(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt

Größe: px
Ab Seite anzeigen:

Download "(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt"

Transkript

1 6 Der Stz von Tylor Gleichmäßige Konvergenz Potenzreihen Der Stz von Tylor Es sei D ein Intervll, X ein Bnchrum und f : D X eine Funtion Stz Tylorsche Formel Ist f (n +)-ml stetig differenzierbr, so gilt für, x D n f () () f(x) (x ) + R n+ (x),! wobei R n+ (x) n! (x t) n f (n+) (t) dt Beweis DurchIndutionnchn () Indutionsnfng: n : f(x) f()+ f (t) dt gilt nch dem Fundmentlstz der Differentil- und Integrlrechnung (2) Indutionsschritt n n +: Nch Indutionsnnhme ist x R n+ (x) (x t) n f (n+) (t) dt n! f (n+) (t) d ( ) (x t) n+ dt dt prt Int [ f (n+) (t) (x t)n+ ] x + f (n+) () (x )n+ + (x t) n+ f (n+2) (t) dt (x t) n+ f (n+) (t) dt Dies ist der (n +)-te Entwiclungstem plus R n+2 HierhbenwirStz99leichterweitert uf Produte slrer mit X-wertigen Funtionen 2 Folgerung Ist f (n +)-ml differenzierbr mit f (n+) (t) für lle t D, soistf ein Polynom vom Grd n Beweis R n+ 3 Folgerung Es sei f (n +)-ml stetig differenzierbr und x D (für x<nlog) Dnn gilt f(x) n f () () (x ) sup f! ξ x (n+) n+ (ξ) x Beweis Esist R n+ (x) n! (x t) n f (n+) (t) dt (n+) )n+ sup f (ξ) (x ξ x

2 62 4 Beispiel: f(t) t Wir berechnen näherungsweise, 2, lsodenwertvonf n der Stelle x, 2, usgehendvondenbenntenwertenvonf und seinen Ableitungen in Hier ist f (t) 2 t /2, f (t) 4 t 3/2, f (t) 3 8 t 5/2 Nullte Näherung, 2+R mit R sup2 ξ, 2, lso(mitderabschätzung ξ < ): R <, Erste Näherung:, 2+, 2/2+R, +R,wobei R 4 sup ξ,2 ξ 3/2,22 2, 2 2 /8 Somit ist, 2, mit einem Fehler, 4/8, 5 Zweite Näherung:, 2+, 2/2, 2 2 /8+R 2,wobei R sup ξ,2 ξ 5/2,23 6 Somit, 2+,, 4/8+R2, 95 + R 2 mit R 2, 8/6, 5 (Der whre Wert ist, ) Frge:Wird der Fehler beliebig lein,wenn wir N groß wählen? Funtionenfolgen Es seien D eine beliebige Menge und X ein normierter Rum 5 Definition Für jedes, 2, sei f : D X eine Funtion Mn nennt (f ) eine Funtionenfolge () (b) Die Folge (f ) heißt puntweise onvergent gegen die Funtion f : D X, fllsfürjedes t D gilt f (t) f(t), Die Folge (f ) heißt gleichmäßig onvergent gegen f : D X, fllszujedemε> ein N N(ε) existiert mit f (t) f(t) X <ε für lle t D, N 6 Beispiele () (b) f : R R, f (t) sin(t) onvergiert gleichmäßig gegen (Nullfuntion), denn sin t <ε für lle unbh von t ε f :[, ] R, f (t) t Definieref :[, ] R durch f(t) { t< t (c) Dnn onvergiert (f ) puntweise gegen f, bernichtgleichmäßig: (i) (ii) für t< gilt f (t) t für t gilt f (t), lso hben wir puntweise Konvergenz Die Konvergenz ist nicht gleichmäßig, denn für t 2 gilt f (t ) 2,dh f (t ) f(t ) 2 f :[, ] R sei die durch folgende Sizze definierte Funtion

3 63 /(2) / Die Folge ist puntweise onvergent gegen Null, denn zu jedem t> existiert ein N mit N <tdnnistf (t) für lle N Ferneriststetsf () Sie ist nicht gleichmäßig onvergent gegen Null, d f(/(2)) 7 Definition/Erinnerung Mn setzt f sup sup{ f(t) X : t D} [, ] Eine Funtion f ist genu dnn beschränt, wenn f sup < Die Bedingung für gleichmäßige Konvergenz von (f ) gegen f läßt sich so formulieren: ε > N : f f sup <ε N 8 Stz Es sei D Teilmenge eines normierten Rums und f : D X eine Folge stetiger Funtionen, die gleichmäßig gegen f : D X onvergieren Dnn ist f stetig Der gleichmäßige Grenzwert stetiger Funtionen ist stetig Bemerung Liegt nur puntweise Konvergenz vor, so brucht die Grenzfuntion nicht stetig zu sein (vgl 6(b)) Beweis Esseit D Zeige:Zujedemε> existiert ein δ> mit f(t) f(t ) X <ε, flls t t D <δ Wegen der gleichmäßigen Konvergenz existiert ein N so dss für jedes t D gilt f N (t) f(t) X < ε/3 Df N stetig ist, existiert ein δ> so, dss f N (t) f N (t ) X <ε/3, fllsflls t t D <δ Dnn folgt für t t D <δ f(t) f(t ) X f(t) f N (t) X + f N (t) f N (t ) X + f N (t ) f(t ) X <ε 9 Folgerung C([, b],x) ist ein Bnchrum: Es sei (f ) eine Cuchy-Folge in C([, b],x) Dnn ist ür jedes t [, b] die Folge (f (t) eine Cuchy-Folge in X WirerhltendieFuntion f :[, b] X durch f(t) limf (t) Behuptung (f ) onvergiert gleichmäßig gegen f: Istε vorgelegt, so wähle so groß, dss f (t) f m (t) <ε/2 für, m DnnfolgtusderStetigeitderNormfuntionfürf : f (t) f(t) f (t) lim f m (t) lim f (t) f m (t) ε/2 <ε Nch Stz 8 ist f ls gleichmäßiger Grenzwert stetiger Funtionen stetig

4 64 Stz: Vertuschbreit von Limes und Integrl bei gleichmäßiger Konvergenz Es sei f :[, b] X,, 2,,eineFolgestetigerFuntionenmitWertenineinem Bnchrum X, diegleichmäßiggegeneinefuntion f onvergiert Dnn gilt lim f n (t) dt lim f n (t) dt f(t) dt Beweis Nch 8 ist f wieder stetig, lso integrierbr, d X ein Bnchrum ist Ferner: f (t) dt f(t) dt f (t) f(t) dt (b ) f f sup Bemerung Stz ist im llgemeinen flsch, wenn die Konvergenz nur puntweise vorliegt: Im Beispiel 6(c) ist f (t) dt /2, ber f(t) dt 2 Stz Es seien f :[, b] X stetig differenzierbre Funtionen mit Werten in dem Bnchrum X InwenigstenseinemPuntt [, b] onvergiere die Folge (f (t )) DieFolge der Ableitungen f :[, b] X onvergiere gleichmäßig gegen eine Funtion g Dnngilt () (f ) onvergiert gleichmäßig gegen eine Funtion f :[, b] X (b) f ist stetig differenzierbr und f g Beweis Esistf (t) f (t )+ Integrlrechnung t f (s) ds, t [, b] nch dem Huptstz der Differentil- und Nch onvergiert t f (s) ds gegen t g(s) ds, g ist stetig nch 8 Wir setzen () f(t) limf (t ) }{{} :c + g(s) ds t Dnn gilt f(t) f (t) X c f (t ) X + g(s) f (s) X ds t lso ist f f sup c f (t ) X + b g f sup N Dher onvergiert (f ) gleichmäßig gegen f Aus()folgt,dssf differenzierbr ist und f g 3 Stz (Konvergenzriterium von Weierstrß) Es sei X ein Bnchrum und f : D X eine Folge von Funtionen mit f sup < Dnn ist für jedes t D die Reihe F (t) f (t) bsolut onvergent, und die Reihe f onvergiert gleichmäßig uf D gegen F Beweis Fürjedest ist f (t) f sup,lsoonvergiert f (t) bsolut nch dem Mjorntenriterium Gleichmäßige Konvergenz: Zu ε> existiert ein N mit N+ f sup <ε Dnn folgt für K N K f (t) F (t) X f (t) f sup <ε K+ K+

5 Potenzreihen In diesem Abschnitt sei X ein Bnchrum und D C 4 Definition Es sei (x ) eine Folge in X und C EineFuntionf : D X der Form f(z) x (z ) heißt Potenzreihe mit Entwiclungspunt Die Reihe onvergiert trivilerweise für z Es gilt jedoch mehr: 5 Stz Die Potenzreihe f(z) x (z ) onvergiert bsolut und gleichmäßig uf jedem bgeschlossenen Kreis B(, ρ) {z C : z ( ρ} mit ρ<r lim sup x ) ( Mn nennt r lim sup x ) [, ] den Konvergenzrdius der Potenzreihe Klr: Für ein z mit z >rist die Reihe für f(z) nicht onvergent Beweis Setzef (z) x (z ) DnnistufB(, ρ) f sup sup{ x z : z ρ} x ρ Nch dem Wurzelriterium onvergiert lso f sup,fllslim sup x ρ< Ausdem Weierstrß-Kriterium folgt dnn die bsolute und gleichmäßige Konvergenz 6 Stz Es sei (x ) eine Folge in X und C;diePotenzreihe x (z ) onvergiere für ein z C,z Dnngiltfürjedesρ mit ρ< z : f(z) x (z ) onvergiert bsolut und gleichmäßig uf B(, ρ) Die Potenzreihe g(z) x (z ) onvergiert ebenflls bsolut und und gleichmäßig uf B(, ρ) Beweis Setzef (z) :x (z ),sodssf f Df(z ) nch Annhme onvergiert, existiert ein M>mit f (z ) X M für lle Fürz B(, ρ) gilt dnn f (z) X x (z ) X f (z ) X z z Setze θ ρ/ z [, [ (bechte ρ< z ) Dnn gilt uf B(, ρ): f sup Mθ und f sup Mθ M θ Nch dem Weierstrß-Kriterium onvergiert f bsolut und gleichmäßig Nun setze g (z) x (z ) WieobenistufB(, ρ) g sup x X z sup z z z M z θ 65

6 66 Nch dem Quotientenriterium onvergiert g sup,undderstzvonweierstrßliefert die Behuptung 7 Folgerung Für in R sei f(t) x (t ) eine Potenzreihe mit dem Konvergenzrdius r> und Werten in dem Bnchrum X Dnn ist f differenzierbr uf dem Intervll D ] r, + r[, und f (t) x (t ) Dies folgt sofort us 2, d d dt x (t ) x (t ) und d die zugehörige Reihe nch 6 gleichmäßig uf [ ρ, + ρ] für ρ<ronvergiert Auf die Ableitung önnen wir denselben Schluss nwenden, d sie den gleichen Konvergenzrdius ht (weil lim sup x X limsup x X ) So sehen wir, dss f : D X beliebig oft differenzierbr ist mit f (n) (t) ( ) ( n +)x (t ) n n Insbesondere erhlten wir, indem wir t setzen: () x f () ()! Die Koeffizienten x önnen lso us den Ableitungen in wiedergewonnen werden 8 Bemerung Mn nn hier sogr zeigen, dss für z <rder Limes des omplexen Differenzenquotienten f (z ): lim z z f(z) f(z ) z z existiert; dies ist eine stärere Eigenschft ls reelle Differenzierbreit ( Holomorphie ) 9 Beispiel t t t t d dt ( ( ) t )t t t ( t) 2 2 Folgerung Identitätsstz für Potenzreihen Es sei R und eine Potenzreihendrstellung von f Ist f(t) f(t) x (t ) y (t ) eine weitere Potenzreihendrstellung und hben beide positiven Konvergenzrdius, so gilt x y für lle nch 7()

7 67 Tylorreihen 2 Definition D sei ein Intervll in R, f : D X beliebig oft differenzierbr, D Dnn heißt f () () T f (t) (t )! die Tylor-Reihe von f mit Entwiclungspunt 22 Folgerung Nch 7 ist die Tylor-Reihe einer durch eine Potenzreihe drgestellten Funtion die Potenzreihe selbst 23 Beispiel Die Tylorreihe von exp, sin, cos sind die uns bennten Reihen 24 Beispiel f(t) ln(+t) Für t < gilt f (t) +t ( ) t Die Summe onvergiert bsolut und gleichmäßig uf [ c, c] für jedes c ], [ Alsoist f(t) f(t) f() }{{} +s ds ( ) + t+ ( ) s ds ( ) t Bemerung: Mn nn zeigen, dss die Formel uch noch für t +gilt: ln (lternierende hrmonische Reihe) 25 Stz: Binomilreihe Es sei α R Dnngiltfür t < ( ) α () ( + t) α t Dbei ist ( ) α : j α j + j ( flls ) definiert Dies ergänzt die uns bennte Definition, denn für α N ergibt ds Produt für α +stets Bechte: Für α R \ N sind lle ( α ) von Null verschieden Beweis Setzef(t) (+t) α Differentitionliefertf () (t) α(α ) (α +)(+t) α Also ist () die Tylorreihe für f Konvergiert diese Reihe? J, nch dem Quotientenriterium: ( α ) + t + ) t α + t t < Stellt ber die Tylor-Reihe wirlich die Funtion dr? ( α

8 68 Betrchte ds Restglied R n+ (t) (t s) n f (n+) (s) ds n! ( ) α t (n +) (t s) n ( + s) α n ds n + Fll : t< SetzeC mx{, ( + t) α }Dnngiltfür s t und somit d die Reihe ( α n) t n onvergiert ( + s) α n ( + s) α C ( ) R n+ (t) (n +) α C n + ( ) α C n + (t s) n ds t n+ n, flls t <, Fll 2: <t< Dnnist(weilfür s t gilt t + s t s t s) ( ) R n+ (t) (n +) α t (t s) n ( + s) α n ds n + ( ) (n +) α t (t + s) n ( s) α n ds n + ( ) (n +) α t ( t s) n ( s) α n ds n + ( ) α α t ( ) t s n ( s) α ds n s ( ) Nun ist d t s ds s ( s)+( t s) t < für <s< t, lsoistdiesefuntionmonoton ( s) 2 ( s) 2 fllend und ( ) R n+ (t) α α t t n ( s) α dt n ( ) C α t n, n t wobei C α ( s)α dt unbhängig von n ist Nun folgt us der Konvergenz von ( α ) n t n,dssr n+ (t) 26 Beispiel () α : Hierist ( ) ( ) Die geometrische Reihe +t ( ) t ist lso Spezilfll der Exponentilreihe (b) α 2 :Hierist( ) ( /2, /2 ) 2, ( ) /2 2 /2( /2) 2 8, ( ) /2 3 /2( /2)( 3/2) 6, ( /2) 4 /2( /2)( 3/2)( 5/2) / Also +t + 2 t 8 t2 + 6 t t

9 27 Beispiel: Kinetische Energie eines reltivistischen Teilchens Ein Teilchen hbe die Msse m NchEinsteinhtesdnndieGesmtenergieE mc 2 DieMssewiederumhängt von der Geschwindigeit v des Teilchens b; es gilt m m, (v/c) 2 wobei m die Ruhemsse ist In Ruhe ht ds Teilchen die Energie E m c 2 Dieinetische Energie ist die Differenz E in E E Dv<cist schließen wir us der Binomilreihenentwiclung (α /2): ( ) E in mc 2 m c 2 m c 2 (v/c) 2 ( m c 2 2 (v/c)2 + 3 ) 8 (v/c)4 + 2 m v m v 2 (v/c) 4 + Die erste reltivistische Korretur zur lssischen inetischen Energie ist lso 3 8 m v 2 (v/c) 4 28 Wrnendes Beispiel: Tylorreihe Funtion { e t f(t) 2 t t Dnn ist f C (R, R) und f () () Esfolgt:T f ist onvergent, ber T f (t) f(t) flls t 69

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Höhere Mathematik II für Ingenieure. PD Dr. Swanhild Bernstein, TU Bergakdemie Freiberg, Sommersemester 2008

Höhere Mathematik II für Ingenieure. PD Dr. Swanhild Bernstein, TU Bergakdemie Freiberg, Sommersemester 2008 Höhere Mthemti II für Ingenieure PD Dr. Swnhild Bernstein, TU Bergdemie Freiberg, Sommersemester 2008 Inhltsverzeichnis 3 KAPITEL Potenzreihen. Gleichmäßige Konvergenz Definition.. Es sei f 0, f, f 2,...

Mehr

6.6 Integrationsregeln

6.6 Integrationsregeln 50 KAPITEL 6. DAS RIEMANN-INTEGRAL Beispiel 6.5.4 (Differenzierbreit und gleichmäßige Konvergenz) Die Funtionenfolge {f n (x)} n N definiert durch f n (x) = n sin(nx) onvergiert uf jedem Intervll gleichmäßig

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Anlysis Vorlesungssript Enno Lenzmnn, Universität Bsel 7. November 213 5 Konvergenz- und Approximtionssätze 5.1 Monotone und Dominierte Konvergenz Wir strten mit einem grundlegenden Stz der Integrtionstheorie,

Mehr

Hilfsblätter Folgen und Reihen

Hilfsblätter Folgen und Reihen Hilfsblätter Folgen und Reihen Sebstin Suchnek unter Mithilfe von Klus Flittner Steffen Hofmnn Mtthis Stb c 2002 by Sebstin Suchnek Printed with L A TEX Inhltsverzeichnis 1 Folgen 1 1.1 Definition.........................................

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ.

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ. 24 UNEIGENTLICHE INTEGRALE 146 für lle t [, b] und lle x D mit x x < δ. Für lle x D mit x x < δ gilt lso = F (x) F (x ) b f(x, t) dt b b f(x, t) dt + f(x, t) f(x, t) dt + ɛ 3(b ) (b ) + ɛ 3 + ɛ 3 = ɛ.

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R.

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R. 8.2 Potenzreihen Definition: Eine Reihe der Form f(z) = a ( ) mit a,z 0,z C heißt (omplexe) Potenzreihe zum Entwiclungspunt z 0 C. Beispiel: Die (omplexe) Exponentialfuntion ist definiert durch die Potenzreihe

Mehr

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y KAPITEL 18 UND 19 H. KOCH 1. VORLESUNG VOM 08.01.2018 Kpitel 18 Definition 1 (Zerlegungen, Treppenfunktionen, Regelfunktionen) Sei < b. 1. Eine Zerlegung τ von [, b] besteht us einer Zhl N N und (N + 1)

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k.

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k. 3. Potenzreihen Definition 7.5. Eine unendliche Reihe der Form a x mit x R (veranderlich und a R (onstant heit Potenzreihe, die Zahlen a ( heien Koezienten der Potenzreihe. Es handelt sich also um eine

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018 HM I Tutorium 14 Lucs Kunz 9. Februr 218 Inhltsverzeichnis 1 Theorie 2 1.1 Uneigentliche Integrle............................. 2 1.1.1 Typ 1.................................. 2 1.1.2 Typ 2..................................

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $ $Id: integrl.te,v.3 24/5/5 5:3:49 hk Ep $ $Id: uneigentlich.te,v. 24/5/6 3:37:4 hk Ep $ 2 Integrlrechnung 2.5 Ergänzungen Wir sind jetzt m Ende des Kpitels über ds Riemn-Integrl im eigentlichen Sinne ngelngt,

Mehr

Mathematik für Informatiker II (Maikel Nadolski)

Mathematik für Informatiker II (Maikel Nadolski) Lösungen zum 7 Aufgbentt zur Vorlesung Mthemti für Informtier II Miel Ndolsi) Abgbe: bis Freitg, den 0Juni 0, 05 Uhr Häufungspunte ) Sei n ) eine reellwertige Folge mit Grenzwert sei b n ) eine beschränte

Mehr

2. Holomorphe Funktionen Definition. Ein Gebiet in C ist eine offene und zusammenhängende Teilmenge von C.

2. Holomorphe Funktionen Definition. Ein Gebiet in C ist eine offene und zusammenhängende Teilmenge von C. 5 Holomorphe Funktionen 1 Definition Ein Gebiet in C ist eine offene und zusmmenhängende Teilmenge von C Im folgenden sei Ω stets ein Gebiet in C Definition Eine Funktion f :Ω C heißt (komplex) differenzierbr

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

7 Das Riemann-Integral

7 Das Riemann-Integral 7 Ds Riemnn-Integrl Im Folgenden sei K = R oder C, [, b] einintervllinr, 0: f(x) C x [, b]). 7.1 Definition. Für eine Zerlegng ( Prtition ) Z = {t 0 =... t N = b} von

Mehr

Riemann-integrierbare Funktionen

Riemann-integrierbare Funktionen Kpitel VI Riemnn-integrierbre Funktionen 26 Ds Riemnn-Integrl ls Grenzwert von Zwischensummen 27 Der Huptstz der Differentil- und Integrlrechnung nebst Folgerungen 28 Äquivlente Definitionen des Riemnn-

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

21. Das bestimmte Integral

21. Das bestimmte Integral 1. Ds bestimmte Integrl Wir betrchten eine Kurve y = f(x) mit f(x) 0 uf dem Intervll [, b]. Obwohl der Flächeninhlt eines Rechteces (und in weiterer Folge eines Dreieces und nderer elementrer geometrischer

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 013/14, 04.0.014 (Ise 1 Aufgabe 1. Version A Multiple Choice (4 Punte. Kreuzen Sie die richtige(n Antwort(en an. a Welche der folgenden Aussagen über Folgen sind sinnvoll und wahr? jede

Mehr

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den 19 REGELFUNKTIONEN 107 Kpitel 7: Integrtion Notwendigkeit des Integrlbegriffes und Hinweise zu seiner Präzisierung liegen uf der Hnd. Betrchten wir etw den physiklischen Begriff der Arbeit, die im einfchsten

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Zentrlübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemti Mthemti für Physier 4 Anlysis 3 Wintersem. 28/9 Lösungsbltt 6 http://www-m5.m.tum.e/allgemeines/ma924 28W 22..28

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

$Id: integral.tex,v /05/09 11:21:33 hk Exp $ $Id: uneigentlich.tex,v /05/11 13:45:45 hk Exp $

$Id: integral.tex,v /05/09 11:21:33 hk Exp $ $Id: uneigentlich.tex,v /05/11 13:45:45 hk Exp $ $Id: integrl.te,v.62 28/5/9 :2:33 hk Ep $ $Id: uneigentlich.te,v.22 28/5/ 3:45:45 hk Ep $ 2 Integrlrechnung 2.4 Integrtion rtionler Funktionen In der letzten Sitzung hben wir die Integrtion rtionler Funktionen

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

Universität Ulm Abgabe: Freitag,

Universität Ulm Abgabe: Freitag, Universität Ulm Abgbe: Freitg, 19.06.2009 Prof. Dr. W. Arendt Robin Nittk Sommersemester 2009 Punktzhl: 38+7 13. Zeige: Lösungen Prtielle Differentilgleichungen: Bltt 5 Sei (, b) ein reelles Intervll.

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

12 Parametrisierte Kurven

12 Parametrisierte Kurven Vorlesung SS 9 Anlysis Prof. Dr. Siegfried Echterhoff 1 Prmetrisierte Kurven In diesem Abschnitt wollen wir intensiver um die Geometrie von prmetrisierten Kurven (Wegen im R n befssen. Zur Erinnerung wiederholen

Mehr

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a Prof. Dr. H. Brenner Osnbrück WS 203/204 Anlysis I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f: [, b] R knn mn f(t)dt b ls die Durchschnittshöhe der Funktion

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen . Die reellen Zhlen Definition. (Verkettung). Die Verkettung oder Komposition der Abbildungen f : P N und g : M P ist die Abbildung f g : M N, x f(g(x)). Flls Definitionsbereich und Wertebereich gleich

Mehr

Satz von Taylor, Taylor-Reihen

Satz von Taylor, Taylor-Reihen Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Basiswissen zur Differential- und Integralrechnung

Basiswissen zur Differential- und Integralrechnung Bsiswissen zur Differentil- und Integrlrechnung Grevenstette / Linz Oktober 2007/ Oktober 200 Knn noch Druckfehler enthlten! Funktionen, Stetigkeit Funktionstypen: e, ln, sin, cos, tn, cot sinh, cosh,

Mehr

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit 1 1. Kurven Wir betrchten jetzt vektorwertige Funktionen von einer Veränderlichen. Eine Abbildung f = (f 1,..., f m ) : I R m heißt differenzierbr in t I, flls lle Komponentenfunktionen f 1,..., f m in

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnbrück WS 20/202 Mthemtik für Anwender I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f :[,b] R knn mn f(t)dt b ls die Durchschnittshöhe

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Wir betrachten zunächst Funktionen f in einer Variablen x. Falls f k-mal differenzierbar ist, bezeichnet man die k-te Ableitung mit

Wir betrachten zunächst Funktionen f in einer Variablen x. Falls f k-mal differenzierbar ist, bezeichnet man die k-te Ableitung mit 76 Tylorpolynome Wir betrchten zunächst Funtionen f in einer Vriblen x Flls f -ml differenzierbr ist, bezeichnet mn die -te Ableitung mit D f, x f oder f() Dbei steht f () für f, f () für f, f () für f,

Mehr

Lösung 18: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung

Lösung 18: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung D-MATH Linere Algebr I/II HS 217/FS 218 Dr. Meike Akveld Lösung 18: Reelle innere Produkte, Normen und Grm-Schmidt Orthogonlisierung 1. Seien v (i) 1, v (i) 2, v (i) 3 R 3, sodss B i (v (i) 1, v (i) 2,

Mehr

Lösung 4: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung

Lösung 4: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung D-MATH Linere Algebr II FS 217 Dr. Meike Akveld Lösung 4: Reelle innere Produkte, Normen und Grm-Schmidt Orthogonlisierung 1. Seien v (i) 1, v (i) 2, v (i) 3 R 3, sodss B i = (v (i) 1, v (i) 2, v (i) 3

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

6 Totale Differenzierbarkeit

6 Totale Differenzierbarkeit 6 Totle Differenzierbrkeit Sei U R offen. Eine Funktion f : U R ist differenzierbr in einem Punkt x U (Stz 14.6 in [EAI] genu dnn, wenn sie liner pproximierbr ist in x in dem Sinne, dss eine Zhl c R und

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MAHEMAISCHES INSIU DER UNIVERSIÄ MÜNCHEN Dr. E. Schörner SS 206 Bltt 2 06.07.206 utorium zur Vorlesung Differentil und Integrlrechnung II Berbeitungsvorschlg 45. ) Für die beiden Rechtecke R = [ 3, 3]

Mehr

Übungen zu Analysis für PhysikerInnen I

Übungen zu Analysis für PhysikerInnen I Universität Wien, WS 04/5 Übungen zu Anlysis für PhysikerInnen I Weitere Aufgben zum Lernen und Üben Offene Aufgben ( ) Berechnen Sie direkt mit Hilfe der Definition der Ableitung (Grenzwert des Differenzenquotienten)!

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Ferienurs Analysis 1 Potenzreihen, Exponentialfuntion, Stetigeit, Konvergenz, Grenzwert Henri Thoma 1.03.014 Inhaltsverzeichnis 1. Potenzreihen:... 1. Exponentialfuntion...

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

1.2 Integration im Komplexen

1.2 Integration im Komplexen 26 1 Funktionentheorie 1.2 Integrtion im Komplexen Zur Erinnerung: Eine (komplexwertige) Funktion f uf einem Intervll [, b] heißt stückweise stetig, wenn es eine Zerlegung = t < t 1

Mehr

Analysis 3 Zweite Scheinklausur Ws 2018/

Analysis 3 Zweite Scheinklausur Ws 2018/ Anlysis 3 weite Scheinklusur Ws 8/9..9 Es gibt 8 Aufgben. Die jeweilige Punktzhl steht m linken Rnd. Die Mximlpunktzhl ist 7. um Bestehen der Klusur sind Punkte hinreichend. Die Berbeitungszeit beträgt

Mehr

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b].

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b]. Krlsruhe Institute of Technology 3 Integrtion (3.1) ) Z = {x,...,x n } mit = x < x 1 < < x n = b heißt eine Zerlegung von [,b] in endlich viele Teilintervlle. Z (oder Z [, b]) sei die Menge ller Zerlegungen

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Lösungsskizzen zur Präsenzübung 06

Lösungsskizzen zur Präsenzübung 06 Lösungsskizzen zur Präsenzübung 06 Mirko Getzin Universität Bielefeld Fkultät für Mthemtik 23. Mi 2014 Keine Gewähr uf vollständige Richtigkeit und Präzision ller (mthemtischen) Aussgen. Ds Dokument ht

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

9.3 Der Hauptsatz und Anwendungen

9.3 Der Hauptsatz und Anwendungen 9.3 Der Huptstz und Anwendungen Definition: Seien Funktionen F, f : [, b] R Funktionen mit F (x) = f(x), x b. Dnn heißt F(x) Stmmfunktion von f(x). Bemerkung: Ist F(x) eine Stmmfunktion von f(x), so sind

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mthemtik für Physiker, Informtiker und Ingenieure (Kpitel IV) Dr. Gunther Dirr Institut für Mthemtik Universität Würzburg Skript vom 15. April 2016 Inhltsverzeichnis Sommersemester 2 IV Differentil- und

Mehr

1 Folgen und Reihen. Schreibweise: (a n ) n N.

1 Folgen und Reihen. Schreibweise: (a n ) n N. Krlsruhe Institute of Technology 1 Folgen und Reihen (1.1) Eine Folge reeller Zhlen ist eine Abbildung N R. Schreibweise: ( n ) n N. (1.2) Sei ( n ) n N eine Folge. ) Für n j N mit 1 n 1 < n 2

Mehr

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n?

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n? Kpitel 9 Gleichmäßige Konvergenz von Funktionenfolgen 9.1 Gleichmäßige Konvergenz 9.2 Eigenschften der Grenzfunktion 9.3 Gleichmäßige Konvergenz von Funktionenreihen 9.4 Anwendung uf Potenzreihen 9.5 Tylor

Mehr

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch Prmeterintegrle Integrle können uc von Prmetern bängen, denken wir nur n die Gmm-Funktion, die definiert ist für x > durc Γ(x) = t x e t dt Hier ist x der Prmeter, von dem der Integrnd und dmit uc ds Integrl

Mehr

Fourierreihen. Timo Dimitriadis

Fourierreihen. Timo Dimitriadis Fourierreihen Timo Dimitridis 4.5.9 In diesem Vortrg geht es im prktischen Sinne um die Anlyse von Schwingungsvorgängen, wie sie zum Beispiel in der Physik häufig vorkommen. Oft mg es nützlich sein, diese

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr