Mögliche 3D-Objektrepräsentation. Polygonnetz. Quadratische Oberflächen: Kugel. Kurven und gekrümmte Oberflächen. Beispiel: Quadratische Oberflächen

Größe: px
Ab Seite anzeigen:

Download "Mögliche 3D-Objektrepräsentation. Polygonnetz. Quadratische Oberflächen: Kugel. Kurven und gekrümmte Oberflächen. Beispiel: Quadratische Oberflächen"

Transkript

1 Bse o mteril y Werer rgthofer er/ber Möglihe D-Ojetreräsettio Grhishe Szee eihlte solie geometrishe Ojete Bäme Blme Wole Felse Wsser Reräsettioe Oerflähe Iemoelle rozerle Moelle hysilish sierte Moelle Oerflähemoelle Bory Reräsettio B-Res Rmfteilgsmoelle Se-rtitioig Moels olygoetz Effiziete Dtestrtr für Oerflähe Trigle Stri - Dreiee für Ete Qrilterl Mesh -xm- Vieree Krve gerümmte Oerflähe Defiiert rh mthemtishe Ftioe imlizit exlizit rmetrish Vorgee vo Dtete Oerflähe-Aroximtio olygole Aroximtio Tesseltio es olygoetzes Dreiee Vieree... Flähe?! Beisiel: Qrtishe Oerflähe Defiiert rh Gleihge. Gres qrtish Kgel Ellisoi Rig roloi yeroloi... Qrtishe Oerflähe: Kgel Imlizit rmetrish rmetrishe Kooriteositio r θ φ f er Kgeloerflähe mit eiem Ris r x y z x rosφ osθ y rosφ siθ z rsiφ r -π/ φ π/ -π θ π

2 Qrtishe Oerflähe: Ellisoi Imlizit x rx y ry rmetrish z rz x rx osφ osθ y r osφ siθ z r siφ z y -π/ φ π/ -π θ π Qrtishe Oerflähe: Tors imliit rmetri r z r siφ x y z rx ry rz x r φ θ x r os os y r r osφsiθ z y -π φ π -π θ π Allgemeie Freiformflähe Köe rgestellt were rh: Große Azhl vo te oer olygoe Belieige Form möglih Große Seiherforerge Veräerge verrshe zviel Areit Ee h Slierg! Moellierg reitsitesiv? Mthemtishe Ftioe Nr für estimmte Formtegorie Gerige Seiherforerge Leihtere Veräerge möglih Belieige exte Defiitio Moellierg ozetell shwieriger! Niht-rmetrish vs rmetrish Ahsehägig y fx x ft y gt Ahsehägig Beisiel: y x xost ysit Eigeshfte vo Krve Iteroltio oer Aroximierg er Kotrollte? Geigeit er Kotiität ei Verüfge C G Shwiggsverhlte - omt oer üershwige? Glol oer loler Eiflss er Kotrollte Ahsehägigeit - veräert sih ie Krve we s Kooritesystem rotiert wir? Mehrfhte möglih? - für geshlossee Krve für shrfte Ee Möglihe rstellre Krveforme Slies Slie-Krve si Zsmmegesetzte Krve olyomil stüweise otiierlih Kotiitätseigge Slie-Fähe Erzegt s Shre vo orthogole Slie-Krve

3 Slie-Krve Slie-Sezifitio mit Kotrollte Iterolierte Slies Aroximierte Slies Slies: Kotrollolygo / hrteristishes olygo olygo efiiert ie Krve Slies: Eigeshfte Oertioe f Slies Vershiee Kotrollte eifüge Trsformtioe mittels Trsformiere ller Kotrollte Kovexe ülle! Slie: Kotiitätsoitioe rmetrishe Kotiitätsoitioe C Aleitge Kotrollte si gleih x x y y C Kotiität C Kotiität C Kotiität z z C C C Slie: Kotiitätseigge Geometrishe Kotiitätseigge G Aleitge Kotrollte si roortiol G C Kotiität G Kotiität Tgevetore si ollier G Kotiität G C Kishe Slie-Iteroltio Kotrollte x y z... Kishes olyom zwishe jeem r vo Kotrollte... Tgetevetor vo C ei läger ls Tgetevetor vo C ei

4 4 Ntürlihe ishe Slies Agrezee Krvesegmete he ie gleihe erste zweite Aleitg C Kotiität Löse eies Gleihgssystems mit 4 Vrile zsätzlihe Gleihge erforerlih z.b. - Gloler Eiflss er Kotrollte ermite-iteroltio Tgete D ist jeem Kotrollt sezifiziert Loler Eiflss er Kotrollte... D D ermite-iteroltio [ ] [ ] D D D D D D D D ermite-iteroltio D D M ermite-mtrix ermite-iteroltio 4 D D M [ ] [ ] D D M ermite-iteroltio 5 D D D D - Bleig Ftioe

5 Bézier-Krve -Flähe Slie-Aroximtio für te i i... BEZ Berstei-olyome BEZ Kishe Bézier-Bleig-Ftioe BEZ BEZ BEZ Die 4 Bézier-Bleig- Ftioe für ishe Krve BEZ.... -Dim. Bézier-Krveeisiel Geeriert s 4 5 Kotrollte Bézier-Krve Eigeshfte olyomil vom Gr gloler Eiflss iteroliert Afgs- Et Tgete ei Afgs- Et Kovexe ülle! BEZ Bézier-Krve Desigtehie Geshlossee Bézier Krve erster letzter Kotrollt Eie Bézier Krve äher eier gegeee Koorite voreigeführt were iem m mehrere Kotrollte ere ositio git Bézier-Krve Desigtehie Stüweise roximieree Krve s Bézier-Krvestüe. C - C -Kotiität rh setze ollier ehme 5

6 Kishe Bézier-Krve i Mtrixottio.... [ ] M Bez Bézier-Flähe Krtesishes rot vo zwei Bézier- Krveüel v m j j Gitter vo mx Kotrollte j BEZj m v BEZ M Bez 6 m m4 4 Bézier-Flähe Eigeshfte Gleihe Eigeshfte wie ei Bézier-Krve: Gloler Eiflss Iteroliert Ete Tgete ei Ete Kovexe ülle C-Kotiität B-Slie-Krve -Flähe Slie-Aroximtio für te i i... B B-Slie-Bleig-Ftioe rersive Cox-eBoor-Formel mi mx LD :L Ojet ostt Reresettio B-Slie-Bsisftioe B if sost B B B für B-Slie-Ftioe für B B B B B 4 B 5 for < for for > glol iht äer 6

7 Wihtige Eigeshft B Für lle B-Slie Grftioe gilt folgee Eigeshft: -Dim. B-Slie-Beisiele Σ B für lle jeer Krvet ist ei gewihtetes Mittel er Kotrollte 4 Eiflß vo eshreit wieviele Kotrollte jee t f er Krve eeiflsse lier qrtish 4 ish... 4 für erhält m Bézier Krve! 5 6 Utershiee B-Slie / Bézier Kotrollte he lole Eiflss Liere Ahägigeit vo rm ist ei Teile vo große tmege iht otweig Weitere Veresserg: NoUiform Rtiol B- Slies NURBS Volmsmoelle Costrtive Soli Geometry Costrtive Soli Geometry CSG Bool she Megeoertioe f D- Ojete Vereiigg Shittmege Differez Komiiert m Ojete mit eier Vereiigg erzegt m ei eizeles zsmmegesetztes Ojet 7

8 CSG: Vershieee Megeoertioe Jees Ojet ist s eifhe Moelle mit Megeoertioe fget Dtestrtr: Biärm Rersive Evlierg CSG-Dtestrtr Oertioe mit CSG Bäme Trsformtioe Mltilitio ller Trsformtiosmtrize mit er Mtrix ieser Trsformtio Komitioe Geeriert eie ee Kote mit em gewüshte Oertor verüft ie Oere ls Sm o A o B: Reerig vo CSG Bäme Trsformiere i B-Re verwee ormle Flähelgorithme oer Diretrstellg mit Ry Trig A B Eigeshfte vo CSG Vorteile Exte Reräsettio Weig Seiherfw Komitioe Trsformtioe trivil Nhteile Afw für Drstellg ist hoh Ry-Cstig Methoe für CSG Sihtreitsermittlg 8

9 Ry-Cstig Methoe für CSG Bestimme vo Flähegreze Ry-Cstig Methoe für CSG Volmsestimmg V A Δ z ij ij ij V V ij Qtrees ierrhishe Afzählg vo Ojete I D: Qtree ierrhishe Afteilg is eie Regio homoge ist Regio eies -im. Rmes Qtrees Flähe mit y ixel Qtree mit Levels Seihereffiziet Dteelemete im reräsettive Qtree-Kote Qtrees Qtree-Reräsettio für eie Regio eihltet eie Vorergrfrixel f eiem solie itergr Qtree Beisiel l.. r.. r. l. l.l. w w w w w w w w ww Geeiget für D Biler 9

10 Otree Otrees Otree teilt D-Würfel i Otte Volmselemete Voxels Oertioe Otrees leiht szführe Geometrishe Trsformtioe shwer Regio eies -im. Rmes Rersive Rmfteilg: Eifh leer voll Bmote Komlex ere Fälle weiter fteile Dteelemet im reräsettive Otreeote Otree Eifhes Beisiel Oertioe mit Otrees Trsformtioe Sehr omliziert sser für ei r Sezilfälle z.b. Rottio m 9 Siegelg eier Sivisioseee Slierg ei G W W W W S G W W W W W W W S S S Komitioe sehr eifh - we A oer B homoge eifhe Regel sost omiiere rersiv lle 8 Otte vo A B Reerig vo Otrees Algorithms: We Otreeote ist voll: zeihe e Würfel We Otreeote ist leer: mhe ihts We Otreeote iht homoge: reere ie 8 Otte vo hite h vore Eigeshfte vo Otrees Vorteile Komitioe sehr eifh Shelles reer Rämlihe She möglih Nhteile Uexte Reräsettio Nierige Bilqlität Eigeshräte Trsfomtioe oher Seiherverrh

11 Otree Beisiel Yoshifmi Kitmr Aere D Ojetreräsettioe BS-Bäme Frtle geometrishe Methoe Formgrmmti rozerle Moelle rtielsysteme hysilish sierte Moelle... weiterführee Lehrverstltge

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer Bse o mteril y Werer rgthofer er/ber 8.4-8.5 8.8-8. 8.-8. Möglihe D-Ojetreräsettio Grhishe Szee eihlte solie geometrishe Ojete Bäme Blme Wole Felse Wsser Reräsettioe Oerflähe Iemoelle rozerle Moelle hysilish

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

1. Funktionen einer reellen Variablen

1. Funktionen einer reellen Variablen . Fuktioe eier reelle Variable Wohe_7. Grafishe Darstellug im kartesishe Kooriatesystem Eie Fuktio y f() lässt sih als Kurve im rehtwiklige Kooriatesystem arstelle. Eifahe Äeruge es Fuktiosverlaufs / Kurvebils

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

Johann-Philipp-Reis-Schule

Johann-Philipp-Reis-Schule Joh-Philipp-Reis-Schule Berufliche Schule es Wetterureises i Frieerg Mthemti für Fchoerschule Mthemtische Gruregel Frierich Buchert Joh-Philipp-Reis-Schule Stuieiretor Im Wigert 9 Frieerg Joh-Philipp-Reis-Schule

Mehr

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y =

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y = Lösugsmethode Differetilgleihuge erster Ordug Für gewisse Tpe vo Differetilgleihuge läßt sih ei Weg gee, uf dem m, die Lösug der Differetilgleihug uf Qudrture d.h. uf ds Ausrehe vo Itegrle, urükführe k..

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

18 Exponentialfunktion und Logarithmus

18 Exponentialfunktion und Logarithmus 8 Epoetialfuktio u Logarithmus Lerziele: Kozepte: Epoetialfuktio u Logarithmus Resultat: Wachstumshierarchie für Fuktioe u Folge Kompeteze: Berechug weiterer Itegrale I iesem Abschitt führe wir e Logarithmus

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe S Nürerg Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe eeihuge: D Defiitiosege f( Fuktiosvorshrift f( Fuktioster f( Fuktiosgleihug Fuktioswert vo ufge ud eispiele Eie Fuktio ist eie Zuordug, die

Mehr

Mehrdimensionale Differenzialrechnung

Mehrdimensionale Differenzialrechnung Szabolcs Rozsyai Stetigkeit Eie Fuktio f heißt stetig a er Stelle D, falls lim f( eistiert u lim f(. Die Fuktio heißt stetig falls sie i alle Pukte es Defiitiosbereichs stetig ist. laut Skript: f : R R

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

1 Integration im R Das Volumen im R 3

1 Integration im R Das Volumen im R 3 1 Integrtion im 2 1.1 s Volumen im 3 Wir wollen ds Volumen zwishen dem Grphen einer Funktion f : und der x y Ebene bestimmen. bei werden, wie bei univriten Funktionen, die Teile oberhlb der x y Ebene positiv

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13. DAS NEWTONsche NÄHERUNGSVERFAHREN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13. DAS NEWTONsche NÄHERUNGSVERFAHREN Mathematik: Mag. Schmi Wolgag Arbeitsblatt 3 6. Semester ARBEITSBLATT 3 DAS NEWTONsche NÄHERUNGSVERFAHREN Mit em Itervallschachtelugsverahre Siehe Arbeitsblatt habe wir bereits ei Verahre kee gelert, mit

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

1. Motivation und Begriffe. Modelchecking. Hintergrund. Hintergrund. Schwache Fairness. Progress

1. Motivation und Begriffe. Modelchecking. Hintergrund. Hintergrund. Schwache Fairness. Progress 1. Motivtion un Begriffe Moelheking VI. Firness Motivtion un Begriffe Firness in Kripkestrukturen Fires CTL*, CTL un LTL Fires Moelheking für CTL Firness in NuSMV Hintergrun Progress Shwhe Firness Strke

Mehr

1 Planarbeit Planarbeit

1 Planarbeit Planarbeit Erreiten Sie sih shrittweise ie folgenen Themen. Notieren Sie gegeenenflls zu jeem Them Frgen. Lösen Sie jeweils ie zugehörige Kontrollufge. Kontrollieren Sie Ihre Lösung mit er Musterlösung. Lösen Sie

Mehr

9 Differenzierbare Funktionen

9 Differenzierbare Funktionen 9 Differezierbare Fuktioe Lerziele: Kozept: Ableitugbegriff Reultat: Ketteregel Defiito. E ei I R ei Itervall. Eie Fuktio f : I R eißt ifferezierbar im Pukt a I, fall er Grezwert f (a) := lim x a f(a;x)

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist.

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist. . Defiitio des estimmte Itegrals Die Idee des estimmte Itegrals wird ahad der folgede Aufgae vorgestellt, ei der das Resultat ereits vo vore herei ekat ist. Aufgae: Bestimme de Ihalt des vo der Gerade

Mehr

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden.

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden. . Poteze mit gze Epoete Wird der Potezegriff f egtive Epoete erweitert, d köe ch sehr kleie Zhle gt drgestellt werde. Ws edetet 0? Die Defiitio wird so festgelegt, dss die isherige Potezgesetze gültig

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 7

Grundlagen der Physik 2 Lösung zu Übungsblatt 7 Grulage er Physik Lösug zu Übugsblatt 7 Daiel Weiss 3. Mai Ihaltsverzeichis Aufgabe - Koesator a) Felstärke..................................... b) Eergieuwalug................................ Aufgabe

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m.

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m. Mthemtik I für VIW - Prof. Dr. M. Ludwig.4 Liere Gleichugssysteme.4. Schreibweise, Liere Abbildug. A x = b, wobei m A... Koeffizietemtrix, T x ( x, x 2,, x ) T (, 2,, =... Vektor der Ubekte,... Azhl der

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

( ) a ) ( ) n ( ) ( ) ( ) a. n n

( ) a ) ( ) n ( ) ( ) ( ) a. n n Pre-Study 7 orste Shreier 77 Wiederholu Diese Fre sollte Sie ohe Skript etworte köe: W ist der Sius zw. der Cosius immer NULL? Ws versteht m uter eier Phsevershieu? Ws wird im Eiheitskreis sekreht /wereht

Mehr

Materialauswahl. Daher erweist sich Gold (aber auch Silber) als das vielseitigste Metall.

Materialauswahl. Daher erweist sich Gold (aber auch Silber) als das vielseitigste Metall. aterialauswahl Theoretish öte fast alle etalle mehr oder weiger gut zwes Aregug eies Oberflähe- Plasmos a eiem Übergag vo ieletrium zu etall geutzt werde. Jedoh wird eie eihe vo diese aterialie durh pratishe

Mehr

Lösungen zum Übungsblatt 2

Lösungen zum Übungsblatt 2 Fakultät für Luft- ud Raumfahrttechik Istitut für Mathematik ud Recherawedug Partielle Differetialgleichuge II (ME), Prof. Dr. J. Gwier Übug: N. Ovcharova, K. Dvorsky 6. Jauar bis 9. Februar 011 Lösuge

Mehr

Kapitel 10: Optimalcodierung IV

Kapitel 10: Optimalcodierung IV Kpitel 10: odierug IV Ziele des Kpitels Lempel-Ziv Codig Cover, pp. 319ff 2 Lempel-Ziv Codig Lempel-Ziv Codig Wurde 1977 zum erste Ml vorgestellt Beötigt keie Quellesttistik Wesetlihes Chrkteristikum ist

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgbesmmlug Um sich schell ierhlb der c. 0.000 Mthemtikufgbe zu orietiere, beutze Sie ubedigt ds Lesezeiche Ihres Acrobt Reders: Ds Ico fide Sie i der liks stehede Leiste. Bitte

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Optik des Auges. Entwicklung des Sehorgans 1. Lichtbrechung an einer gekrümmten Grenzfläche. Grubenauge. Blasenauge (Lochauge)

Optik des Auges. Entwicklung des Sehorgans 1. Lichtbrechung an einer gekrümmten Grenzfläche. Grubenauge. Blasenauge (Lochauge) Optik es Auges Etwicklug es Sehorgas 1. Grubeauge Blaseauge (Lochauge) Richtugssehe ist möglich fuktioiert wie eie Lochkamera 2 Auflösug es Blaseauges: Nachteile: geöffet icht puktförmige Abbilug schwache

Mehr

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis Pumping Lemm für reguläre Sprhen (1/2) Informtik II SS 2004 Teil 6: Sprhen, Compiler un Theorie 2 Ds Pumping Lemm ist eine Methoe, um herus zu finen, o eine Sprhe niht regulär. Prof. Dr. Dieter Hogrefe

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

PageRank: Wie Google funktioniert

PageRank: Wie Google funktioniert PageRa: Wie Google futioiert Außermathematische Aweuge im Mathematiuterricht WS 0/ Fraz Embacher, Uiversität Wie Das Erfolgsrezept er Suchmaschie vo Google lag zuächst i er überzeugee Reihug vo reffer.

Mehr

3.2 Die Schrödinger-Gleichung

3.2 Die Schrödinger-Gleichung 3. Die Schröiger-Gleichug Oer Wie fie ich ie Wellefuktio eies Teilches Lit: Simo/McQuarrie Die S.G. ka geauso weig hergeleitet were wie ie Newtosche Gesetze (Fma). Fuametales Postulat er Quatemechaik Wir

Mehr

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden.

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden. Termnlyse Mthemtik. Klsse Ivo Blöhliger Terme Ein wihtiger Teil es mthemtishen Hnwerks esteht rin, Terme umzuformen. Dzu müssen einerseits ie Rehengesetze er reellen Zhlen verinnerliht sein, un nererseits

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln.

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln. FORMELSAMMLUNG A. Ableitugsformel ud Itegralformel Futio ƒ( Ableitug ƒ'( Stammfutio F( IR, ( IN) + + l ( ) + ( + ) + ( + ) + + + + + + + + r r, (r R \ {}) r r r + si os os os si si ta + (ta l os ot [ +

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Repetition Termumformungen

Repetition Termumformungen Repeiio Teruforuge. Aiio u Surkio Sue köe ur zuegef were, we ie i lle Vrile u Epoee üereiie. Beipiele:, -, 8 9 8 0 8 Behe: Bei Aiere äer ih ie Epoee ih! Ai-Beipiele:,, 8 9 8 Diee Aurüke köe zwr urh ukler

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe Oh Gsiu Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe ezeihuge: Fuktiosvorshrift: Fuktioster kurz f( ist hier: Fuktiosgleihug = Grph eier Fuktio: ufge ud eispiele Eie Fuktio ist eie eideutige

Mehr

Grundwissen Mathematik Otto-Hahn-Gymnasium Marktredwitz. Jahrgangsstufe 7. Schulweg 27%

Grundwissen Mathematik Otto-Hahn-Gymnasium Marktredwitz. Jahrgangsstufe 7. Schulweg 27% Grudwisse Mthemtik - 9 - Otto-Hh-Gymsium Mrktredwitz Jhrggsstufe 7 7.1 Dte, Digrmme ud Prozete 7.1.1 Dte ud Digrmme Zum Vergleih vo Dte sid Säule- ud lkedigrmme (ute liks) geeiget. Die Verteilug ierhl

Mehr

HENNLICH. Schenkelfedern. SCHENKELFEDERN DREHFEDERN Technische Beschreibung Anfrage- / Bestellspezifikation Beispiel Federauswahl Maßtabellen

HENNLICH. Schenkelfedern. SCHENKELFEDERN DREHFEDERN Technische Beschreibung Anfrage- / Bestellspezifikation Beispiel Federauswahl Maßtabellen HENNLICH Schekelfeer SCHENKELFEERN REHFEERN Techische Beschreibug Afrage- / Bestellspezifikatio Beispiel Feerauswahl Maßtabelle Schekelfeer / rehfeer Techische Beschreibug... Seite 155-156 Berechugsgleichuge...

Mehr

Angaben zu den beiden auszuarbeitenden Hausübungsbeispielen für die Übungen aus Stoffbilanzen und Stoffeigenschaften 1 UE WS 2007/08

Angaben zu den beiden auszuarbeitenden Hausübungsbeispielen für die Übungen aus Stoffbilanzen und Stoffeigenschaften 1 UE WS 2007/08 Agabe zu e beie auszuarbeitee Hausübugsbeisiele für ie Übuge aus Stoffbilaze u Stoffeigeschafte 1 UE WS 2007/08 Beisiel I: Erstellug eies Verfahresfließbiles u er tabellarische Stoffstromleiste zu eiem

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen DOWNLOD rigitte Penzenstler 5./6. Klsse: Multipliktion Mthetrining in 3 Kompetenzstufen rigitte Penzenstler ergeorfer Unterrihtsieen Downlouszug us em Originltitel: Mthetrining in 3 Kompetenzstufen n 1:

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

KAPITEL 1 EINFÜHRUNG: STABILE MATCHINGS

KAPITEL 1 EINFÜHRUNG: STABILE MATCHINGS KPITEL 1 EINFÜHRUNG: STILE MTHINGS F. VLLENTIN,. GUNERT In iesem Kpitel weren wir ein erstes konkretes Prolem es Opertions Reserh kennenlernen. Es hnelt sih um s Prolem es stilen Mthings, ein wihtiges

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Wurzelbäume. Definition 1

Wurzelbäume. Definition 1 Wurzeläume Definition 1 Ein Wurzelum (oer uh gerihteter Bum) ist ein gerihteter zyklisher Grph, in em genu ein Knoten w Eingngsgr 0 esitzt un lle neren Knoten Eingngsgr 1 esitzen. Knoten w heißt ie Wurzel

Mehr

Irrationalität und Transzendenz. 1 Algebraische Zahlen

Irrationalität und Transzendenz. 1 Algebraische Zahlen Vortrag im Rahme des Prosemiars zur Aalysis, 12.6.26 Marti Woitalla Der Vortrag beschäftigt sich mit dem Thema, welche Zahle als Lösug eies Polyoms i Q[X] auftrete öe. Außer de ratioale Zahle x a =, a

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung . Vektore, Mtrize ud Determite 69. Vektor- ud Mtrizerehug. Vektore, Mtrize ud Determite (i) Vektore Im folgede betrhte wir Vektore i der bee, im Rum oder llgemeier (,..., ). Vektore köe ls Spltevektore

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Plädoyer für das harmonische Mittel

Plädoyer für das harmonische Mittel Bulleti Plädoyer für das harmoishe Mittel Beat Jaggi, beat.jaggi@phber.h Eileitug Das Bilde vo Mittelwerte ist ei zetrales Kozept i der Mathematik (siehe z.b. [], [], [7] oder [8]). Im Mathematikuterriht

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

a) Vollständiges Messergebnis der Fläche A des Rechtecks mit den abweichungsbehafteten Kantenlängen a und b:

a) Vollständiges Messergebnis der Fläche A des Rechtecks mit den abweichungsbehafteten Kantenlängen a und b: X Lösug zu ugabe 5: bweihugsortplazug a) Vollstädiges Messergebis der Flähe des Rehteks mit de abweihugsbehatete Kateläge a ud b: Viele Messgröße werde idirekt gemesse, d.h. um eie Messwert zu ermittel

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Computergrafik Ihalt Achtug! Kapitel ist relevat für CG-2! 0 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe ud Grudlage Objekttrasformatioe Objektrepräsetatio ud -Modellierug Sichttrasformatioe

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden.

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden. Stützus Mathemati WIW Übuge Tag Datum: ***LÖSNGSVORSCHLG*** Theme: Folge, Reihe, Gezwete, Mootoie mfag: Hilfsmittel: ufgabe Si eie otweig Eie Fomelsammlug u ei icht pogammiebae Tascheeche öe abe veweet

Mehr

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge.

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge. Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 36 Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 37 7. Frge: Welce Eigescte be Produtiosutioe

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Lösuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Beekuge: Kle vo ie h usse uflöse; Pukt vo Stih 0. / /. π lr lr Q lr d 00 ln Beekug zu d Geht uh ohe TR! Küze Nee: ud Zähle:

Mehr