L = { }. d) e + e = 0; e e e + = 0; (e )(e ) = 0; e = ; = ln X G; e = = 0 X G; L = {0 ; ln }. a) ln (e ) + ln (e e ) + e ln = + e + = e + b) ln [ln (e e )] = ln (e ln e) = ln e = c) (e ln + e ln ) : e ln 7 = ( + ) : 7 =. a) Der kleinste Wert von f() = ( 4 ) sin ist ( 4 ) = ( 4 ) = 4,; er wird für = π + nπ (n X ) angenommen. b) Der größte Wert von g() = ( ) cos + ist ( ) + = ( ) =,8; er wird für = nπ (n X ) angenommen. 4. a) = ( + ) e + ( + ) e = ( + )( + )e b) = e ln = ; =, falls > 0 ist. c) = (4 + e ) 4e 4e e (4 + e ) = 4e (4 + e e ) (4 + e ) = 6e (4 + e ) d) = e = e + e + e e) = e cos sin f) = ln e = ln e ln = ln ; = g) = (ln ) ( ) ( ln ) (ln ) = ln + ln (ln ) 4 (ln ) = ln (ln )

21 Lösungen zu delta. h) = + i) = = ( + ) = ( ) = ( ) G g O ln (e ) = ln e + ln = + ln : Man erhält G g, indem man um Einheiten in Richtung der -Achse nach oben verschiebt. ln (a) = ln a + ln : Man erhält den Graphen der Funktion G a, indem man um ln a Einheiten in Richtung der -Achse nach oben (für a > ) bzw. um ln a Einheiten nach unten (für 0 < a < ) verschiebt. 6. T(t) T 0 = (T T 0 )e kt Rechnung mit Maßzahlen: 0 4 = (0 4) e k ; 8 = 96e k ; e k = 8 96 ; k = ln 8 = 0,6989 ; k 0,7; = (0 4) e 0,7t ; 6 = 8 e 0,7t ; e 0,7t = 6 ; 0,7t = ln ; t = ln 6 = 9,40 0 0,7 8 Innerhalb von weiteren rund 0 Minuten kühlt sich die Pfanne von 0 C auf 40 C ab. 7. a) Schnittpunkt mit der -Achse: + = 0; = ; S ( 0) Schnittpunkt mit der -Achse: f(0) = e = = ; T (0 ) 0 b) Ableitung: f () = e ( + )e e = e ( ) e = ; e f (0) = 0 < < 0 = 0 0 < < + f () f () > 0 f () = 0 f () < 0 Vorzeichenwechsel von f () von + nach hat den Hochpunkt H (0 ) = T

22 Lösungen zu delta H = T B A = S O 6 lim f() = 0 (Hinweis: vgl.. Aufgabe 7.); für gilt f(). c) f ( ) = e = e; f () = e ; da f ( ) f () = e ( e ) = ist, stehen die Tangenten t A und t B an in den Graphpunkten A bzw. B aufeinander senkrecht. d) F () = e b (a + b) e (e ) = b a b = f(); e b a b = + ; e e Es muss gelten b =, d. h. b =, und b a = ; also a =, d. h. a = : F() = e Probe F () = e ( ) ( )e e = + + = + = f() e e 8. f(0) = 4 = ; der Punkt T (0 ) X G liegt nicht auf G. f III f () = ( + e ) 4e 4e e ( + e ) = 4e ( + e e ) ( + e ) = 4e ( + e ) ; f (0) = 4 4 = > 0; Die Tangentensteigung im Punkt T ist nur bei G II positiv: G II =. G I : f I () = 4e = 4 + e e + ; G III : f III () = 4e + e = 4e e + e

23 Lösungen zu delta Kann ich das? Lösungen zu Seite 9. a) Ω = {; ; ; 4; ; 6; 7; 8; 9} A = {; ; ; 7; 9}; P(A) = 0,; B = {; 6; 9}; P(B) = 0,; C = {0; ; ; ; 4}; P(C) = 0,; D = {; ; ; 7}; P(D) = 0,4; E = {; 4; 9}; P(E) = 0,; F = {9}; P(F) = 0, b) A Q B = {; 9}: Die Nummer ist ungerade und durch teilbar A q B = {; ; ; 6; 7; 9}: Die Nummer ist ungerade und/ oder durch teilbar A q C = {6; 8}: Die Nummer ist gerade und mindestens gleich D Q E = Ω: Die Nummer ist nicht gleichzeitig Primzahl und Quadrazahl c) () B Q _ E = {; 6} () (A Q _ E ) q ( A Q E) = {; 4; ; 7} () A q E = {; ; 4; ; 7; 9}. a) P( genau ein Bauteil ist defekt ) = 0,88 4 0, 6,0% P( höchstens ein Bauteil ist defekt ) = 0,88 4 0, + 0,88 88,8% P( mindestens ein Bauteil ist defekt ) = 0,88 47,% b) Baumdiagramm: Start 0, 0,88 Bauteil defekt oder d e einwandfrei? 0,9 0,0 0,0 0,98 Feststellung des d e d e Prüfgeräts () P( Das Prüfgerät zeigt ein Bauteil als defekt an ) = 0, 0,9 + 0,88 0,0,% 0, 0,9 () P Das Prüfgerät zeigt defekt an ( Bauteil ist defekt ) = 0, ,88 0,0 86,6% 0,88 0,98 () P Das Prüfgrät zeigt einwandfrei an ( Bauteil ist einwandfrei ) = 0, 0,0 + 0,88 0,98 99,%. Anzahlen: Relative Häufigkeiten: K K A A K K A 0,070 0,099 0,69 A 0,479 0, 0,8 0,49 0,4,000 9 = 9 ; = 0; : 4 = ; = ; = 7; 9 = 4 a) Genau eines dieser beiden Mathematikprobleme haben (7 + 4 =) 4 der Befragten; das sind etwa 8% b) h(a Q K) 0,070; h(a) h(k) 0,69 0,49 0,09 h(a Q K): Die beiden Probleme treten stochastisch nicht unabhängig voneinander auf. 4. Start W W 0, 0,7 R 0,07 0, 0,47 W W R 0, 0,4 0,7 0, 0,8 0,8 0,7 0, 0,7,000 R R R R 0, 0,8 a) P Person nimmt teil ( Person wiederholt ) = 0, 0,8 + 0,7 0,7 8,% b) P(W Q R) = 0,07; P(W) P(R) = 0, 0,47 0,069 P(W Q R): Die Ereignisse W und R sind stochastisch nicht voneinander unabhängig. c) P( Spätestens an 6. Stelle steht ein Wiederholer/ eine Wiederholerin ) = 0,7 6 8,%

24 4 Lösungen zu delta Kann ich das? Lösungen zu Seite 6. f () = 0, ( )( + ) + 0,( ) = = 0,( )( ) = = 0,( )( + ); f () = 0,( + ) + 0,( ) = = 0,( + + ) = = ; f () = 0; = ; = ; f () = > 0; f ( ) = < 0: hat einen Hochpunkt H ( ) und einen Tiefpunkt T ( 0). a) f(,) = 0, (,) ( 0,) =,06; f(,) = 0, 0,, = 0,47 Die Funktion f hat im Intervall I a das globale Maimum f( ) = und das globale Minimum f(,) =,06 (Randminimum). b) f(,) = 0, (,) 0, =,6; f(,) = 0,, 4, =,06 Die Funktion f hat im Intervall I b das globale Maimum f(,) =,06 (Rand maimum) und das globale Minimum f() = 0.. f a () = a ; f () = a a ; f a () = 0: = a ; = ± a; f a (a) = a a = a > 0, da a X + ; f(a) = a + a + 8 a = a + 8 a ; f a ( a) = a ( a) = a < 0; f( a) = a + 8 a : lokaler Tiefpunkt von : T (a a + 8 a a ); T (a) = a + 8 a ; (a) = 8 T a ; (a) = 6 T a ; T (a) = 0: 8 a = 0; a = 4; a* = ; da a* X + ; T () = 6 8 = > 0: Für a* = ist die -Koordinate des lokalen Tiefpunkts am kleinsten: T () = 8. O. a) F() = a + ; F () = a ( + ) = f(): a = 0; a = 0 (D F = = D f ). b) F () = ae ( a = 4 (D F = = D f ). : ) = ae = 4 e 4. a) Ansatz: f() = K( + )( ) = K( 9); f () = K( 9); f (0) = 9K; m t0 = 4,, = = f (0); 9K = ; K = Funktionsterm: f() = ( 9) = +

25 Lösungen zu delta b) P O t O Eckpunkte: V ( a f( a)), I (a f( a)), E (a f(a)), R ( a f(a)) mit f(a) = a + a; f( a) = a a Flächeninhalt: A VIER = A(a) = a f(a) = a ( a + a ) = 4 a4 + a ; A (a) = 6 a + 4a; A (a) = 6a + 4; A (a) = 0: 6 a ( a 9 ) = 0; 0 < a < : a = ; A ( ) = = 48 < 0: A ( ) = = = 7 ist das Maimum von A VIER.. a) Die Graphen sind für k 0 Parabeln mit dem Scheitel S (0 k ); für k = 0 ergibt sich eine zur -Achse parallele Gerade mit der Gleichung =. b) t O 0 t c) P ( k ) f k () = k; f k () = k; t k : = k + t; P X t k : k = k + t; t = ; t k : = k ; daraus folgt, dass t k für jeden Wert von k den gleichen -Achsenabschnitt hat, also durch T (0 ) verläuft. d) -Achsenabschnitt von t k : k = 0; = (k 0) k Flächeninhalt: A(k) = k = 4k ; A( 0,) = 4 ( 0,) = lim A(k) = lim 4k = 0 k k

26 6 Lösungen zu delta 6. A(r) = rπh + 4r π; Rechnung in Maßzahlen (Einheit mm, mm bzw mm ): 4r π + rπh = 0; h = 0 4r π ; rπ Volumen des Zlinders: V Z = r πh; V Z (r) = (0 4r π)r π = r rπ (0 4r π) = r r π; V Z (r) = 6r π; V Z (r) = rπ < 0 wegen r > 0 V Z (r) = 0: 6r π = ; r = 6π ; r = 6π,8; 0 4 6π h π 00 π = π 0,0 6π 6π Gesamtvolumen der Kapsel: V K,8 π 0,0 + 4,8 π 86,: Mit r 0,8 mm und h 0 0,0 mm (die optimale Kapsel ist also eta cm lang und cm breit) ergibt sich ein Kapselvolumen von etwa 86 mm. 7. a) Graph von f ist B und Graph von f ist A, da nur dann f ( ) = 0, f () = 0 und f (0) < 0 ist. Graph von g ist D und Graph von g ist C, da nur dann g () < 0 für < und g () > 0 für > ist. b) Jakob kann ( + + =) 6 verschiedene Kartenpaare ziehen; er zieht also mit der Wahrscheinlichkeit ( 6 ) % ein zusammenpassendes Paar.

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

1 Die natürliche Exponentialfunktion und ihre Ableitung

1 Die natürliche Exponentialfunktion und ihre Ableitung Schülerbuchseite 5 5 Lösungen vorläuig VI Natürliche Eponential- und Logarithmusunktion Die natürliche Eponentialunktion und ihre Ableitung S. 5 Durch Ausprobieren erkennt man, dass < a

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ihlenburg Ott Deusch Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 5. Auflage 05 ISBN 978--80-8- Das

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Etrem- und Wendepunkte und zeichne ein Schaubild

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Mathematikaufgaben. Matura Session

Mathematikaufgaben. Matura Session Mathematikaufgaben Matura 05. Session Angaben 05. Session 05. Session Problemstellung Ein Telefonanbieter sieht für Auslandgespräche eine Figebühr von 0 Euro monatlich und zusätzlich 0 Cent pro Gesprächsminute

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten SCHRIFTLICHE ABITURPRÜFUNG 004 KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 004 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G,

Mehr

Abiturprüfung Grundkurs 1995/96 und 1996/97

Abiturprüfung Grundkurs 1995/96 und 1996/97 Inhalt Vorwort............................................. Mecklenburg-Vorpommern 99/97....................... Aufgaben.................................... Erwartungsbilder.............................

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Mathematik für das Ingenieurstudium Lösungen der Aufgaben. 4. Dezember 2014

Mathematik für das Ingenieurstudium Lösungen der Aufgaben. 4. Dezember 2014 Mathematik für das Ingenieurstudium Lösungen der Aufgaben Jürgen Koch Martin Stämpfle 4. Dezember 4 Inhaltsverzeichnis Grundlagen 5 Lineare Gleichungsssteme 9 Vektoren 7 4 Matrizen 5 Funktionen 9 6 Differenzialrechnung

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Mathematik Abitur 2014 Lösungen

Mathematik Abitur 2014 Lösungen Mathematik Abitur Lösungen Richard Reindl Analysis Aufgabengruppe Teil A. f (x) = lnx (lnx), f (x) = = lnx = = x = e, f(e) = e < x < e : lnx < = f (x) < = f fallend x > e : lnx > = f (x) > = f steigend.

Mehr

Übungsaufgaben II zur Klausur 1

Übungsaufgaben II zur Klausur 1 Übungsaufgaben II zur Klausur. Ableitungen 0. Führen Sie für g mit f ( +,9 8 eine vollständige Kurvendiskussion (siehe S. 9f durch. Markieren Sie alle von Ihnen bestimmten Punkte in der abschließenden

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

Berufsmaturitätsprüfung 2009 Mathematik

Berufsmaturitätsprüfung 2009 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2009 Mathematik Zeit: 180 Minuten Hilfsmittel: Formel- und Tabellensammlung ohne gelöste Beispiele, Taschenrechner

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014 Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 04 Schwerpunkt: grundlegendes Anforderungsniveau 0 Inhaltsverzeichnis Inhaltsverzeichnis Seite Vorbemerkungen... Aufgabenvariationen und Ergänzungen

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur Aufgabe 1: Gegeben ist die Funktion f mit 1 f x = x x x + x R 8 3 2 ( ) = ( 3 9 + 27);. a) Untersuchen sie das Schaubild K von f auf Schnittpunkte mit den Koordinatenachsen, Hoch- und Tiefpunkte. Zeichnen

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Liechtensteinisches Gymnasium

Liechtensteinisches Gymnasium Schriftliche Matura 2015 Liechtensteinisches Gymnasium Prüfer: Huber Sven Klasse 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Gib die zur Rechnung nötigen Einzelschritte an. 2) Skizzen müssen

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Affine (lineare) Funktionen

Affine (lineare) Funktionen Gymnasium / Realschule Affine (lineare) Funktionen f() m + t Klassen 9 -. Gib die Gleichung einer Geraden durch P mit der Steigung m an: a) P( ); m - b) P( ); m c) P(-4 ); m. Gegeben sind die Punkte P

Mehr

Zentralabitur 2006 Mathematik Lehrermaterial Rechnertyp: CAS Grundkurs Gymnasium Gesamtschule

Zentralabitur 2006 Mathematik Lehrermaterial Rechnertyp: CAS Grundkurs Gymnasium Gesamtschule Zentralabitur 006 Mathematik Lehrermaterial Rechnertyp: CAS Grundkurs Gymnasium Hinweise zur Auswahl der Aufgaben für Lehrkräfte am Gymnasium und an der Die Prüflinge erhalten zwei Aufgaben zur Analysis

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Ersatzarbeit Realschulprüfung 1996 im Fach Mathematik Pflichtteil 1. Herr Berg kauft ein 672,0 m 2 großes unerschlossenes Baugrundstück zu einem Quadratmeterpreis von 56,00 DM.

Mehr

Kroemer

Kroemer Kroemer - 02011-1- Normalparabel 13 y 2.0 2.1 3.0 3.1 4.0 4.1 5.1 5.2 6.1 6.2 12 11 10 9 8 7 6 5 4 3 2 1 0-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 8 9-1 -2 Aufgabe: a) Zeichne eine Normalparabel p: y= x² - erstelle

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Tag 6 - Montag, Aufgaben und Lösungen Differentialrechnung und Anwendungen

Tag 6 - Montag, Aufgaben und Lösungen Differentialrechnung und Anwendungen Hochschule für Technik, Wirtschaft und Kultur Leipzig Vorkurs Mathematik Themen: Tag 6 - Montag, 9.9. - Aufgaben und Lösungen Differentialrechnung und Anwendungen Differentiationsregeln der Grundfunktionen

Mehr

Informationsblatt für den Einstieg ins 3. Mathematikjahr AHS Kursleiter: Diplomierter Erwachsenenbildner DI Hadi Bakhtiarnia

Informationsblatt für den Einstieg ins 3. Mathematikjahr AHS Kursleiter: Diplomierter Erwachsenenbildner DI Hadi Bakhtiarnia Informationsblatt für den Einstieg ins. Mathematikjahr AHS Kursleiter: Diplomierter Erwachsenenbildner DI Hadi Bakhtiarnia Stoff für die Einstufungsprüfung ins. Mathematikjahr AHS: ) Vektorrechnung im

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr