Weitere Lagemaße: Quantile/Perzentile I

Größe: px
Ab Seite anzeigen:

Download "Weitere Lagemaße: Quantile/Perzentile I"

Transkript

1 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I Für jede Media x med gilt: Midestes 50% der Merkmalswerte sid kleier gleich x med ud ebeso midestes 50% größer gleich x med. Verallgemeierug dieser Eigeschaft auf beliebige Ateile geläufig, also auf Werte, zu dee midestes ei Ateil p kleier gleich ud ei Ateil 1 p größer gleich ist, sog. p-quatile (auch p-perzetile) x p. Mediae sid da gleichbedeuted mit 50%-Quatile bzw. 0.5-Quatile, es gilt also isbesodere bei eideutige Mediae x med = x 0.5. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 73 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile II Defiitio 3.5 (Quatile/Perzetile, Quartile) Sei X ei (midestes) ordialskaliertes Merkmal auf der Mege der vorstellbare Merkmalsauspräguge M mit de Merkmalswerte x 1,..., x. Für 0 < p < 1 heißt jeder Wert x p M mit der Eigeschaft #{i {1,..., } x i x p } p ud #{i {1,..., } x i x p } 1 p p-quatil (auch p-perzetil) vo X. Ma bezeichet spezieller das 0.25-Quatil x 0.25 als uteres Quartil sowie das 0.75-Quatil x 0.75 als oberes Quartil. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 74

2 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile III p-quatile ka ma auch mit der emp. Verteilugsfuktio F bestimme: Mit der Abkürzug F (x 0) := lim h 0 h>0 F (x h), x R, für liksseitige Grezwerte empirischer Verteilugsfuktioe F ist x p ist geau da ei p-quatil, we gilt: F (x p 0) p F (x p ) Spezieller ist x p geau da ei p-quatil, we bei Vorliege der exakte Häufigkeitsverteilug r ud Verteilugsfuktio F F (x p ) r(x p ) p F (x p ), bei Verwedug der approximative Verteilugsfuktio F bei klassierte Date (wege der Stetigkeit der Approximatio!) gilt. F (x p ) = p Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 75 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile IV Geauso wie der Media muss ei p-quatil icht eideutig bestimmt sei. Bei stetige Merkmale ka Eideutigkeit zum Beispiel durch die gägige Festlegug { x ( p +1) für p / N x p = 1 2 (x ) ( p) + x ( p+1) für p N erreicht werde, wobei x (1), x (2),..., x () die gemäß der vorgegebee Ordug sortierte Urliste ist ud mit y für y R die größte gaze Zahl kleier gleich y bezeichet wird. Zum Beispiel ist für die (bereits sortierte) Urliste 6.77, 7.06, 8.84, 9.98, 11.87, 12.18, 12.7, der Läge = 8 das 0.25-Quatil x 0.25 wege p = = 2 N icht eideutig bestimmt, soder alle Werte x 0.25 [7.06, 8.84] sid 0.25-Quatile. Die eideutige Festlegug ach obiger Kovetio würde da die Auswahl x 0.25 = 1 2 ( ) = 7.95 treffe. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 76

3 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Streuugsmaße I Verdichtug der Merkmalswerte auf eie Lageparameter als eizige Kezahl recht uspezifisch. Starke Uterschiede trotz übereistimmeder Lagemaße möglich: Stabdiagramme zu Urliste mit idetischem Mittelwert, Modus, Media Urliste 1 Urliste 2 absolute Häufigkeit absolute Häufigkeit Merkmalsausprägug Merkmalsausprägug Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 77 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Streuugsmaße II Bei kardialskalierte Merkmale: zusätzliche Kezahl für Variatio bzw. Streuug der Merkmalswerte vo Iteresse Ählich wie bei Lagemaße: verschiedee Streuugsmaße gägig Alle Streuugsmaße gemeisam: Bezug zu Abstad zwische Merkmalswerte Ei möglicher Abstad: (Betrag der) Differez zwische Merkmalswerte Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 78

4 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Streuugsmaße III Defiitio 3.6 (Spaweite, IQA, mittlere abs. Abweichug) Seie x 1,..., x die Urliste zu eiem kardialskalierte Merkmal X, x med der Media ud x 0.25 bzw. x 0.75 das utere bzw. obere Quartil vo X. Da heißt ( ( 1 SP := ) max x i i {1,...,} ) mi x i = x () x (1) die Spaweite vo X, i {1,...,} 2 IQA := x 0.75 x 0.25 der Iterquartilsabstad (IQA) vo X, 3 MAA := 1 x i x med die mittlere absolute Abweichug vo X. i=1 Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 79 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Streuugsmaße IV Die Betragsstriche i Teil 1 ud 2 vo Defiitio 3.6 fehle, da sie überflüssig sid. Um Eideutigkeit i Teil 2 ud 3 vo Defiitio 3.6 zu erhalte, sid die für kardialskalierte Merkmale übliche Kovetioe zur Berechug vo Media ud Quatile aus Folie 61 bzw. 76 azuwede. Verwedug vo x statt x med i Teil 3 vo Defiitio 3.6 prizipiell möglich, aber: Beachte Folie 72! Weiterer möglicher Abstad: Quadrate der Differeze zwische Merkmalswerte Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 80

5 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Streuugsmaße V Defiitio 3.7 (empirische Variaz, empirische Stadardabweichug) Seie x 1,..., x die Urliste zu eiem kardialskalierte Merkmal X, x = 1 i=1 x i das arithmetische Mittel vo X. Da heißt 1 s 2 := 1 (x i x) 2 die (empirische) Variaz vo X, i=1 2 die (positive) Wurzel s = s 2 1 = i=1 (x i x) 2 die (empirische) Stadardabweichug vo X. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 81 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Streuugsmaße VI Empirische Variaz bzw. Stadardabweichug sid die gebräuchlichste Streuugsmaße. Stadardabweichug s hat dieselbe Dimesio wie die Merkmalswerte, daher i.d.r. besser zu iterpretiere als Variaz. Für Merkmale mit positivem Mittelwert x als relatives Streuugsmaß gebräuchlich: Variatioskoeffiziet VK := s x Recheregel zur alterative Berechug vo s bzw. s2 vorhade. Satz 3.8 (Verschiebugssatz) Seie x 1,..., x die Urliste zu eiem kardialskalierte Merkmal X, x das arithmetische Mittel ud s 2 die empirische Variaz vo X. Da gilt s 2 = 1 i=1 x 2 i x 2 Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 82

6 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Streuugsmaße VII Mit der Schreibweise x 2 = 1 i=1 x i 2 erhält ma aus Satz 3.8 die kürzere Darstellug s 2 = x 2 x 2. Liegt zum Merkmal X die absolute Häufigkeitsverteilug h(a) bzw. die relative Häufigkeitsverteilug r(a) auf der Mege der Auspräguge A = {a 1,..., a m } vor, so ka s 2 auch durch s 2 = 1 m h(a j ) (a j x) 2 = m r(a j ) (a j x) 2 berechet werde. (Berechug vo x da mit Häufigkeite als x = 1 m h(a j) a j = m r(a j) a j, siehe Bemerkug 3.4 auf Folie 67) Natürlich ka alterativ auch Satz 3.8 verwedet ud x 2 = 1 i=1 x i 2 mit Hilfe der Häufigkeitsverteilug durch berechet werde. x 2 = 1 m h(a j ) aj 2 = m r(a j ) aj 2 Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 83 3 Auswertug vo eidimesioale Date Streuugsmaße 3.4 Empirische Variaz bei klassierte Date Bei klassierte Date: auch für empirische Variaz ur Approximatio möglich. Aalog zur Berechug vo s 2 aus Häufigkeitsverteiluge: Näherugsweise Berechug vo s 2 aus Klassemitte m j ud absolute bzw. relative Klassehäufigkeite h j bzw. r j der l Klasse als s 2 = 1 l h j (m j x) 2 mit x = 1 l h j m j bzw. s 2 = l r j (m j x) 2 mit x = Alterativ: Verwedug vo Satz 3.8 mit x := 1 l h j m j = ud x 2 := 1 l h j mj 2 = l r j m j. l r j m j l r j mj 2. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 84

7 3 Auswertug vo eidimesioale Date Box-Plot 3.5 Box-ad-whisker-Plot I Häufig vo Iteresse: Visueller Vergleich eies Merkmals für verschiedee statistische Masse Dazu ötig: Grafische Darstellug mit Ausdehug (im Wesetliche) ur i eier Dimesio (2. Dimesio für Nebeeiaderstellug der Datesätze) Box-ad-whisker-Plot oder kürzer Box-Plot: Zur Urliste x 1,..., x eies kardialskalierte Merkmals werde im Prizip die 5 Kezahle x (1), x 0.25, x 0.5, x 0.75, x () i Form eies durch x 0.5 geteilte Kästches (Box) vo x 0.25 bis x 0.75 ud dara aschließede Schurrhaare (Whisker) bis zum kleiste Merkmalswert x (1) ud zum größte Merkmalswert x () dargestellt: x (1) x 0.25 x 0.5 x 0.75 x () Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 85 3 Auswertug vo eidimesioale Date Box-Plot 3.5 Box-ad-whisker-Plot II (Häufig auftretede!) Ausahme: x (1) ud/oder x () liege weiter als der 1.5-fache Iterquartilsabstad (IQA) x 0.75 x 0.25 vo der Box etfert (also weiter als die 1.5-fache Breite der Box) Da: Whiskers ur bis zu äußerste Merkmalswerte ierhalb dieser Distaz ud separates Eitrage der Ausreißer, d.h. aller Urlisteeiträge, die icht vo der Box ud de Whiskers abgedeckt werde. Beispiel mit Ausreißer : x (1) x (2) x 0.25 x 0.5 x 0.75 x ( 5) x () Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 86

8 3 Auswertug vo eidimesioale Date Box-Plot 3.5 Box-ad-whisker-Plot III Beispiel für Gegeüberstellug mehrerer Datesätze (Diskrete Tagesredite verschiedeer DAX-Papiere) ADS.DE ALV.DE BAS.DE BAYN.DE BEI.DE BMW.DE CBK.DE DAI.DE Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 87 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Symmetrie(-maß), Schiefe I Nebe Lage ud Streuug bei kardialskalierte Merkmale auch iteressat: Symmetrie (bzw. Asymmetrie oder Schiefe) ud Wölbug Ei Merkmal X ist symmetrisch (um x), we die Häufigkeitsverteilug vo X x mit der vo x X übereistimmt. (Dabei ist mit X x das Merkmal mit de Urlisteelemete x i x für i {1,..., } bezeichet, dies gilt aalog für x X.) Symmetrie eies Merkmals etspricht also der Achsesymmetrie des zugehörige Stabdiagramms um x. Ist ei Merkmal icht symmetrisch, ist die empirische Schiefe bzw. empirische Skewess ei geeigetes Maß für die Stärke der Asymmetrie. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 88

9 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Symmetrie(-maß), Schiefe II Defiitio 3.9 (empirische Schiefe, Skewess) Sei X ei Merkmal mit der Urliste x 1,..., x. Da heißt skewess(x ) := 1 ( ) 3 xi x s i=1 mit x = 1 i=1 x 1 i ud s = i=1 (x i x) 2 die empirische Schiefe (Skewess) vo X. Ma ka zeige: X symmetrisch skewess(x ) = 0 X heißt likssteil oder rechtsschief, falls skewess(x ) > 0. X heißt rechtssteil oder liksschief, falls skewess(x ) < 0. Für symmetrische Merkmale ist x gleichzeitig Media vo X, bei likssteile Merkmale gilt tedeziell x > x med, bei rechtssteile tedeziell x < x med. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 89 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Beispiele für empirische Schiefe vo Merkmale h(aj) symmetrisches Merkmal x med x a j h(aj) skewess(x)=1.128 likssteiles Merkmal x med x a j h(aj) rechtssteiles Merkmal x med x skewess(x)= a j Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 90

10 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Wölbugsmaß (Kurtosis) I Defiitio 3.10 (empirische Wölbug, Kurtosis) Sei X ei Merkmal mit der Urliste x 1,..., x. Da heißt kurtosis(x ) := 1 ( ) 4 xi x s i=1 mit x = 1 i=1 x 1 i ud s = i=1 (x i x) 2 die empirische Wölbug (Kurtosis) vo X. Kurtosis misst bei Merkmale mit eiem Modalwert, wie flach (kleier Wert) bzw. spitz (großer Wert) der Gipfel um diese Modalwert ist. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 91 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Wölbugsmaß (Kurtosis) II Bei gleicher mittlerer quadratischer Abweichug vom Mittelwert ( Variaz) müsse Merkmale mit größerer emp. Kurtosis (mehr Werte i der Nähe des Gipfels) auch mehr weit vom Gipfel etferte Merkmalswerte besitze. Der Wert 3 wird als ormaler Wert für die empirische Kurtosis ageomme, Merkmale mit 1 kurtosis(x ) < 3 heiße platykurtisch, Merkmale mit kurtosis(x ) > 3 leptokurtisch. Vorsicht: Statt der Kurtosis vo X wird oft die Exzess-Kurtosis vo X agegebe, die der um de Wert 3 vermiderte Kurtosis etspricht. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 92

11 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Beispiele für Merkmale mit uterschiedlicher empirischer Kurtosis Merkmal mit kleier empirischer Kurtosis (2.088) f j Merkmal mit großer empirischer Kurtosis (12.188) f j Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 93 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Schiefe ud Wölbug i grafische Darstelluge I Box-Plots lasse auch auf empirische Schiefe ud Kurtosis schließe. Bei symmetrische Merkmale sid auch die Box-Plots symmetrisch. Beispiel: Box-Plot zur Urliste 1, 2, 3, 4, 5, 6, 7, 8, 9: Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 94

12 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Schiefe ud Wölbug i grafische Darstelluge II Bei likssteile Merkmale hat tedeziell der rechte/obere Teil (rechter/oberer Teil der Box ud rechter/oberer Whisker) eie größere Ausdehug als der like/utere Teil. Bei rechtssteile Merkmale hat tedeziell der rechte/obere Teil (rechter/oberer Teil der Box ud rechter/oberer Whisker) eie kleiere Ausdehug als der like/utere Teil. Bei Merkmale mit großer empirischer Kurtosis gibt es tedeziell viele Ausreißer, also separat eigetragee Merkmalswerte außerhalb der Whiskers (weigstes auf eier Seite). Bei Merkmale mit kleier empirischer Kurtosis gibt es häufig weige oder gar keie Ausreißer. Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 95 3 Auswertug vo eidimesioale Date Symmetrie- ud Wölbugsmaße 3.6 Beispiele für Merkmale mit uterschiedlicher empirischer Schiefe/Kurtosis Likssteil mit großer emp. Kurtosis Rechtssteil mit kleier emp. Kurtosis f j skewess(x)=2.13 kurtosis(x)=10.65 f j skewess(x)= 0.58 kurtosis(x)= Zugehörige Box-Plots: Deskriptive Statistik ud Wahrscheilichkeitsrechug (SS 2019) Folie 96

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile II Für jede Media x med gilt: Midestes

Mehr

Weitere Lagemaße: Quantile/Perzentile I

Weitere Lagemaße: Quantile/Perzentile I 3 Auswertung von eindimensionalen Daten Lagemaße 3.3 Weitere Lagemaße: Quantile/Perzentile I Für jeden Median x med gilt: Mindestens 50% der Merkmalswerte sind kleiner gleich x med und ebenso mindestens

Mehr

Statistik I für Studierende der Soziologie

Statistik I für Studierende der Soziologie Name: Matrikelummer: Formelsammlug zur Vorlesug Statistik I für Studierede der Soziologie Dr. Caroli Strobl & Gero Walter WS 2008/09 1 Eiführug 1.1 Orgaisatorisches 1.2 Grudbegriffe 1.2.1 Statistische

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

Reader Teil 1: Beschreibende Statistik

Reader Teil 1: Beschreibende Statistik Dr. Katharia Best Sommersemester 2011 14. April 2011 Reader Teil 1: Beschreibede Statistik WiMa-Praktikum Um Date darzustelle ud eie Übersicht über die Struktur der Date zu erstelle, stellt die beschreibede

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte . Wer Rechtschreibfehler fidet, darf sie behalte. Rechefehler werde zurückgeomme. Absolute Häufigkeit: h Wie viele Elemete weise diese bestimmte Wert (= diese bestimmte Ausprägug) auf? > Azahl h der Elemete

Mehr

Absolutskala: metrische Skala mit einem natürlichen Nullpunkt und einer natürlichen Einheit. (Z.B. Einwohnerzahl). Nicht alle Variablen lassen sich

Absolutskala: metrische Skala mit einem natürlichen Nullpunkt und einer natürlichen Einheit. (Z.B. Einwohnerzahl). Nicht alle Variablen lassen sich Grudbegrie Die beschreibede Statistik (deskriptive Statistik) ist eie systematische Zusammestellug vo Zahle ud Date zur Beschreibug bestimmter Zustäde, Etwickluge oder Phäomee. Die beschreibede Statistik

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert.

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert. Übersicht: eidimesioal mehrdimesioal Häufigkeitsverteilug uklassiert klassiert tabellarische Darstellug Modul 07, graphische Darstellug Modul 07,2 Parametrisierug Lageparameter Modul 08 Streuugsparameter

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Statistik und Biometrie. Deskriptive Statistik I

Statistik und Biometrie. Deskriptive Statistik I Statistik ud Biometrie Deskriptive Statistik I Spruch des Tages Traue keier Statistik, die du icht selbst gefaelscht hast Wiederholug Merkmale Beobachtugseiheite sid Träger vo Merkmale Wiederholug Die

Mehr

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn...

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn... Mathemati macht Freu()de AB Statistische Kegröße ud Boxplot Arithmetischer Mittelwert x 1, x,..., x ist eie Liste vo reelle Zahle. Das arithmetische Mittel x der Zahle ist x = x 1 + x + + x. Arithmetischer

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik I der beschreibede Statistik werde Methode behadelt, mit dere Hilfe ma Date übersichtlich darstelle ud kezeiche ka. Die Urliste (=Date i der Reihefolge ihrer Erhebug) ist meist umfagreich

Mehr

Messeinheit in gleichen Abständen (Punkteskala, kg, cm, Jahre) Kapitel 3: Deskription Reihenfolge Beschreibung der Daten: (sehr - eher -

Messeinheit in gleichen Abständen (Punkteskala, kg, cm, Jahre) Kapitel 3: Deskription Reihenfolge Beschreibung der Daten: (sehr - eher - Kapitel 3: Deskriptio Beschreibug der Date: Gipfel, Streuug ud Verteilugsform Gruppe (ledig - verheiratet - gesch. - verwitwet) = omial Reihefolge (sehr - eher - weig - gar icht) = ordial Messeiheit i

Mehr

x 1, x 2,..., x n ist eine Liste von n reellen Zahlen. Das arithmetische Mittel x der Zahlen ist x = x 1 + x x n n

x 1, x 2,..., x n ist eine Liste von n reellen Zahlen. Das arithmetische Mittel x der Zahlen ist x = x 1 + x x n n Mathemati macht Freu()de AB Statistische Kegröße ud Boxplot x 1, x,..., x ist eie Liste vo reelle Zahle. Das arithmetische Mittel x der Zahle ist x = x 1 + x + + x. Arithmetischer Mittelwert Arithmetischer

Mehr

Jugendliche (18-24 Jahre) in Westdeutschland

Jugendliche (18-24 Jahre) in Westdeutschland Modus Beispiel: Modus Jugedliche (8-4 Jahre) i Westdeutschlad Parameter oder Kewerte eier Häufigkeitsverteilug sid Kegröße, mit dere Hilfe die Verteilug z.t. oder vollstädig rekostruiert werde ka D West

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht STATISTIK Eiführug Statistik kommt vom italieische Wort statistica, was so viel wie Staatsma bedeutet. Früher verwedete ma de Begriff ur für eie Auswertug vo Date (Klima, Bevölkerug, Bräuche,...) eies

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Organisatorisches I. Deskriptive Statistik und Wahrscheinlichkeitsrechnung Vorlesung an der Universität des Saarlandes. Organisatorisches II

Organisatorisches I. Deskriptive Statistik und Wahrscheinlichkeitsrechnung Vorlesung an der Universität des Saarlandes. Organisatorisches II 1 Eileitug Orgaisatorisches 11 Orgaisatorisches I Deskriptive Statistik ud Wahrscheilichkeitsrechug Vorlesug a der Uiversität des Saarlades PD Dr Marti Becker Sommersemester 2019 Vorlesug: Freitag, 12-14

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statistik 1 für SoziologIe Lage- ud Streuugsmaße Uiv.Prof. Dr. Marcus Hudec Streuugsmaße Statistische Maßzahle, welche die Variabilität oder die Streubreite i de Date messe. Sie beschreibe die Abweichug

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,...

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,... Statistik. Vorlesug, März, 9 Harmoisches Mittel xh = w wk +... + x x k Wobei w, w,... w k sid die gewichte (w + w + w +...+ w k = Beispiel: wir habe km mit eier Geschwidigkeit vo km/h, ud eie adere km

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung Kewerte eidimesioaler Häufigkeitsverteiluge Eiführug Statistische Kewerte vo Verteiluge sid umerische Maße mit der Fuktio, zusammefassed eie Eidruck vo 1) dem Schwerpukt, ) der Variabilität ud 3) der Form

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Kleine Formelsammlung Beschreibende Statistik

Kleine Formelsammlung Beschreibende Statistik Kleie Formelsammlug Beschreibede Statistik Prof. Dr. Philipp Sibbertse Wirtschaftswisseschaftliche Fakultät Leibiz Uiversität Haover Ihaltsverzeichis 1 Lage- ud Streuugsmaße 2 1.1 Der Media...................................

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik 2 für Naturwisseschafte Modul 201 Beschreibede Statistik Has Walser: Modul 201, Beschreibede Statistik ii Modul 201 für die Lehrverastaltug Mathematik 2 für Naturwisseschafte Sommer

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Formelsammlung zur Statistik

Formelsammlung zur Statistik Darstellug uivariater Date Formelsammlug zur Statistik Urliste x i : x 1,... x, aufsteiged geordete Urliste x (i) Die k (verschiedee) Auspräguge: a 1

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X Lageparameter Der Modus Utersuchugseiheite U,...,U Modus mod Mermal X Urliste,..., geordete Urliste (),..., () Es gilt i.allg.: ( ), i, K i i, Mermalsauspräguge a,..., a wird auch Modalwert oder häufigster

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Unsere Daten. Konzentrationsmessung. Konzentrationskurve Summenkurve der Bierkonsumierung. Statistik 2. Vorlesung, Feb. 29, 2012

Unsere Daten. Konzentrationsmessung. Konzentrationskurve Summenkurve der Bierkonsumierung. Statistik 2. Vorlesung, Feb. 29, 2012 Statisti. Vorlesug, Feb. 9, Usere Date Höhe Gewicht 5 5 Coctails 5 7 75 5 7 cm Gewicht Glas Schuhgrösse Mathe 5 7 -.5..5..5..5 Reisezeit y 7 9 5 cm Mi Kozetratiosmessug Was für ei Ateil der Eiomme gehört

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 13

Wahrscheinlichkeit & Statistik Musterlösung Serie 13 ETH Zürich FS 2013 D-MATH Has Rudolf Küsch Koordiator Blaka Horvath Wahrscheilichkeit & Statistik Musterlösug Serie 13 1. a) Die Nullhypothese lautet dass das echte Medikamet höchstes gleich gut ist wie

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Kursthemen 5. Sitzung. Lagemaße

Kursthemen 5. Sitzung. Lagemaße Kurstheme 5. Sitzug Folie I - 5 - Lagemaße A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) B) Der Additiossatz für AM (Folie

Mehr

3.2 Wilcoxon Rangsummentest

3.2 Wilcoxon Rangsummentest 3. Wilcoxo Ragsummetest Wir gehe davo aus, dass zwei Teilstichprobe x 1, x,..., x 1 ud y1, y,..., y vorliege, wobei die erste Teilstichprobe aus Realisieruge vo uabhägig ud idetisch stetig verteilte Zufallsvariable

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Konzentration und Disparität

Konzentration und Disparität Begleitede Uterlage zur Übug Deskriptive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 6 Kozetratios- ud Disparitätsmessug................................ 2 6.1 Begriff ud Eileitug.......................................

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Semiar für Theoretische Wirtschaftslehre Vorlesugsprogramm 30.04.203 Mittelwerte ud Lagemaße I. Quatile vo Häufigkeitsverteiluge

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike persike@ui-maiz.de

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Statistik I im Sommersemester 2007

Statistik I im Sommersemester 2007 Statistik I im Sommersemester 2007 Theme am 30.4.2007: Uivariate Verteiluge II Graphische Darstellug omialskalierter Verteiluge Verteilugsparameter: Lagemaße Modus, Media ud Mittelwerte Lerziele:. Iterpretatio

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seiar für Theoretische Wirtschaftslehre Vorlesugsprogra 14.05.2013 Streuugsaße 1. Norierte Etropie 2. Spaweite, Quartilsabstad,

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Auszüge der nichtparametrischen Statisik

Auszüge der nichtparametrischen Statisik Empirische Wirtschaftsforschug - 1 - Auszüge der ichtparametrische Statisik Kapitel 1: Räge ud lieare Ragstatistike Aahme, Defiitioe ud Eigeschafte (1.1) Aahme: (a) (b) Die Date x 1,, x sid midestes ordial.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend FerUNI Hage WS 00/0 Differetialrechug für Fkt. Eier Variable Ziel: Maß für lokale Äderuge eier Fuktio Bei Etscheiduge sid of icht die absolute Koste iteressat, soder vielmehr die Veräderug, die eie Produktio

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr