1 Integrale von Funktionen in mehreren Variablen

Größe: px
Ab Seite anzeigen:

Download "1 Integrale von Funktionen in mehreren Variablen"

Transkript

1 $Id: integrl.tex,v.5 5//4 3:4:46 hk Exp $ Integrle von Funktionen in mehreren Vriblen.4 Flächen und Volumin Angenommen wir hben einen örper R 3 gegeben. Soll die Menge dbei einen relen örper beschreiben, so knn mn ntürlich nnehmen ds beschränkt und Jordn-meßbr ist. Weiter sei ϱ : R die ichte von. Meist knn mn zur Beschreibung der ichte dbei eine stetige Funktion verwenden, schlimmstenflls ist der örper us mehreren Stücken verschiedener ichte zusmmengesetzt, und dnn hben wir eine ichtefunktion die bis uf Sprünge längs der Flächen n denen die Teile zusmmenstossen stetig ist. Auf jeden Fll ist ϱ nch Stz eine Riemn-integrierbre Funktion. s Integrl ϱ(x) dx ist dnn die Msse von. enken wir uns nämlich in kleine Teile,..., n zerlegt so, dss die ichte ϱ im Stück i nnäherend konstnt ϱ i ist und i den Mittelpunkt p i und ds Volumen V i ht, so ht ds Stück i näherungsweise die Msse ϱ i V i = ϱ(p i )V i. Eine Näherung n die Gesmtmsse ist dnn die Riemnsumme n i= ϱ(p i)v i. iese Summe liegt immer zwischen Unter- und Obersumme und beim Grenzübergng n wird sie zum Integrl ϱ(x) dx ds wir uns dmit ttsächlich ls Msse denken können. Wirklich pysiklisch sinnvoll ist dies nur für n = 3 imensionen, mn übernimmt ber für beliebiges n einfch die Sprechweise und denkt sich ds Integrl weiter ls eine Msse. Ein besonders wichtiger Spezilfll tritt uf wenn die ichte ϱ(x) = konstnt gleich Eins ist. nn ist die Msse gleich dem Volumen und wir hben vol() = dx. Im zweidimensionlen Fll n = sgt mn ntürlich weiterhin Fläche sttt Volumen. Wir hben uns immer uf den Stndpunkt gestellt, den Volumenbegriff ls einen vordefinierten Grundbegriff nzusehen, und dnn wird die obige Formel ein Stz. Bei einem etws systemtischeren Aufbu der Theorie verwendet mn die obige Formel überhupt zur efinition des Volumens einer Jordn-meßbren Menge. Wir wollen nun ein pr Beispiele von Flächen und Volumin durchrechnen. Zur besseren ontrolle beginnen wir dbei mit einer Menge, deren Volumen wir bereits us der Schule kennen. s einfchste solche Beispiel ist der reis mit Rdius r >. der Mittelpunkt des reises uf die Fläche keinen Einfluss ht, hben wir lso die 4-

2 Fläche der Menge := {x R : x r} = {(x, y) R x + y r } zu bestimmen. Hierzu gehen wir wieder nch dem Schem des letzten Abschnitts vor, die Menge ist j ein Normlbereich: vol() = d(x, y) = r r x r x dy dx = r r x dx, und mit der üblichen Substitution x = r sin t, dx = r cos t = dx = r cos(t) dt dt folgt π/ π/ vol() = r r r sin t cos t dt = r cos t dt = πr, π/ wobei wir die Formel cos x dx = x + sin x cos x us II..3 des letzten Semesters verwenden. Wir erhlten lso ttsächlich die wohlbeknnte Formel für die Fläche eines reises. Als ein zweites Beispiel sei die von den urven y =, y = 4x und y = x im R begrenzte Fläche, wie im nebenstehenden Bild gezeigt. ie Fläche ist ein Normlbereich bezüglich der y-achse. er größtmögliche y Wert ist im Schnittpunkt der urven y = 4x und y = /x, lso 4x = /x beziehungsweise x = /4 und somit x = /, y = d j x > ist. ie linke und rechte Begrenzung von ist für y durch ϕ(y) = 4 y und ψ(y) = y π/ gegeben, lso = und somit wird vol() = d(x, y) = { (x, y) R y, /y y/4 dx dy = = ln y y 8 4 y x } y ( y y ) dy 4 = log + 8 = ln 3 8,

3 Bechte ds die Rechnung in beiden Beispielen im ersten Schritt sehr ähnlich bgelufen ist, ds innere Integrl ht die Form dx oder dy und ergibt sich dmit einfch ls ifferenz der oberen und unteren Grenze, lso ls die Länge des Integrtionsintervlls. Interpretieren wir die Länge ls ds eindimensionle Volumen, so wird die Fläche, lso ds zweidimensionle Volumen, zum Integrl über die eindimensionlen Volumin der Schnittmengen y = const (oder x = const). iese Überlegung können wir uch llgemein durchführen. Angenommen R n ist eine beschränkte, Jordn-meßbre Menge. nn sind uch die x n -oordinten von beschränkt, und.5 wir nehmen n ds sie zwischen den beiden reellen Zhlen, b liegen, lso x n b. Für x n = t [, b] betrchten wir den horizontlen Schnitt t := {x R n (x, t) }, und setzen vorus ds uch diese Schnittmengen lle Jordn-meßbr sind. Sei schließlich f : Q [, b] R die Funktion {, (x, t) x t, f : Q [, b] R; (x, t), (x, t) / x / t. bei ist Q R n ein usreichend großes Intervll, lso mit Q [, b]. Mit dem Stz von Fubini hben wir dnn vol() = dx = Q [,b] f(x, t) d(x, t) = b Q f(x, t) dx dt = y b = x t dx dt b vol( t ) dt. s n-dimensionle Volumen knn lso durch Integrtion (n )-dimensionler Volumin berechnet werden. Wir wollen dies noch ls einen Stz formulieren: Stz.6 (Cvlieri Prinzip) Seien n und R n [, b] R n eine beschränkte, Jordn-meßbre Menge so, dss uch t := {x R n (x, t) } für jedes t b Jordn-meßbr ist. nn gilt vol() = b 4-3 vol( t ) dt.

4 Nehmen wir ls ein Beispiel für diesen Stz einml die ugel mit Rdius r >, lso Für z R mit z r ist = {(x, y, z) R 3 x + y + z r }. z := {(x, y) R (x, y, z) } = {(x, y) R x + y r z } der reis mit Rdius r z, und mit Stz 6 folgt r r ) vol() = vol( z ) dz = π(r z ) dz = π (r z z3 r 3 = π (r 3 3 ) r3 = 4 3 πr3. ies ist ntürlich ds Ergebnis ds sie bereits us der Schule kennen. Jetzt wollen wir ein weiteres dreidimensionles Beispiel rechnen, dessen Ergebnis wir noch nicht kennen. Wir betrchten die beiden Zylinder Z := {(x, y, z) R 3 x + y } und Z := {(x, y, z) R 3 x + z } im R 3. ie Achse des ersten Zylinders ist die z-achse und die des zweiten ist die y-achse. Schließlich sei := Z Z = {(x, y, z) R 3 x + y x + z } der urchschnitt dieser beiden Zylinder. = {(x, y, z) R 3 x, y, z x } 3 y 3 z x 3 3 z x ie beiden Zylinder er urchschnitt 4-4

5 Wir wollen ds Volumen von berechnen. Für jedes x ist x := {(y, z) R (x, y, z) } = [ x, x ] [ x, x ] ein Qudrt der Seitenlänge x, ht lso die Fläche vol( x ) = ( x ) = 4( x ). Wir hben ds Cvlieri-Prinzip in Stz 6 zwr nur mit Integrtion bezüglich der z- Achse formuliert, ber es gilt genusogut für jede ndere Achse uch. er llgemeine Fll ist nur etws unngenehmer hinzuschreiben. In diesem Beispiel wenden wir ds Cvlieri-Prinzip bezüglich der x-achse n, und erhlten vol() = vol( x ) dx = 4 ( x ) dx = 4x 4 3 x3 = = 6 3. Wir kommen zu einem letzten Beispiel. Es bezeichne den von den fünf Flächen x =, y =, z =, x + y = R und z = xy im ersten Oktnden begrenzten örper. bei ist R > eine vorgegebene onstnte z y y x ie Flächen x.8 er örper Erneut wollen wir ds Volumen von berechnen. Hier gehen wir direkt vor, d es keine besonders gut zu rechnende Achse gibt, bringt die Anwendung des Cvlieri-Prinzips hier keine Vereinfchung der Rechnung. Zunächst sehen wir m Bild ds die seitliche Rndfläche ein Teil des Zylinders x + y = R ist, und der eckel ist ein Teil der Fläche z = xy, lso ls Formel = {(x, y, z) R 3 x + y R, z xy}. 4-5

6 Wie gesgt bringt es hier nichts über Stz 6 vorzugehen, nstelle dessen fssen wir ls einen Normlbereich bezüglich der (x, y)-ebene mit der Bsis B := {(x, y) R x + y R } uf, d.h. B ist der im ersten Qudrnten liegende Teil des reises mit Rdius R und Mittelpunkt in (, ). Für fixiertes (x, y) B liegen die z-werte im Intervll [, xy] und somit wird vol() = B xy d(x, y) = R R y R y(r y ) xy dx dy = dy ( = R y ) R 4 y4 = ( R 4 R4 4 ) = R4 8. mit wollen wir die Beispiele von Volumenberechnungen beenden, und nur noch eine theoretische onsequenz unseres Stz 6 festhlten. Unter dem Cvlieri-Prinzip wird meist nicht der oben ngegebene Stz verstnden, sondern eine Folgerung us diesem, dss nämlich zwei dreidimensionle örper die in einer Richtung gleiche Querschnittsflächen hben bereits gleiches Volumen hben. Stz.7 (Prinzip von Cvlieri, geometrische Version) Seien, R n zwei beschränkte, Jordn-meßbre Mengen und sei E R n eine Hyperebene. Für jede zu E prllele Hyperebene F seien die Querschnitte F und F Jordn-meßbr in F = R n und von gleichen Volumen. nn ist uch vol( ) = vol( ). iese Ttsche hben Sie im Fll n = 3 in der Schule bei der Berechnung des ugelvolumens kennengelernt. Zum Abschluß dieses Abschnitts wollen wir noch zwei kleine Anmerkungen festhlten. ie erste Bemerkung ist eine eher theoretische Ttsche, die mnchml ls der Mittelwertstz der Integrlrechnung bezeichnet wird. in diesem Stz ds Volumen eine wesentliche Rolle spielt ist er diesem Abschnitt gut ufgehoben. Stz.8 (Monotonieeigenschften des Integrls) Seien R n eine beschränkte, Jordn-meßbre Menge und f : R eine Riemnintegrierbre Funktion. () Ist g : R eine weitere Riemn-integrierbre Funktion mit f(x) g(x) für lle x, so gilt uch f(x) dx g(x) dx. (b) ie Funktion f : R ist wieder Riemn-integrierbr und es gilt f(x) dx f(x) dx sup f(x) vol(). x 4-6

7 (c) Es gilt inf x f(x) vol(q) f(x) dx sup f(x) vol(). x Q All diese Ttschen ergeben sich ziemlich direkt us Stz.(d), ber dies wollen wir hier nicht näher usführen. ie zweite Anmerkung betrifft eine besonders häufig vorkommende lsse räumlicher örper, die sogennnten Rottionskörper. iese entstehen durch Rottion einer urve um eine fixierte Achse. Um die Nottion ein-.5 fch zu hlten, betrchten wir hier nur Rottionen um die z-achse, und uch nur Rottionskörper, die die z-achse im Inneren enthlten, wie beispielsweise ds nebenstehend gezeigte Rottionsprboloid x + y = z. ie zu rotierende urve beschreiben wir durch eine Funktion f : [, b] R, diese steht für die urve bestehend us den Punkten (f(z),, z) in der (x, z)-ebene. Als Rottionskörper ergibt sich R f := {(x, y, z) R 3 z b, x + y f(z) }. In Höhe z ist der Querschschnitt R f,z ein reis mit Rdius f(z), und ht dmit die Fläche vol(r f,z ) = πf(z). Für ds Volumen des Rottionskörpers folgt vol(r f ) = π b f(z) dz. iese Formel gilt entsprechend uch für Rottionskörper bezüglich beliebiger nderer Achsen im R 3. Als Beispiel wollen wir einml ds Volumen ds Volumen des Rottionsprboloids bis zur Höhe h > berechnen, lso z h. ie berndende urve ist durch z = x lso x = f(z) = z gegeben. Also hben wir die definierende Funktion f : [, h] R ; z z. Als Volumen des Rottionsprbolids der Höhe h ergibt sich.5 Schwerpunkte vol(r f ) = π h z dz = πh. Bisher hben wir reellwertige Funktionen über Jordn-meßbre Mengen integriert. ie Ausdehnung dieses Integrtionsbegriffs uf vektorwertige Funktionen geschieht dnn einfch durch Betrchtung der einzelnen omponenten einer solchen Funktion, lso 4-7

8 efinition.8 (Integrtion vektorwertiger Funktionen) Seien M R n beschränkt und Jordn-meßbr und f : M R m eine Funktion. nn heißt die Funktion f integrierbr über M wenn lle omponentenfunktionen f,..., f m : M R integrierbr sind, und in diesem Fll definieren wir M f(x) dx := M f (x) dx. M f m(x) dx Mit diesem Integrlbegriff usgestttet können wir jetzt zur Berechnung von Schwerpunkten kommen. Gegeben sei ein räumlicher örper R 3, den wir wie immer ls beschränkt und Jordn-meßbr nnehmen. Auf hben wir eine ichtefunktion ϱ : R gegeben, und wie wollen uns überlegen wie mn den Schwerpunkt des örpers berechnen knn. Überlegen wir uns zunächst einml die entsprechende Aufgbe für Mssepunkte p,..., p r mit Mssen m,..., m r. ie Gesmtmsse dieses Systems ist dnn m := m + + m n und der Schwerpunkt des Systems wird zum gewichteten Mittel. m m p + + m r m p r = m (m p + + m r p r ) = m r m i p i. Wir denken uns nun unseren örper in Stücke,..., r zerlegt, und die ichte jedes Stücks i sei nnähernd konstnt gleich ϱ i. Wähle ußerdem irgendeinen Punkt p i i und bezeichne V i ds Volumen von i. nn können wir i näherungsweise ls einen Mssepunkt in p i der Msse m i = ϱ i V i uffssen. er Schwerpunkt von wird dnn durch den Schwerpunkt des Systems der Mssepunkte p,..., p r pproximiert, und letzterer ist gleich r ϱ i p i V i (m = Gesmtmsse). m i= Jetzt führen wir den Grenzübergng r durch. ie genäherten Gesmtmssen m konvergieren gegen die Msse von, und letztere htten wir im letzten Abschnitt ls ds Integrl ϱ(x) dx bestimmt. Weiter konvergieren die Terme ϱ ip i gegen ϱ(p)p wenn die Stücke gegen den Punkt p konvergieren. er Schwerpunkt des örpers wird dmit zu pϱ(p) dp S :=. ϱ(p) dp Ist die ichte ϱ(p) = konstnt gleich Eins, so wird dies zum geometrischen Schwerpunkt, oder uch Mittelpunkt, S = p dp. vol() 4-8 i=

9 Zunächst ist uch dies lles nur für den dreidimensionlen Fll n = 3 sinnvoll, ber die Sprechweisen werden wieder für beliebige imensionen übernommen. onkret ist die i-te omponente des Schwerpunkts eines örpers der Msse M gegeben ls S i = x i ϱ(x) dx. M Als ein Beispiel wollen wir den Schwerpunkt des Hlbkreises := {(x, y) R y, x + y r } von Rdius r > rechnen. ies wollen wir für die ichte konstnt gleich durchführen. ie Fläche ist vol() = πr, und wir rechnen nun die y- und x-oordinte des Schwerpunkts us. Es sind y d(x, y) = r r x y dy dx = r (r x ) dx = r 3 r3 3 = 3 r3 und x d(x, y) = r r x x dy dx = r x r x dx = 3 (r x ) 3/ r =, wobei letzteres us Symmetriegründen von vornherein zu erwrten wr. mit ist ( ) p dp =. 3 r3 Also ist der Schwerpunkt in S = p dp = 4 πr 3π r ( ) = 4 3π r e. Als unser nächstes Beispiel wollen wir uns eine Formel für den Schwerpunkt eines Rottionskörpers überlegen. Wir betrchten wieder eine Rottionskörper dessen Achse die z-achse ist, ber entsprechende Aussgen gelten dnn uch llgemein. Sei f : [, b] R eine stetige Funktion und betrchte den Rottionskörper R f = {(x, y, z) R 3 z b, x + y f(z) }. s Volumen von R f htten wir bereits ls vol(r f ) = π 4-9 b f(z) dz

10 berechnet. Beginnen wir mit der x-oordinte R f x d(x, y, z) = b f(z) f(z) f(z) y x dx dy dz = f(z) y b f(z) f(z) z f(z) y dy dz = f(z) y d der Integrnd Null ist, und nlog folgt R f y d(x, y, z) =. er Schwerpunkt von R f liegt lso uf der z-achse, ws uch geometrisch von vornherein zu erwrten wr. Zur Bestimmung der z-oordinte rechnen wir R f z d(x, y, z) = b B f(z) () z d(x, y) dz = Insgesmt ist der Schwerpunkt von R f dmit in S Rf = b b zf(z) dz / b f(z) dz πzf(z) dz = π = b b zf(z) dz b f(z) dz e 3. zf(z) dz. Als ein konkretes Beispiel berechnen wir jetzt den Schwerpunkt eines Rottionsprboloids x + y = z der Höhe h >, lso = {(x, y, z) R 3 z h, x + y z}. Wir htten bereits eingesehen ds der Rottionskörper = R f bezüglich f : [, h] R ; z z ist, und ds Volumen von htte sich zu vol() = πh ergeben. Zur Berechnung des Schwerpunkt bestimmen wir h zf(z) dz = und der Schwerpunkt von wird zu S = h z dz = 3 h3, 3 h3 h e 3 = 3 he 3. 4-

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen Mathematik für Ingenieure III, WS 9/ Montag 9. $Id: integral.te,v.6 9//9 4:7:55 hk Ep $ Integrale von Funktionen in mehreren Variablen.4 Flächen und Volumina Angenommen wir haben einen örper R 3 gegeben.

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Integralrechnung. Andreas Rottmann. 15. Oktober 2003

Integralrechnung. Andreas Rottmann. 15. Oktober 2003 Integrlrechnung Andres Rottmnn 15. Oktober 2003 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 1.1 Integrtion ls Umkehrung des Differenzierens........... 2 1.2 Integrtionsregeln...........................

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $ $Id: integrl.te,v.3 24/5/5 5:3:49 hk Ep $ $Id: uneigentlich.te,v. 24/5/6 3:37:4 hk Ep $ 2 Integrlrechnung 2.5 Ergänzungen Wir sind jetzt m Ende des Kpitels über ds Riemn-Integrl im eigentlichen Sinne ngelngt,

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

$Id: integral.tex,v /05/09 11:21:33 hk Exp $ $Id: uneigentlich.tex,v /05/11 13:45:45 hk Exp $

$Id: integral.tex,v /05/09 11:21:33 hk Exp $ $Id: uneigentlich.tex,v /05/11 13:45:45 hk Exp $ $Id: integrl.te,v.62 28/5/9 :2:33 hk Ep $ $Id: uneigentlich.te,v.22 28/5/ 3:45:45 hk Ep $ 2 Integrlrechnung 2.4 Integrtion rtionler Funktionen In der letzten Sitzung hben wir die Integrtion rtionler Funktionen

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

16. Integration über Flächen. Der Gaußsche Integralsatz

16. Integration über Flächen. Der Gaußsche Integralsatz 41 16. Integrtion über Flächen. Der Gußsche Integrlstz Der Gußsche Stz in der Ebene. 16.1. Orientierter Rnd von Normlbereichen. Es sei [, b] ein Intervll, und f 1 und f 2 seien stückweise stetig di erenzierbre

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Sebstin Lngendörfer e Integrlrechnung Zustzunterlgen zur Vorlesung Anlysis II Sommersemester 2014 Dieses Bltt enthält

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

5.2 Riemannintegral in mehreren Variablen

5.2 Riemannintegral in mehreren Variablen 9 Kpitel 5. Integrtion im Mehrdimensionlen 5.2 Riemnnintegrl in mehreren Vriblen Die Idee, die dem Riemnnschen Integrlbegriff (für Funktionen in einer Vriblen) zugrundeliegt, ist die Approximtion einer

Mehr

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ.

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ. 24 UNEIGENTLICHE INTEGRALE 146 für lle t [, b] und lle x D mit x x < δ. Für lle x D mit x x < δ gilt lso = F (x) F (x ) b f(x, t) dt b b f(x, t) dt + f(x, t) f(x, t) dt + ɛ 3(b ) (b ) + ɛ 3 + ɛ 3 = ɛ.

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale Doppel- und Dreifchintegrle Sei [, b] ein Intervll des R 2 oder R 3 (lso ein Rechteck bzw. ein Quder), i.e. [, b] = [, b ] [ 2, b 2 ] oder [, b] = [, b ] [ 2, b 2 ] [ 3, b 3 ]. Für Intervlle des R 2 bzw.

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: integral.tex,v.0 009//0 :4:35 hk Exp $ Integrale von Funktionen in mehreren Variablen.3 Integration über Jordan-meßbare Mengen Als ein zweites Beispiel der Integration über Jordan-meßbare Mengen wollen

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

$Id: integral.tex,v /04/28 13:32:32 hk Exp hk $

$Id: integral.tex,v /04/28 13:32:32 hk Exp hk $ Mthemtik für Ingenieure II, SS 009 Dienstg 8.4 $Id: integrl.tex,v 1.4 009/04/8 13:3:3 hk Exp hk $ Integrlrechnung.3 Die Integrtionsregeln Mit den bisherigen Beispielen hben wir die meisten Integrle behndelt,

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale KAPITEL 6 Doppel- und Dreifchintegrle 6. Doppelintegrle................................... 74 6.. Flächeninhlt ebener ereiche.......................... 74 6..2 Definition und Eigenschften des Doppelintegrls..............

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

$Id: integral.tex,v /04/22 11:22:04 hk Exp $

$Id: integral.tex,v /04/22 11:22:04 hk Exp $ Mthemtik für Physiker II, SS 015 Mittwoch.4 $Id: integrl.tex,v 1.35 015/04/ 11::04 hk Exp $ Integrlrechnung.1 Ds Riemn Integrl In der letzten Sitzung hben wir verschiedene vorbereitende Begriffe zur Konstruktion

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Probleme, SS 07 Montg 6.6 $Id: trig.tex,v.8 07/06/3 6:0:00 hk Exp $ $Id: convex.tex,v.40 07/06/3 6::43 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlbierungsformeln m Ende der

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

Anwendungen der Integralrechnung

Anwendungen der Integralrechnung Anwendungen der Integrlrechnung 8. Flächeninhlt und Flächenschwerpunkt............... 4 8. Kurvenlänge............................. 7 8. Rottionskörper........................... 9 8.3 Whrscheinlichkeitsverteilungen

Mehr

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y KAPITEL 18 UND 19 H. KOCH 1. VORLESUNG VOM 08.01.2018 Kpitel 18 Definition 1 (Zerlegungen, Treppenfunktionen, Regelfunktionen) Sei < b. 1. Eine Zerlegung τ von [, b] besteht us einer Zhl N N und (N + 1)

Mehr

Kapitel 1. Das Riemann-Integral. 1.1 *Motivation

Kapitel 1. Das Riemann-Integral. 1.1 *Motivation Kpitel Ds Riemnn-Integrl. *Motivtion Wir betrchten eine stetige Funktion f : [, b] R, wobei, b R und < b. Frge: Wie groß ist der Flächeninhlt zwischen dem Abschnitt [, b] uf der x-achse und dem Grph von

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

21. Das bestimmte Integral

21. Das bestimmte Integral 1. Ds bestimmte Integrl Wir betrchten eine Kurve y = f(x) mit f(x) 0 uf dem Intervll [, b]. Obwohl der Flächeninhlt eines Rechteces (und in weiterer Folge eines Dreieces und nderer elementrer geometrischer

Mehr

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld. 28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

6.6 Integrationsregeln

6.6 Integrationsregeln 50 KAPITEL 6. DAS RIEMANN-INTEGRAL Beispiel 6.5.4 (Differenzierbreit und gleichmäßige Konvergenz) Die Funtionenfolge {f n (x)} n N definiert durch f n (x) = n sin(nx) onvergiert uf jedem Intervll gleichmäßig

Mehr

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt:

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt: Mthemtik LK M,. Kursrbeit Integrtion Lösung..3 Aufgbe :. Erkläre mit Hilfe der Definition des Integrls den Unterschied zwischen dem Integrl einer Funktion und dem Flächeninhlt der Fläche zwischen dem Grphen

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

und mit dem Hauptsatz der Differential und Integralrechnung Satz 9 folgt (f (x)g(x) + f(x)g (x)) dx := f(b) f(a) a

und mit dem Hauptsatz der Differential und Integralrechnung Satz 9 folgt (f (x)g(x) + f(x)g (x)) dx := f(b) f(a) a $Id: integrl.te,v.59 08/04/7 :5:0 hk Ep $ Integrlrechnung. Die Integrtionsregeln Wir hben nun schon einige Integrle berechnet und insbesondere die Stmmfunktionen der verschiedenen Grundfunktionen bestimmt.

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 27 Mittwoch 7.5 $Id: uneigentlich.te,v.9 27/5/7 :9:4 hk Ep $ $Id: norm.te,v.39 27/5/7 :22:3 hk Ep $ 3 Uneigentliche Integrle In der letzten Sitzung hben wir begonnen uns mit

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit Mthemtik für Ingenieure III, WS 9/ Montg. $Id: otentil.te,v. 9// :: hk E $ Potentilfelder. Wegunbhängige Integrierbrkeit Definition.: Seien U R n offen und F : U R n ein stetiges Vektorfeld. Dnn heißt

Mehr

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen)

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen) Technische Universität München SS Zentrum Mthemtik 7.6. Prof. Dr. K. Buchner Dr. W. Aschbcher Anlysis II Aufgbe T 9 Ober- und Untersummen Übung 7: Lösungen : Nch Vorussetzung ist f R-integrierbr, d.h.

Mehr