Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7"

Transkript

1 Lösungen zu delta Fit für die Oberstufe Lösungen zu den Seiten 6 und 7. a) 4 = ; 9 = 4; = 6 X G; L = { 6} b) ( 4) + 8 = ( + 4); = 4; + 0 = ; 4 = ; = =, X G; L = {,} 4 c) + 7 = 0; + 7 = 0; = 7 G; L = { } + d) + = 0; + = 0; = X G; L = { } e) ( ) (4 + ) = 0; = 0; 4 7 = 0; 4 = 7; = 0, X G; L = { 0,} f) + = 0; = = ; = X G; = X G; L = { ; } g) 6 + = 0; = 6 ± 6 8 = 6 ± 7 = ± 7 ; 4 4 = ( + 7 ) X G; = ( 7 ) X G; L = { ( + 7 ); ( 7 ) } h) (7 ) 7(7 ) = 7 ; 8(7 ) (7 ) = 0; 7(7 ) = 0; = 7 X G; L = {7} i) 6 = 0; ( 6)( + ) = 0; = 6 X G; = X G; L = { ; 6} j) 6 = 0; = 6; = 6 G; = 6 X G; L = { 6 } k) + = 0; + = 0; L = { } l) = 0; = 0; ( + + 4) = 0; = 0 G; = 0; D = 6 = < 0; L = { } m) + = 0; ( + ) = 0; ( )( ) = 0; = 0 G; = X G; = X G; L = { ; } n) ( 9)( ) = 0; ( )( + )( )( + ) = 0; = X G; = X G; = X G; 4 = X G; L = { ; ; ; }

2 Lösungen zu delta o) 9 = 0; = 0; = ; = X G; = G; L = { } p) a = 0; a = 0; = a > 0 wegen a X + ; = a X G; = a X G; L = { a ; a } q) (log 0 ) = ; log 0 = ± ; = 0 X G; = 0 X G; L = { 0 ; 0 } r) + 4 = 0; + 4 = 0; + 4 = 0; ( 4)( ) = 0; 4 = 0; = 4 = ; = X G; = 0; = = 0 ; = 0 X G; L = {0 ; } s) sin = ; sin = ; X ]0 ; π[: = π 6 X 6; = π 6 X G; L = { π 6 ; π 6 } t) cos = ; X ] π ; π [: = π ; = π X G; L = π u) = 8 ; = 4 ; = 4; 4 = 0; ( )( + ) = 0; = X G; = X G; L = { ; } v) ( + )( ) = 0; ( + )( 4)( + ) = 0; = X G; = 4 X G; = X G; L = { ; ; 4}. a) I = + eingesetzt in b) I + = 0 II 4 + = ergibt II + = 4 + ( + ) = ; I II = ; = eingesetzt in I: = ; = 0; = ; = ; = 4 eingesetzt in I ergibt = 4 + = 6; L = {( 4 ; 6)} L = {( ; )} c) I = 0 d) I + = II + = 0 II = + 8 I + II 6 = 0; = 6; = II + = 0; : eingesetzt in II ergibt + = (identisch mit I) + = 0; Das Gleichungssstem hat unendlich viele Lösungen: = ; L = {( ; )} L = {( ; ) = + }

3 Lösungen zu delta. a) 4 > 0; > 4; > 7; L = ]7 ; [ b) 0, 4; 0, ; 6; L = [ 6 ; [ c) ( + ) < 0. Fall: > 0 + < 0 > 0 < : nicht möglich. Fall: < 0 + > 0 < 0 > < < 0; L = ] ; 0[ d) < ; 6 < 7; L = ]6 ; 7] e) ( ) 0 Da stets 0 ist, muss entweder = 0 sein oder 0; ; L = {0} t [ ; + [ f) ( )( ) < 0 Vorzeichen der Faktoren bei negativem Produktwert: + + d. h. () > 0 > < ; < < + + d. h. () > 0 < > ; nicht möglich + + d. h. () < 0 > > ; nicht möglich d. h. (4) < 0 < < ; < 0 L = t ] ; [ g) ( ) > 0 Wegen > 0 für jeden Wert von X muss > 0, also > sein: L = ] ; [ h) + > 0 gilt für jeden Wert von X : L = D f ma achsensmmetrisch zur -Achse punktsmmetrisch zum Ursprung a) b) \{ ; } + c) 0 d) e) f) zu e) O

4 4 Lösungen zu delta zu f) 4 O a) f() + f() b) f() 0 + f() 0 + c) f() 0 + f() 0 d) f() 4 f() 4 e) f() 0 f() 0 f) keine Aussage möglich 6. Allgemein: = m + t mit m = B A B A bzw. A A a) =, b) + 4 = + 4 = ; + 4 = ( ); = 7 ; = 0 c) = d) = 4 e) = f) = = 6 = ; = ; = = B A B ( A A B ) 7. a) P a = ( 6 ) 6,% b) P b = a) c) P c = ( ) 4 = e) P e = 6 ( 6 ) 6 = ( Start p p m w 0, 0,4 0,0 0,80 FB FB FB FB 64,6% d) P = d ( 6 ) 6 66, % 6 ) = , % f) P = f ( 6 ) ( Messebesucher: m männlich w weiblich FB: Fachbesucher(in) FB: kein(e) Fachbesucher(in) 6 = 0 6,% 6 ) = ( 6 ) ( 0,p + 0,0( p) = 0,40; 0,p + 0,0 0,0p = 0,40; 0,p = 0,0; p = 0,0 0, = 4 : Insgesamt 4 7,% der Messegäste sind männliche Fachbesucher b) P FB (m) = 0, = 0, ,6% Die augewählte Person ist mit einer Wahrscheinlichkeit von etwa 79% männlich. 6 + ) 7,7%

5 Lösungen zu delta 9. () a) Das Dreieck ABC ist gleichschenklig, da BC = + cm = 4 cm = CA ist; somit gilt H =. m CA = ; m h b = ; h b : = + t; B X h b : = 8 + t; t =,8; h b : = 0,6 +,8; da H = ist folgt H =,8: H (,8). tan α = ; α 9 ; γ 80 9 = 6 0 h b C * h c C * C C * H (,8) C * 6 A 4 4 B 0 C * C * 4 b) Für C * ( 4) und für C * ( ) ist das Dreieck ABC * bzw. das Dreieck AC * B rechtwinklig. Hinweis: C *, = ± AB = ± Für C * ( + ) und für C * 4 ( ) ist das Dreieck ABC * bzw. das Dreieck AC * 4 B gleichseitig. Hinweis: C *, 4 = ± AB = ± C * ( h); A Viereck ACBC * = AB (h ) AB = 6 (h ) 6 = = h = h 8; h 8 = ; h = 0; C * ( 0) C * 6 ( h*); A Viereck AC * = 6 BC 6 6 (h* ) = 8 h*; 8 h* = ; h* = ; C * 6 ( ) Hinweis: C *,6 = C ± 4 = 6 ± 4 () a) Beispiele: g OD ER; DOR = EDO; DE = RO (= 0 = ) : das Trapez ODER ist gleichschenklig; das Trapez ODER ist achsensmmetrisch zur R E Geraden g mit der Gleichung = 4. b) MO = ( 4) + ( ) = MD = 4 + ( ) = ME = + 4 = M MR = ( ) + 4 = Da MO = MD = ME = MR ist, ist M der Mittelpunkt des Umkreises des Trapezes ODER. O D

6 6 Lösungen zu delta c) S (Skizze nicht maßstäblich) g s = s = M* = 4; da die Geraden SO und g von dem Parallelenpaar ER und OD geschnitten werden, gilt nach dem. Strahlensatz für die X-Figur OSM*: s 7 s = 4 ; 4s 8 = s ; s = 8; S (4 8) R E s 7 O 4 M* D s 0. a) r* π = 4r π; r* = 4r ; r* = r: r* ist doppelt so groß wie r. b) V Luft usw. = 4 cm 7,0 cm 7,4 cm 6 4 (,7 cm) π 7, cm 9, cm = 9,9 cm : 9,9 cm 0,46 = 4,6% 7, cm Von der Packung ist also weniger als die Hälfte Inhalt. c) h = 6 cm; r = 6 cm; V = r πh = (6 cm) π 6 cm = 6π cm 679 cm A = r π + rπh = (6 cm) π + 6 cm π 6 cm = 44π cm 4 cm. S s h p h s D C A ϕ M B Basishöhe h s jeder der vier Seitenflächen: h s = (8 cm) + ( cm) = 7 cm ; h s 8, cm; A p (6 cm) cm 8, cm = 6 cm + 0 cm = 8 cm V p = (6 cm) 8 cm = 96 cm tan ϕ = 8 ; ϕ 6, V k = ( cm) π 8 cm = 48π cm 0,8 cm s = SA = ( cm) + (8 cm) = (8 + 64) cm = 8 cm ; s 9, cm; A K = ( cm) π + cm π SA = 8 π cm + cm π 8 cm = 8 π cm π cm 77 cm V P 96 cm V K 0,8 cm 64% Die Pramide nimmt etwa 64% des Kegelvolumens ein.

7 Lösungen zu delta 7 Kann ich das? Lösungen zu Seite 6. Nullstelle(n) Polstelle(n) D f ma a) = 0 = \ {} b) = 0; = = \ { } c) = 0. Funktion f f f Nullstelle(n) Polstelle(n) = 0 = 0 = 0 Verhalten für + f() 0 + f() + f() + Verhalten für f() 0 f() + f() Der Graph verläuft durch die Quadranten III und I II und I III und I Achsenpunkte des Graphen Smmetrieverhalten: Der Funktionsgraph ist Gleichungen der Asmptoten des Graphen punktsmmetrisch zum Ursprung = 0; = 0 smmetrisch zur -Achse = 0; = punktsmmetrisch zum Ursprung = 0; = 4 4. a) lim + = lim = + = 0, ± ± b) lim [ ( + 4 ) ] = lim [ ( ) ] = ± ± c) lim 6 + = lim = 0 + = 0 ± ± k 4. lim k = lim 8 + ± + ± + ( 4 ) = 0, = k ; k = ; k = 6. a) Nummer der Figur Umfangslänge der Figur ( in cm) Flächeninhalt der Figur (in cm ) () U = 4a = 4 8 = A = a = 8 = 64 () () (n) a = a = 4 U = 6a = 6 4 = 4 a = a = a = U = 0a = 0 = 0 a n = a n U n = ( n + ) 4 n = 4 + n A = a = ( a ) = 4 = A = 4 a = 4 ( a ) = 4 = 6 A n = n ( a = n 8 n = 7 n n ) = n ( ) = n b) lim U n = 6 lim A n = 0 n + n + 6. Funktionsgleichung a) b) c) d) Wertetabelle D C A B Graph (4) () () ()

8 8 Lösungen zu delta Kann ich das? Lösungen zu den Seiten 8 und 84. a) () m() = ( ) ( ) = = 4 lim ( + ) = 4 + () m() = ( ) ( ) = + = 4 lim ( + ) = 4 Wegen lim m() = lim m() = 4 ist lim m() = 4. + b) () m(h) = ( + h) ( ) + h lim ( + h) = h 0+ () m() = ( h) ( h) = + h + h = h = + h h = h = ( + )( ) = + ; > = ( + )( ) = + ; < h( h) h h( +h) h lim ( h) = 0+ Wegen lim ( + h) = lim ( h) = ist lim m(h) =. h 0+ h 0+ h 0+ = + h = + h; h > 0 = h = h; h > 0 V(r + h) V(r). Der Term (h > 0) bedeutet die mittlere Volumenzunahmerate, wenn die Radiuslänge um h h zunimmt. 4 V(r + h) V(r) = (r +h) π 4 r π 4 = π(r + r h + rh + h r ) 4 = π h (r + rh + h ) = 4 h h h h π (r + rh + h ); V (r) = lim [ 4 π (r + rh + h ) ] = 4 π r = 4r π: Dies ist der Kugeloberflächeninhalt. h 0 f( + h) f(). a) f () = lim = lim ( + h) ( ) = lim 4h h + h 0 h h 0 h h 0 h h(4 + h) = lim = lim [ (4 + h) ] = 4 h 0 h h 0 Ableitungsfunktion: f : f () = 4; D f = f( + h) f() b) f () = lim ( + h) = lim ( + h) = lim ( + h) = lim h h h h h ( + h) = lim ( + h) = h 0 h 0 h 0 h 0 h 0 Ableitungsfunktion: f : f () = ; D = \ {0} f 4. a) f() = 4 + ; f () = 8 + ; f () = f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = 8; t p : = 8 b) f() = + 4; f () = ; f () = f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = ; t p : = + Schnittpunkt von t p mit der -Achse: = 0; 0 = + ; + = ; : =,; S (, 0) Steigung von n p : 0,; n p : = 0, + t*; da P X n p ist, gilt = 0, + t*; 0, t* =,; n p : = 0, +, Schnittpunkt von n p mit der -Achse: = 0; 0, +, = 0;, 0, =,; : 0, = ; S ( 0) A = S ( +,) =, S P r Umkreis = ( +,) =,7; A = Umkreis,7 π 44,; Prozentsatz: etwa, 44, % c) f() = ( ) = ; f () = 6 ; f () = 6 oder (Produktregel) f() = ( ); f () = ( ) + ( 0) = + = 6 f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = ; t p : =

9 Lösungen zu delta 9 d) f() = ; f () = ; f () = 6 4 f() = ; f () = ; t p : = + t; da P X t p ist, gilt = + t; t = ; t p : = + e) f() = ; f () = ; f () = 4 f() = ; f () = 0,; t p : = 0, + t; da P X t p ist, gilt = 0, + t; t = 0,; t p : = 0, + 0, f) f() = + ; f () = ( + ) ; f () = ( + ) ( ) ( )(4 + 4) ( + ) = 4 = ( + ) + 8 ( + ) ( + ) = ( + ) ( + ) = 6 ( + ) f() = 0,; f () = ( + ) = 0,; t : = 0, + t; da P p X t ist, gilt 0, = 0, + t; p t = ; t p : = 0, + Schnittpunkt von t p mit der -Achse: = 0; 0 = 0, + ; + 0, 0, = ; : 0, = ; S ( 0) Steigung von n p : ; n p : = + t*; da P X n p ist, gilt 0, = + t*; t* =,; n p : =, Schnittpunkt von n p mit der -Achse: = 0;, = 0; +, =,; : = 0,7; S (0,7 0) A = S ( 0,7) 0, = 0, S P r Umkreis = ( 0,7) = 0,6; A = Umkreis 0,6 π,; Prozentsatz: etwa 0,, % g) f() = + ; f ( ) ( + ) () = ( ) = 6 ( ) ; f () = ( 6)( 6) ( ) = ( ) = 4 ( ) 4 ( ) f() = ; f () =,; t p : =, + t; da P X t p ist, gilt =, + t; t = 0,; t p : =, 0, h) f() = ( + ) = ; f () = = 4 + 8; f () = 8 f() = 9; f () = ; t p : = + t; da P X t p ist, gilt 9 = + t; t = ; t p : =. Bei beiden Abbildungen ist einer der beiden Graphen, der andere. a) Die rote Kurve ist, die grüne Kurve ist. Begründung: Die Abszissen der Punkte von, in denen eine horizontale Tangente besitzt, stimmen mit den Nullstellen der durch dargestellten Funktion überein, aber nicht umgekehrt. b) Die grüne Kurve ist, die rote Kurve ist. Begründung: Die Tangentensteigung von nimmt zu, demgemäß ist steigend; umgekehrt ist dies nicht der Fall. 6. a). Art: f() = + 4 ; f () = + 4 = + 8. Art: f () = ( + 4) + ( + 0) = = + 8 b). Art: f(r) = 8r + 6r ; f (r) = r = 8 + r. Art: f(r) = ( 4r)( 4r); f (r) = (0 4)( 4r) + ( 4r)(0 4) = 4 + 6r 4 + 6r = 8 + r c). Art: f() = ; f () = +. Art: f() = = ; f () = ( 0) ( ) = 4 + = + d). Art: f(a) = a 4 a = a 9 ; f (a) = 9a 8. Art: f (a) = 4a a + a 4 a 4 = 4a 8 + a 8 = 9a 8 7. b =, da S ( 0) X ist; c =, da S ( 0) X ist. Der Graph hat eine schräge Asmptote; somit ist n = = (das Zählerpolnom hat den Grad ). a( + )( ) Wegen f() = ist = ; a =. ( + )( ) Als Funktionsterm ergibt sich f() = = =. = +

10 0 Lösungen zu delta f() f(0) 8. Für > 0 gilt = = 4 = ; lim = 0; 0+ f() f(0) für < 0 gilt = = 4 = ; lim = 0 = lim : 0 0+ Die Funktion f: f() = 4 ; D f =, ist also an der Stelle 0 = 0 differenzierbar, und es ist f (0) = Q ( ); Gleichung der Parabel P : = a( ) + ; Q X P : = a ( ) + ; a = P : = ( ) + = + + = + Steigung von P (und von P ) im Punkt Q:. Ableitung: = ; an der Stelle = : m tq = 4 = Gleichung der Tangente t Q : = + t; Q X t Q : = + t; = 4 + t; 4 t = t Q : = Parabel P : = f() = + b + c Q X P : = + b + c; + 4 b + c = 7 (I) f () = + b; f () = 4 + b = m tq = ; b = 6; eingesetzt in (I) 6 + c = 7; c = Gleichung von P : = + 6 = ( ) + 9 = ( ) + 4 a) Der Teil der Parabel P links oberhalb des Punkts R ( 4) b) Der Teil der Parabel P links unterhalb des Punkts R ( 0). 0. a) = ist eine doppelte Nullstelle von f; f besitzt keinen Pol, also keine senkrechte Asmptote. lim f() = lim 4 + = lim = ; besitzt somit eine waagrechte ± ± ± Asmptote mit der Gleichung =. f() = 4 + ; + Etremstellen: f () = (4 4)( + ) ( 4 + ) ( + ) = ( + ) = 4 4 ( + ) = 4( ) ( + ) f () = 0: 4( ) = 0; : 4 ( + )( ) = 0; = ; = Monotonietabelle: < < = < < = < < f () f () > 0 f () = 0 f () < 0 f () = 0 f () > 0 Vorzeichenwechsel von f () von + nach von nach + Graph steigend Hochpunkt A ( 4) fallend Tiefpunkt C ( ) steigend Wertetabelle: f(),8,9,,6 4,0,0 0,0 0,4 0,8,, A C* a B D( ) E( ) A* a O C

11 Lösungen zu delta b) Tangentengleichungen: f( ) = 4; f ( ) = 0 4 = 0; t : = 4 A f(0) = ; f (0) = 4; t B : = 4 + f() = 0; f () = 0; t C : = 0 Streckenhalbierung: AB = + LE = LE; CB = + LE = LE; AB = CB (I) m AC = 4 = ; = + t; da A X AC ist, gilt 4 = + t; t = ; AC: = + B liegt auf AC, da = = 0 + ist, also ist wegen (I) B Mittelpunkt der Strecke [AC]. Rechteck AA*CC*: A*( 0), C*( 4); A Rechteck AA*CC* = 4 LE LE = 8 FE Flächeninhalt des Quadrats: Für die Länge d jeder der Diagonalen eines Quadrats der Seitenlälnge a gilt d = a. AC = + 4 LE = 0 LE = a ; : a = 0 LE A Quadrat = a = 0 FE Die Quadratfläche ist um FE, das sind ( =) %, größer als die Rechtecksfläche. 8. Der Graph verläuft durch den Ursprung O (0 0), da f(0) = 0 ist. (Weitere) gemeinsame Punkte mit der -Achse: ( ) = 0; = 0 (siehe oben) D = = 6 9 < 0; also hat G mit der -Achse f (und mit der -Achse) nur den Ursprung gemeinsam. Punkte von, in denen die Tangente horizontal ist: f () = g + = = ( 4 + 4) = ( ) S S Für = 0 und für = gilt f () = 0; f(0) = 0; f() = = 4. Im Ursprung O (0 0) und im Punkt W ( 4 ) besitzt G W f die horizontale Tangente t O : = 0 bzw. t W : = 4. Monotonietabelle: O < < 0 = 0 0 < < = < < f () f () < 0 f () = 0 f () > 0 f () = 0 f () > 0 Vorzeichenwechsel von f () Newton sches Näherungsverfahren: n + = n g( ) n g ( n ) ; n X. Dabei ist g() = und g () = ( ) ; Anfangsnäherung für S ist =, : S,8 von nach + kein Vorzeichenwechsel Graph fallend Tiefunkt O steigend Terrassenpunkt W n n g( n ) g'( n ) n + 0,00 0,849 7,87,9,9 0,070 6,7,8,8 0,00 6,448,8 steigend

12 Lösungen zu delta. f() = 0 ; f () = 0 4 = 4 4 = 4 ( a) = 4 ( + )( ) f besitzt nur die Nullstellen 0, und. Monotonietabelle: < < = < < 0 = 0 0 < < = < < f () f () > 0 f () = 0 f () < 0 f () = 0 f () < 0 f () = 0 f () > 0 Vorzeichenwechsel von f () Der Graph besitzt andere Etrempunkte als, der Graph ebenfalls; wird also durch den Graphen dargestellt.. D f ma = \ { 4; 0} Achsenpunkte: hat mit der -Achse keinen Punkt gemeinsam. Gemeinsamer Punkt mit der -Achse: f() = 0; 6 + = 0; 6 = ; : 6 = S ( 0) Verhalten für ± : lim = lim ± ± von + nach = 0 = 0 fallend kein Vorzeichenwechsel fallend von nach + Graph steigend Hochpunkt Terrassenpunkt Tiefpunkt Die -Achse (Gleichung: = 0) ist also horizontale Asmptote von. An den Stellen = 0 und = 4 hat f Pole (. Ordnung, also Pole mit Vorzeichenwechsel: Für 4 gilt f(). Für 4 + gilt f() +. Für 0 gilt f(). Für 0 + gilt f() +. Senkrechte Asmptoten: = 4 und = 0 Etrema: f () = 6( + 4) (6 + )( + 4) ( + 4) = steigend ( + 4) = ( + 4) = 6( ) ( + 4) f () = 0: = 0; D = = 6 = 6 < 0. Da f überall in D f differenzierbar ist und f () für jeden Wert von X D f ungleich null ist, hat keine lokalen Etrempunkte. 6 ( ) Tangente im Punkt S ( 0): f ( ) = [( ) + 4 ( )] = 4 6 = t S : =, + t; wegen S X t S ist 0 =, ( ) + t; t = t S : =, Verschiebung von um Einheiten nach rechts: f*() = f( ) 6( ) + f*() = ( ) + 4( ) = = 6 4 ; D = \ { ; } f* 6 ( ) Da f*( ) = ( ) 4 = 6 4 = f*() ist, ist G punktsmmetrisch zum Ursprung f* [und somit punktsmmetrisch zum Punkt S ( 0)]. S * * * O

13 Lösungen zu delta Kann ich das? Lösungen zu Seite 6. a) Zeichnung: D C M F A 0 B O b) Größe ϕ des Winkels BOD: O Teildreieck: ϕ B M D Volumen der Pramide P: Das Teildreieck BDO ist aufgrund der vorliegenden Smmetrie gleichschenklig mit Basis [BD]. Es gilt: AB + AD = BD BD = AB + AD = (6 cm) + (6 cm) = 6 cm; OB = ( ) cm; OB = ( cm) + ( cm) + ( cm) = 9 cm; sin ϕ = BD = 6 cm OB 9 = cm ; ϕ = 9,47... ; ϕ = BOD 8,9 V P = AB OM = (6 cm) cm = 44 cm Oberflächeninhalt der Pramide P: Aufgrund der Smmetrie der Pramide gilt: A P = AB + 4 A Dreieck BOC = (6 cm) + 4 BC OB ( BC ) = = (6 cm) cm 6 cm 9 cm = ( + ) cm 84 cm c) Die Pramide P* ist ( cm 6 cm =) 6 cm hoch, also halb so hoch wie die Pramide P. V Pramidenstumpf = V P V P* = V P ( ) V P = 7 8 V P = cm = 6 cm

14 4 Lösungen zu delta. A ( 4 7 ); B ( 9 0); ( 4) AB = 9 7 ( 0 ) ( = ) ; ( 4 ) a = ; ( 4 4 a AB = ; = = a + 4 ; = a + 4; 4 a 8a = ; : 8 a = 4; a = (wegen a X AB = + + ( ) = = ; a ) + + ( 4 a ) = + ) a + 4 ;. a) Kugel K M ( 7 4); r = K : ( ) + ( 7) + ( + 4) = b) Kugel K M ( 7 4) Berechnung der Radiuslänge r: MA = ( ) ( = 0 8 ) ; r = MA = ( 8) = 89 K : ( ) + ( 7) + ( 4) = 89 c) Kugel K M ( 7 8) Der Betrag der -Koordinate von M gibt den Abstand des Kugelmittelpunkts M von der - -Ebene, also die Radiuslänge von K, an: r = 8. K : ( ) + ( 7) + ( 8) = 64 Koordinaten des Berührpunkts: B ( 7 0), da B in der - -Ebene liegt (also = 0 ist) und senkrecht unter M liegt (also = und = 7 ist); B entsteht durch senkrechte Projektion von M in die - -Ebene. 4. O (0 0 0); S (9 9 ); T (4 7) K: = 40; = 40; ( + ) + ( 4) + ( ) = 40; + 9 ( + ) + ( 4) + ( ) =, d. h. M ( 4 ) und r = ; OM = ( 4 ) ; OM = 9 < : O liegt innerhalb der Kugel K. SM = ( SM = 8 > : S liegt außerhalb der Kugel K. ( ) ) ( = 4 ) ; TM = ( 4 4 ( ) 7 ) ( = 7 ) ; TM = 99 < : T liegt innerhalb der Kugel K.

15 Lösungen zu delta. A (4 4 ); B ( ); C (4 ) AB = ( 4 ( 4) ) ( = 4 ) ; AB = 0 = : 4 CB = CB ( = 0 = : v ϕ ( ) ) = ( 4 ) ; Wegen CB ist das Dreieck ABC gleichschenklig mit Basis [CA]. Wegen AB CB = ( ) ( ) + ( ) + ( 4) 4 = 0 ist das Dreieck ABC außerdem rechwinklig (mit dem rechten Winkel bei B). AB = Kugelgleichung in Vektorform: Da B Mittelpunkt der Kugel ist und A und C auf der Kugel liegen, gilt r = AB = CB = 0 : K: ( ) = 0 6. u u = ( 6 ), Flächeninhalt des Parallelogramms: u v = ( 6 ( ) 6 ( ) A P = u v = ( 6 ) ) ( 6 ) ( = ( 6) ( ) ( ) ( 6) 6 ) ( = ) v = 0 + ( 0) + 40 = 800 = 0 Winkelgröße ϕ: u = 44 = ; v = 4 ; u v = u v sin ϕ; sin ϕ = u v u 0 = v = 4 4 ; ϕ 87, 7. D a C d b d b A a B () Summe der Quadrate über den vier Seiten: a + b + a + b = a + b () Summe der Quadrate über den Diagonalen: d + d = = a + b + a + = a + a = a + b b = b + b + a a Da () = () ist, folgt die Behauptung. b + b =

16 6 Lösungen zu delta 8. a = ( ) ; b = ( ) ; n = ( ) ( ) ( = 6 6 ) ; n a = = = 0; n b = ( ) = = 0 9. A ( 7); B ( 4 9), C ( 4 ) a) A ( 0); B ( 4 0); C ( 4 0) b) AB = ( 4 ( ) 9 7 ) ( = 7 ) ; AC = ( 4 ( ) 7 ) ( = ) ; AB AC = ( 7 ) ( ) ( = 6 ) ; AB AC = 84 = ; A ABC = AB AC = 6 ; A B = ( 4 ( ) 0 0 ) ( = 7 0 ) ; A C = ( 4 ( ) 0 0 ) ( = 0 ) ; A B A C = ( 7 0 ) ( 0 ) ( = ) ; A B A C = 6; A A B C = A B A C = 8; A A B C = 8 A ABC 6 = 90, %, d. h.: Der Flächeninhalt des Dreiecks A B C ist um etwa 9, % kleiner als der Flächeninhalt tdes Dreiecks ABC.

17 Lösungen zu delta 7 Kann ich das? Lösungen zu Seite 46. a) f: f() = u(v()) = ( ) = ; g: g() = v(u()) = ( ) = 6 = ; D f = = D g b) f: f() = u(v()) = sin(cos ); g: g() = v(u()) = cos (sin ); D f = = D g. f() = ; zu D = \ [ ; ] gehören 0; ; und 0. f ma g() = ( ) = ; zu D gehören ± ; ± und ± 0. g ma. a) f () = cos ; f (π ) = π cos π = π 0,04 b) f () = = (4 ) = ; f () = 0,707 c) f () = 4 4 (4 + ) 4 + ( 4) = ( 4) = ( 4) ; f (8) = 4 6 = 0,44 d) f () = sin (); f (π) = sin (π) = 0 e) f () = cos ; f ( π sin ) = 0 f) f () = ( + ) ( ) ; f () = 0 4. = sin () (schwarz); = cos () (blau); = 4sin () (rot). Es ist f () = < 0 für jeden Wert von X D f = + = D f. Also ist f überall streng monoton abnehmend. Wertmenge: W f = ] ; [ O Umkehrfunktion: = ; = ( ) ; = ( ), da X f : f () = ( ) ; D f = W f = ] ; [. = ; hoch + ; und vertauschen:

18 8 Lösungen zu delta 6. a) = 4 ; = 4 ; + + = 4 T P r A ϕ O R t p ε S b) () P X : P = f() = ; P ( ); m OP =. Die Tangente t P steht senkrecht auf OP; also ist m tp = m = OP. () f() = 4 ; f () = = 4 ; m 4 t P = f () = = 4. c) t P : = + t; P X t P : = + t; t = + = 4 ; t P : = + 4 Schnittpunkt S von t P mit der -Achse: 0 = + 4 ; = 4; S (4 0) Schnittpunkt T von t P mit der -Achse: T (0 4 ) Flächeninhalt des Dreiecks OST: A OST = 4 4 FE = 8 FE 4,6 FE 7. a) V(r) = r π r π = 7 r π b) r = V 7π ; r(v) = V 7π 8. G g = s Q S O B P A B* t f = r t g 4 A* Die Graphen und G g haben den Punkt S ( ) gemeinsam. Tangente t an in Punkt S: f () = r r ; f () = r; t : = r + t; S X t : = r + t; t = r; t : = r + r Schnittpunkt von t mit der -Achse: A ( r 0) Schnittpunkt von t mit der -Achse A* (0 r) Tangente t am G g im Punkt S: g () = s s ; g () = s; t : = s + t*; S X t : = s + t*; t* = s; t : = s + s Schnittpunkt von t mit der -Achse: B ( s 0) Schnittpunkt von t mit der -Achse: B* (0 s) Flächeninhalt des Dreiecks BAS: A BAS = ( r + s ) = r s rs Flächeninhalt des Dreiecks B*A*S: A B *A*S = ( s + r) = r s A B *A*S = rs A BAS

19 Lösungen zu delta 9 9. π π O π_ π π π G F π π π_ π π π a) hat den Punkt T (0 ) mit der -Achse gemeinsam. Gemeinsame Punkte von mit der -Achse: f() = sin + cos = 0 : ( cos ) tan = ; = π 6 ; = π 6 ; = π 6 S ( π 6 0); S ( π 6 0); S ( π 6 0) Etrempunkte: f () = cos sin = 0; : ( cos ) tan = ; 4 = π ; = π ; = 4π 6 f ( π ) = f () = sin cos f ( 4 ) = sin ( π ) cos ( π ) = > 0: Der Punkt T ( π ) ist ein Tiefpunkt von. f ( ) = sin π f ( 4p ) = Der Punkt H ( π cos π = < 0: ) ist ein Hochpunkt von. f ( 6 ) = sin 4π cos 4π = > 0: Der Punkt T ( 4π ) ist ein Tiefpunkt von. b) F () = sin + cos = f(); D F = D f f ( π ) = sin ( π ) + cos ( π ) = cos + sin = F()

20 0 Lösungen zu delta Kann ich das? Lösungen zu Seite 68. a) e e + = 0; e = 0; e = 0; e = ; = 0 X G; L = {0} b) ln ( e ) = 0; e = ; e = ; e = ; = 0 X G; L = {0} c) ln + k = 0; + k = ; + k = ; + k = 0; D = 4k ;, = ± 4k Fallunterscheidung: I. D = 4k > 0, 4k < ; k < 4 ; < k < ; da k > 0 ist: 0 < k < Es gibt zwei Lösungen X G, wenn 0 < k < ist: L = { 4k ; + 4k } II. D = 4k = 0; k = : nicht möglich, da k > 0 ist; k = : Es gibt genau eine Lösung, nämlich = X G: L = { } III. D = 4k < 0: Es gibt keine Lösung X G; also ist L = { }. d) e + e = 0; e e e + = 0; (e )(e ) = 0; e = ; = ln X G; e = = 0 X G; L = {0 ; ln }. a) ln (e ) + ln (e e ) + e ln = + e + = e + b) ln [ln (e e )] = ln (e ln e) = ln e = c) (e ln + e ln ) : e ln 7 = ( + ) : 7 =. a) Der kleinste Wert von f() = ( 4 ) sin ist ( 4 ) = ( 4 ) = 4,; er wird für = π + nπ (n X ) angenommen. b) Der größte Wert von g() = ( ) cos + ist ( ) + = ( ) =,8; er wird für = nπ (n X ) angenommen. 4. a) = ( + ) e + ( + ) e = ( + )( + )e b) = e ln = ; =, falls > 0 ist. c) = (4 + e ) 4e 4e e (4 + e ) = 4e (4 + e e ) (4 + e ) = 6e (4 + e ) d) = e = e + e + e e) = e cos sin f) = ln e = ln e ln = ln ; = g) = (ln ) ( ) ( ln ) (ln ) = ln + ln (ln ) 4 (ln ) = ln (ln )

21 Lösungen zu delta. h) = + i) = = ( + ) = ( ) = ( ) G g O ln (e ) = ln e + ln = + ln : Man erhält G g, indem man um Einheiten in Richtung der -Achse nach oben verschiebt. ln (a) = ln a + ln : Man erhält den Graphen der Funktion G a, indem man um ln a Einheiten in Richtung der -Achse nach oben (für a > ) bzw. um ln a Einheiten nach unten (für 0 < a < ) verschiebt. 6. T(t) T 0 = (T T 0 )e kt Rechnung mit Maßzahlen: 0 4 = (0 4) e k ; 8 = 96e k ; e k = 8 96 ; k = ln 8 = 0,6989 ; k 0,7; = (0 4) e 0,7t ; 6 = 8 e 0,7t ; e 0,7t = 6 ; 0,7t = ln ; t = ln 6 = 9,40 0 0,7 8 Innerhalb von weiteren rund 0 Minuten kühlt sich die Pfanne von 0 C auf 40 C ab. 7. a) Schnittpunkt mit der -Achse: + = 0; = ; S ( 0) Schnittpunkt mit der -Achse: f(0) = e = = ; T (0 ) 0 b) Ableitung: f () = e ( + )e e = e ( ) e = ; e f (0) = 0 < < 0 = 0 0 < < + f () f () > 0 f () = 0 f () < 0 Vorzeichenwechsel von f () von + nach hat den Hochpunkt H (0 ) = T

22 Lösungen zu delta H = T B A = S O 6 lim f() = 0 (Hinweis: vgl.. Aufgabe 7.); für gilt f(). c) f ( ) = e = e; f () = e ; da f ( ) f () = e ( e ) = ist, stehen die Tangenten t A und t B an in den Graphpunkten A bzw. B aufeinander senkrecht. d) F () = e b (a + b) e (e ) = b a b = f(); e b a b = + ; e e Es muss gelten b =, d. h. b =, und b a = ; also a =, d. h. a = : F() = e Probe F () = e ( ) ( )e e = + + = + = f() e e 8. f(0) = 4 = ; der Punkt T (0 ) X G liegt nicht auf G. f III f () = ( + e ) 4e 4e e ( + e ) = 4e ( + e e ) ( + e ) = 4e ( + e ) ; f (0) = 4 4 = > 0; Die Tangentensteigung im Punkt T ist nur bei G II positiv: G II =. G I : f I () = 4e = 4 + e e + ; G III : f III () = 4e + e = 4e e + e

23 Lösungen zu delta Kann ich das? Lösungen zu Seite 9. a) Ω = {; ; ; 4; ; 6; 7; 8; 9} A = {; ; ; 7; 9}; P(A) = 0,; B = {; 6; 9}; P(B) = 0,; C = {0; ; ; ; 4}; P(C) = 0,; D = {; ; ; 7}; P(D) = 0,4; E = {; 4; 9}; P(E) = 0,; F = {9}; P(F) = 0, b) A Q B = {; 9}: Die Nummer ist ungerade und durch teilbar A q B = {; ; ; 6; 7; 9}: Die Nummer ist ungerade und/ oder durch teilbar A q C = {6; 8}: Die Nummer ist gerade und mindestens gleich D Q E = Ω: Die Nummer ist nicht gleichzeitig Primzahl und Quadrazahl c) () B Q _ E = {; 6} () (A Q _ E ) q ( A Q E) = {; 4; ; 7} () A q E = {; ; 4; ; 7; 9}. a) P( genau ein Bauteil ist defekt ) = 0,88 4 0, 6,0% P( höchstens ein Bauteil ist defekt ) = 0,88 4 0, + 0,88 88,8% P( mindestens ein Bauteil ist defekt ) = 0,88 47,% b) Baumdiagramm: Start 0, 0,88 Bauteil defekt oder d e einwandfrei? 0,9 0,0 0,0 0,98 Feststellung des d e d e Prüfgeräts () P( Das Prüfgerät zeigt ein Bauteil als defekt an ) = 0, 0,9 + 0,88 0,0,% 0, 0,9 () P Das Prüfgerät zeigt defekt an ( Bauteil ist defekt ) = 0, ,88 0,0 86,6% 0,88 0,98 () P Das Prüfgrät zeigt einwandfrei an ( Bauteil ist einwandfrei ) = 0, 0,0 + 0,88 0,98 99,%. Anzahlen: Relative Häufigkeiten: K K A A K K A 0,070 0,099 0,69 A 0,479 0, 0,8 0,49 0,4,000 9 = 9 ; = 0; : 4 = ; = ; = 7; 9 = 4 a) Genau eines dieser beiden Mathematikprobleme haben (7 + 4 =) 4 der Befragten; das sind etwa 8% b) h(a Q K) 0,070; h(a) h(k) 0,69 0,49 0,09 h(a Q K): Die beiden Probleme treten stochastisch nicht unabhängig voneinander auf. 4. Start W W 0, 0,7 R 0,07 0, 0,47 W W R 0, 0,4 0,7 0, 0,8 0,8 0,7 0, 0,7,000 R R R R 0, 0,8 a) P Person nimmt teil ( Person wiederholt ) = 0, 0,8 + 0,7 0,7 8,% b) P(W Q R) = 0,07; P(W) P(R) = 0, 0,47 0,069 P(W Q R): Die Ereignisse W und R sind stochastisch nicht voneinander unabhängig. c) P( Spätestens an 6. Stelle steht ein Wiederholer/ eine Wiederholerin ) = 0,7 6 8,%

24 4 Lösungen zu delta Kann ich das? Lösungen zu Seite 6. f () = 0, ( )( + ) + 0,( ) = = 0,( )( ) = = 0,( )( + ); f () = 0,( + ) + 0,( ) = = 0,( + + ) = = ; f () = 0; = ; = ; f () = > 0; f ( ) = < 0: hat einen Hochpunkt H ( ) und einen Tiefpunkt T ( 0). a) f(,) = 0, (,) ( 0,) =,06; f(,) = 0, 0,, = 0,47 Die Funktion f hat im Intervall I a das globale Maimum f( ) = und das globale Minimum f(,) =,06 (Randminimum). b) f(,) = 0, (,) 0, =,6; f(,) = 0,, 4, =,06 Die Funktion f hat im Intervall I b das globale Maimum f(,) =,06 (Rand maimum) und das globale Minimum f() = 0.. f a () = a ; f () = a a ; f a () = 0: = a ; = ± a; f a (a) = a a = a > 0, da a X + ; f(a) = a + a + 8 a = a + 8 a ; f a ( a) = a ( a) = a < 0; f( a) = a + 8 a : lokaler Tiefpunkt von : T (a a + 8 a a ); T (a) = a + 8 a ; (a) = 8 T a ; (a) = 6 T a ; T (a) = 0: 8 a = 0; a = 4; a* = ; da a* X + ; T () = 6 8 = > 0: Für a* = ist die -Koordinate des lokalen Tiefpunkts am kleinsten: T () = 8. O. a) F() = a + ; F () = a ( + ) = f(): a = 0; a = 0 (D F = = D f ). b) F () = ae ( a = 4 (D F = = D f ). : ) = ae = 4 e 4. a) Ansatz: f() = K( + )( ) = K( 9); f () = K( 9); f (0) = 9K; m t0 = 4,, = = f (0); 9K = ; K = Funktionsterm: f() = ( 9) = +

25 Lösungen zu delta b) P O t O Eckpunkte: V ( a f( a)), I (a f( a)), E (a f(a)), R ( a f(a)) mit f(a) = a + a; f( a) = a a Flächeninhalt: A VIER = A(a) = a f(a) = a ( a + a ) = 4 a4 + a ; A (a) = 6 a + 4a; A (a) = 6a + 4; A (a) = 0: 6 a ( a 9 ) = 0; 0 < a < : a = ; A ( ) = = 48 < 0: A ( ) = = = 7 ist das Maimum von A VIER.. a) Die Graphen sind für k 0 Parabeln mit dem Scheitel S (0 k ); für k = 0 ergibt sich eine zur -Achse parallele Gerade mit der Gleichung =. b) t O 0 t c) P ( k ) f k () = k; f k () = k; t k : = k + t; P X t k : k = k + t; t = ; t k : = k ; daraus folgt, dass t k für jeden Wert von k den gleichen -Achsenabschnitt hat, also durch T (0 ) verläuft. d) -Achsenabschnitt von t k : k = 0; = (k 0) k Flächeninhalt: A(k) = k = 4k ; A( 0,) = 4 ( 0,) = lim A(k) = lim 4k = 0 k k

26 6 Lösungen zu delta 6. A(r) = rπh + 4r π; Rechnung in Maßzahlen (Einheit mm, mm bzw mm ): 4r π + rπh = 0; h = 0 4r π ; rπ Volumen des Zlinders: V Z = r πh; V Z (r) = (0 4r π)r π = r rπ (0 4r π) = r r π; V Z (r) = 6r π; V Z (r) = rπ < 0 wegen r > 0 V Z (r) = 0: 6r π = ; r = 6π ; r = 6π,8; 0 4 6π h π 00 π = π 0,0 6π 6π Gesamtvolumen der Kapsel: V K,8 π 0,0 + 4,8 π 86,: Mit r 0,8 mm und h 0 0,0 mm (die optimale Kapsel ist also eta cm lang und cm breit) ergibt sich ein Kapselvolumen von etwa 86 mm. 7. a) Graph von f ist B und Graph von f ist A, da nur dann f ( ) = 0, f () = 0 und f (0) < 0 ist. Graph von g ist D und Graph von g ist C, da nur dann g () < 0 für < und g () > 0 für > ist. b) Jakob kann ( + + =) 6 verschiedene Kartenpaare ziehen; er zieht also mit der Wahrscheinlichkeit ( 6 ) % ein zusammenpassendes Paar.

Anwendungen der Differentialrechnung Optimieren und Modellieren. Kapitel 7

Anwendungen der Differentialrechnung Optimieren und Modellieren. Kapitel 7 Anwendungen der Differentialrechnung ptimieren und Modellieren Kapitel 7 7. Etremwertprobleme 9 Arbeitsaufträge. a) Seitenlängen: cm; cm mit + = 9, also = 9 (und > 0; > 0),5 5 6 7 8 8 7 6 5,5 A (in cm

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Weitere Ableitungsregeln. Kapitel 4

Weitere Ableitungsregeln. Kapitel 4 Weitere Ableitungsregeln Kapitel . Die Kettenregel L f() = u(v()) g() = v(u()) a) + + b) cos [( + ) ] (cos + ) c) sin ( ) [sin ()] d) e) ( = _ ) _ ( f) cos [π( + )] cos (π) + g) ( ) = h) ( + ) + = + +

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5 Natürliche Eponential- und Logarithmusfunktion Kapitel . Die natürliche Eponentialfunktion und ihre Ableitung 48 Arbeitsaufträge. Individuelle Lösungen Jahr 908 90 90 930 90 960 970 990 000 00 in Sekunden

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Lösungen zu delta 6. Kann ich das noch? Lösungen zu den Seiten 6 und 7

Lösungen zu delta 6. Kann ich das noch? Lösungen zu den Seiten 6 und 7 Kann ic das noc? Lösungen zu den Seiten 6 und 7. a) L = { ; } b) L = {0; } c) L = {} d) ( + )( + ) = 0; L = { ; } e) ( 6)( ) = 0; L = {; 6} f) L = {0}; 0,7 G g) ( 8)( + ) = 0; L = { ; 8} ) ( + )( + ) =

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Lösungen zu delta 10 H

Lösungen zu delta 10 H Kann ic das noc? Lösungen zu den Seiten 6 und 7. a) T () = ( ) + ( + ) + = = + + 4 + 4 + + = = + + 6 b) T () = ( + a) a(a + ) = = + a + a a a = = c) T () = ( ) ( + ) ( ) = = 4 + 9 6 4 = = d) T 4 () = (

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Lösungen zu delta 10. Kann ich das noch? Lösungen zu den Seiten 6 und 7

Lösungen zu delta 10. Kann ich das noch? Lösungen zu den Seiten 6 und 7 Lösungen zu delta 0 Kann ich das noch? Lösungen zu den Seiten 6 und 7. a) L = {} b) L = {0; } c) L = { } d) L = { 6; } e) L = {,; } f) L = { } g) L = {,; } h) L = {7; 0} i) L = { } Summenwert aller Lösungen:.

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Lösung Abiturprüfung 1997 Grundkurs (Baden-Württemberg)

Lösung Abiturprüfung 1997 Grundkurs (Baden-Württemberg) Lösung Abiturprüfung 997 Grundkurs (Baden-Württemberg) Analysis I.. a) f x= x5 x = x5 x = x5 x = f x Somit ist f punktsymmetrisch zum Ursprung. f x= x x ; x = ; x = 5 ; x =5 f geht durch den Urpsrung:

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg Baden-Württemberg: Fachhochschulreie 2015 www.mathe-augaben.com Hauptprüung Fachhochschulreie 2015 Baden-Württemberg Augabe 1 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Tag der Mathematik 2012

Tag der Mathematik 2012 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Abschlussprüfung an den Realschulen in Bayern

Abschlussprüfung an den Realschulen in Bayern bschlussprüfung an den Realschulen in Bayern 009 Mathematik II Nachtermin ufgaben - Lösungsmuster und Bewertung RUMGEOMETRIE OWerkstück MKegel+ M Zylinder+ großer Kreis kleiner Kreis+ OKugel BH sin BH

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 01 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für die Lehrerinnen

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ].

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. 73. a) dx = d x = [x] = = b) sin x dx = [ cos x] = cos + cos ( ) = ( ) + ( ) = Hinweis: Dieses Ergebnis folgt auch aus der Punktsmmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. e

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

EXPEDITION Mathematik 3 / Übungsaufgaben

EXPEDITION Mathematik 3 / Übungsaufgaben 1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2009 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011 Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Probematura Mathematik

Probematura Mathematik Probematura Mathematik Mai / Juni 2013 Seite 1 von 5 Probematura Mathematik VHS 21 / Sommertermin 2013 1. Tennis Tennisspieler trainieren häufig mit einer Ballwurfmaschine. Die hier beschriebene befindet

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Gymnasium. Testform B

Gymnasium. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im

Mehr

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören!

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! AUFFRISCHERKURS 2 AUFGABE 1 Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! Zahl keine davon ( ) AUFGABE 2 Löse alle vorhandenen Klammern auf und

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

- 2 - AP WS 10M. 1 Finanzmathematik Punkte

- 2 - AP WS 10M. 1 Finanzmathematik Punkte - 2 - AP WS 10M 1 Finanzmathematik Punkte Frau Werner hat vor einigen Jahren bei einer Versicherungsgesellschaft einen Vertrag für eine Lebensversicherung abgeschlossen. Am Ende der Laufzeit dieser Versicherung

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Fit in Mathe. Juni 2014 Klassenstufe 9. Lineare Funktionen

Fit in Mathe. Juni 2014 Klassenstufe 9. Lineare Funktionen Thema Musterlösungen Juni 0 Klassenstufe 9 Lineare Funktionen a) Vervollständige die Tabelle mit den Funktionswerten: x 6 8 0 6 0 x 5 6 7 8 9 0 b) Gib die Funktionsgleichung an x 6 8 0 6 0 8 x,5,75,5 0,5-0,5

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr