Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial"

Transkript

1 Statstk 4. Vorlesug Test für Varaz Estchprobetest für de Varaz: Hat de Varaz ee bestmmte Wert, bzw. legt er eem bestmmte Berech? Etschedug basert auf dem Ergebs eer ezge Stchprobe. Zwestchprobetest für de Varaz Uterschede sch de Varaze zweer Gruppe? Etschedug basert auf zwe Stchprobe Test für Varaz Estchprobetest für de Varaz: Aahme: Grudgesamthet ormalvertelt H 0 : σ² σ 0 ² gege H A : σ² σ 0 ² Teststatstk: ( X X ) χ σ Testvertelug: χ² v mt v- Etschedug: χ² > χ² co oder χ² < χ² cu, lehe wr H 0 ab p-wert (be Computer)< α, lehe H 0 ab 0 Test für Varaz Zwestchprobetest für de Quotete zweer Varaze: Aahme: Grudgesamthet ormalvertelt H 0 : σ ² σ ² gege H : σ ² σ ² Teststatstk: ( X X ) /( ) F m ( Y Y) /( m ) Testvertelug: F v,v mt v - ud v m- Etschedug: F > F co oder F < F cu, lehe H 0 ab p-wert < α, lehe H 0 ab Wederholug: zwedmesoales Datemateral Beobachtuge, jeder hat Werte für m Merkmaler, also jeder besteht aus Merkmalauspräguge. z.b. wr otere de Grösse ud das Umsatz verschedee Flale (m). Beobachtugswerte vo Merkmal X: x, x, x 3,, x Beobachtugswerte vo Merkmal Y: y, y, y 3,, y De Kotgeztabelle b b b k a h, h, h,k a m h m, h m, h m,k wobe h,j gbt de Häufgket dejege Beobachtuge, de mt (a,b j ) detsch sd (gemesame Häufgkete).

2 Radhäufgkete h,k h,k + h,k + +h m,k de Azahl alle Beobachtuge, de bezüglch des zwete Merkmals de Ausprägug b k aufwese (auf der Kotegeztabelle ka ma dese de letzte Zele auftrage), sowe h m, h m, + h m, + +h m,k de Azahl alle Beobachtuge, de bezüglch des erste Merkmals de Ausprägug a m aufwese (dese sd de letzte Spalte aufgetrage). Uabhäggketshypothese p l p p l (,,k; l,,m) wobe p l P(Xa,Yb l ) ud p, p l sd de Radverteluge: p P(Xa ), p l P(Yb l ). Alteratvhypothese: Uabhäggket glt cht, also für wegstes e ud l p l p p l Teststatstk (Ch-Quadrat Statstk) h E ( j j ) T wo E j st de erwartete, j Ej Häufgket der Eregs Xa,Yb j uter der Nullhypothese: E p pˆ h h ˆ j.. j.. j / De Teststatstk folgt de Ch-Quadrat Vertelug mt Frehetsgrad (k-)(m-). De krtsche Werte ka ma vo der Tabelle der Ch-Quadrat Vertelug bestmme. E Werte Bespel Nederschlag Temperatur Kühl weg 5 durchsch. 0 vel 5 Summe 30 Durchschttlch Warm Summe Nederschlag Temperatur Kühl weg 9 durchsch. vel 9 Summe 30 Durchschttlch 6 40 Warm Summe das Teststatstk st approx., FG4, also wr köe de Uabhäggket verwerfe, es gbt Zusammehag zwsche de Varable. Stetge Merkmale Falls wr stetge Merkmale habe, ma soll de Date klassfzere. Achtug: möglchst weg Klasse zu beutze, wel um de Ch-Quadrat Vertelug awede zu köe, ma braucht wegstes 3-5 Beobachtuge alle Zelle. Bespel Fläche (Taused QM) Kaufhaus No. Tagesumsatz (Mo Ft) Fläche Also für A : F<40, Umsatz A : F 40, B :U<60, B : U 60 kle F<40 gross weg (U<60) 4 5 vel T3.6, FG, also wr köe de Uabhäggket ur bemα0. verwerfe, de Nullhypothese soll ma be α<0. bebehalte.

3 Adere Awedug Vele statstsche Tests setze voraus, dass de Date ormalvertelt sd. Wr brauche ee Methode, um festzustelle, ob dese Aahme über de Vertelug der Date korrekt st. Methode: Vsuell: das Hstogramm der Date ud mt der theoretsche Vertelugskurve optsch zu vergleche. χ -Test: Ee solde Methode, um emprsche ud bekate (parametrsche) Verteluge zu vergleche. χ Apassug-Test Dese Awedug st e Apassugstest. Mt hm lässt sch prüfe, ob de beobachtete Vertelug der vorgegebee Vertelug etsprcht. Für jedes Itervall wrd de quadrerte Dfferez der Häufgkete der emprsche ud der theoretsche Vertelug berechet ud durch de zu erwartede Häufgkete dvdert. De Summe deser relatve quadrerte Dffereze st deχ -Testgröße. ( h E ) T E pˆ E Als Nullhypothese wrd ageomme, dass de zwe Verteluge glech ud de Dffereze auf zufällge Fehler zurückzuführe sd. Etschedug über de Hypothese De ugefähre Vertelug vo ergbt sch aus dem folgede theoretsche Hlfsmttel: We de Hypothese über de Wahrschelchketsvertelug zutrfft, strebt de Vertelug vo T gege eeχ Vertelug, wobe k st der Azahl der Itervalle s st der Azahl der geschätzte Parameter Da de Hypothese verworfe wrd, we de Abwechuge ud damt der Wert vo T zu groß ausfällt, wrd der krtsche Berech für ee gegebee Sgfkazzahlαgegebe mt T > χ k s, α k s Bespel: dskrete Vertelug De Ergebsse 0 Würfel gabe de folgede Häufgkete: Augezahl Haufgket De Frage: ka ma de Nullhypothese (Glechvertelug) verwerfe? Wert der Statstk: 6, k6, s0 (kee Parameter war geschätzt), also FG5. Krtsche Wert:,07 De Nullhypothese wrd bebehalte. Bespel: stetge Vertelug Wr habe Beobachtuge vo Tagesumsatzwerte vo 0 Flale: 5,54,39,4,84,58,85,75, 50,85 ( M.Ft). De Frage: passt es a ee Normalvertelug mt Erwartugswert 00 ud Stadardabwechug 0? Vsuelle Verglechug: Dchte Tagesumsatz Numersche Berechug 0 Beobachtuge also höchstes 4 Klasse (es st das Mmum be der Fall der geschätzte Parameter) Klassewahl aus der Theoretsche Werte, mt gleche erwartete Wahrschelchket: Klassegreze: *0,00, *0. Erwartete Häufgkete:.5 für alle Klasse. Beobachtete Häufgkete: 8,0,0, T7., FG3, Krtsche Wert: 7.8 (α0.05), oder 3.8 (α0.0), also de Hypothese wrd verworfe. M.Ft 3

4 Fortsetzug Passe de date a ee Normalvertelug? Her soll ma de beste Normalvertelug fde. Schätzuge: für de Erwartugswert: 77.9 MFt, Für de Stadardabwechug: MFt Klassegreze (weder mt 4 Klasse, gleche erwartete Häufgkete): 77.9-*46.84/3, 77.9, 77.9+*46.84/3, ausgerechet: Daraus de emprsche Häufgkete:,4,, T., FG, Krtsche Wert: 3.84 (α0.05), oder.7 (α0.), also de Hypothese wrd bebehalte. Regresso (Wederholug) X: Eflussfaktor Y: abhägges Merkmal Bespel:Wr habe Date vom 5 Hotels währed der Formel Ree Ugar gesammelt. Dstaz ud % Besetzt sd de Tabelle dargestellt. Etf (km) % Besetzt (x-xbar)^ (y-ybar)^ (x-xbar)(y-ybar) y Xbar0 Ybar86 88,8 36,8-70, De Koeffzete Das Modell: y~ax+b. De Schätzug für de Koeffzete: a ( x x)( y y), bˆ y ax ˆ ˆ ( x x) I userem Bespel: a-70./ , b86-(-.9)*005. Das Verfahre st sehr empfdlch a ausreßer! Bestmmthetsmass We gut st das Modell? Vollstädge Varabltät: Quadratsumme der Resdue: Vo her das Atel der erklärte Varabltät: R ( y ( x x)( y ( x x) ( x x)( y ( y ax ˆ bˆ) ( y ( x ( y x) R0.56 R R R Bespel (Fortsetzug) Etf (km) y y^ (y-ybar)^ (y^-ybar)^ Xbar0 Ybar Daraus R 0.9, es st zemlch gut. (Nahe zur ) (Obwohl es ka ma mt ee Quadratsche Faktor verbesser.) Atel der besetzte Zmmer (%) Hotel-Date vor Formel- Ree, mt l.regr Etferuge ( km) 4

5 Verbesserug Für de modfzerte Hotel-Modell Etf % (x-x)^ (km)^ Besetzt (y-y)^ (x-x)(y-y) , R (-300)*(-300)/(9656*84)0.983 also es st och besser. a-300/9656-0,0078; b86-88,8*(-0,0078)00.64 Egeschafte userer Schätzer Modell: YaX+b+ε, wo ε st Normal-vertelt mt Erwartugswert 0 ud St.abwechug σ Stadardabwechug der Koeffzete der Regressosgerade: D( aˆ) σ ( x x) De Schätzug für σ: x ; D( bˆ) σ + ( x x ) ( ˆ ) ( ( ˆ ˆ)) ˆ y y y ax+ b σ Hypothese-Test de Hypothese: a0 (es st ke Zusammehag mt der Dstaz). H A : a 0. Teststatstk: (t-test) ( x x) t aˆ σˆ das Frehetsgrad st - (wr habe Parameter geschätzt: a ud σ). Ablehugsberech (we bem allgemees t- Test, vom Alteratv-Hypothese abhäged). Jetzt zwesetg. Aber für H A : a<0, t<- t -α,- Fortsetzug de Hypothese: b0 Bespel (Hotel-Date mt Dst als X) a-4600,/593,6-0,078; b86-88,8*(-0,078) 00,64 ax+b Resd^ Summe: bˆ t x ˆ σ + ( x x) Also de Schätzug für σ: 3,7, t-0,078*544,6/3,7-3,4. Es st scher, dass der Utersched zwsche de verschedee Buchugsatele st ke Zufall. Adere Hypothese H 0 : b00 (ka der Kostat 00 se?) Es st de logsche Wert. Statstk der t-test: bˆ b t x ˆ σ + ( x x) 0,643 3,65 0, / also dese Hypothese köe wr aehme. 0,359 Mehrdmesoale statstsche Verfahre Smultae Zusammewrke vo Zufallsvarable wrd utersucht. Bespele: multple Regressosmodelle Klassfzerug usw (Faktorstrukture,...) 5

6 Multple leare Regresso Y: abhägges Merkmal X,...,X m : Eflussfaktore Regresso: y~a x + a x a m x m + b De Koeffzete ka ma weder mt der methode der kleste Quadrate schätze. Bespel:Wr habe de Moatsumsatz, Fläche ud Azahl der Agestellter be e Paar Flale userer Hadelsfrma de folgede Tabelle dargestellt Moatsumsatz T.Euro (Y) Fläche TQM (X) Azahl Agestellter (X) Lösug, Bedeutug, Resdue Lösug mt der Methode der kleste Quadrate: Y~,56X +,8X +60,48. Bedeutug der (partelle) Regressoskoeffzete a j : Äderug der Zelgrösse (Moatsumsatz), we X j um ee Ehet stegt, ud de adere Eflüsse blebe Kostat. Resdue (Schätzfehler): y yˆ ( yˆ Daraus der Bestmmthetsmass: R ( y Ergebsse für de Bespel Moatsumsatz T.Euro (Y) Fläche TQM (X) Azahl Agestellter (X) Schätzuge Resdue (y-ybar)^ (ydach-ybar)^ R

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Wederholug: zwedmesoales Datemateral Beobachtuge, jeder hat Werte für m Merkmaler, also jeder besteht aus Merkmalauspräguge. z.b. wr otere de Grösse ud das Umsatz verschedee Flale (m).

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Lineare Regression. Hypothesen-Test. Statistik 2 5. Vorlesung, November 21, Eigenschaften unserer Schätzer. Die Koeffizienten der Regression

Lineare Regression. Hypothesen-Test. Statistik 2 5. Vorlesung, November 21, Eigenschaften unserer Schätzer. Die Koeffizienten der Regression Statstk 5. Volesug, Novembe, 0 Leae Regesso Ma ka de Mekmal Y mt ee X ähe: X: Eflussfakto Y: abhägges Mekmal Bespele: Y ax + b X: beobachtete Wettedate heute, Y: Wettedate moge X: Fläche, Y: Umsatz Allgeme:

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Deskrptve Statstk Formelsammlug Statstk. Edmesoale Häugketsverteluge Merkmal: X Datemege (Stchprobe) vom Umfag N: x, x 2,..., x geordete Stchprobe: x (), x (2),..., x () mt x () x (2)... x () Auspräguge

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe

Mehr

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse Hochschule Müche Fakultät Wrtschaftsgeeurwese Dateaalyse Prof. Dr. Volker Abel Verso. Ihaltsverzechs Ihaltsverzechs. Auswertug ud Modellerug vo Zähldate.... Auswertug vo prozetuale Häufgkete.... Auswertug

Mehr

1 n xi. = å. 1 k. i i

1 n xi. = å. 1 k. i i Thema 4 Wahrschelchet Statst - Neff INHALT 4.3 Kotgez => Ch -Uabhäggetstest (= Ch -Kotgeztest) wr beutze h = / als Näherug für de Wahrschelchete ab 4.6 De Asätze für de Maßzahle "Mttelwert" ud "Varaz"

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

4.3 Statistik des radioaktiven Zerfalls

4.3 Statistik des radioaktiven Zerfalls 4.3 Statstk des radoaktve Zerfalls Stchworte: Radoaktvtät, -, -, -Strahlug, Geger-Müller-Zählrohr, Statstk, Posso- ud Gauß-Vertelug, Stadardabwechug, Rehetszahl, statstsche Aalyse. Theoretsche Grudlage

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele Johaes Guteberg-Uverstät Fachberech Rechts- ud Wrtschaftswsseschafte Isttut für Statstk ud Ökoometre Uv.-Prof. Dr. Peter M. Schulze Uterlage zur Vorlesug Statstk II Wahrschelchketsrechug ud Schleßede Statstk

Mehr

Quantitative Geochemie mit Excel

Quantitative Geochemie mit Excel Kompaktkurs Quattatve Geocheme mt Excel Vom Meßwert zur petrogeetsche Modellerug geochemscher Date. ag: DAENAUFBEEIUNG Dateegabe ud Normerug Statstsche Kegröße Auswertug ees ICP-MS Datesatzes (Stöchometrsche

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Formeln zur Statistik Statistik - Neff

Formeln zur Statistik Statistik - Neff Formel zur Statst Statst - Neff (.) Mttelwert, Varaz be Ezelwerte (.) Frehetsgrade (.3) Abwechugsquadrate (.4) Leare Efach-Regresso (.5) Multple leare Regresso, DW-Tabelle (.6) A'-Regresso (.7) V T Regresso

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig Eschlägge Begrffe zur Meßuscherhet /7 Eschlägge Begrffe zur Meßuscherhet Dr. Wolfgag Kessel, Brauschweg De Aufstellug folgt cht der re lexografsch-alphabetsche Aordug. Verwadte Begrffe sd velmehr zu Gruppe

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 005 Ihalt II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

Regression. Regression. Regression. Einführung. Beispiel. Korrelationsrechnung Stärke eines Zusammenhanges

Regression. Regression. Regression. Einführung. Beispiel. Korrelationsrechnung Stärke eines Zusammenhanges (, } ) (, ) - - - Regresso X e Y Stchprobe I Y Stchprobe II 4 6 8 X 4 6 8 4 6 8 X 4 6 8 Stchprobe III Stchprobe IV odell (Kostate) Alter Koeffzete a Ncht stadardsertestadardserte Koeffzete Koeffzete Stadardf

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen We gelgt es de Buchacher (oder FdJ IMMER zu gewe Eletug Schrebwese ud Varable Erwarteter Gew des Buchachers 4 4 De Stratege der Buchacher 5 4 Der ehrlche Buchacher 6 4 "real lfe" Buchacher6 4 La FdJ 9

Mehr

Beispiele. Überblick

Beispiele. Überblick Warum Statst? Bespele Statst ursprüglch: Erhebug vo Date (Status Zustad Bespele Aufahme der Wasserstäde des Nl: Progose vo Dürre, Hochwasser Volszähluge, Erfasse vo Ertemege, Steuer bs zu heutgem statstsches

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

( x) Thema 5 Verteilungen Statistik - Neff 5.1 ÜBERBLICK TEST-VERTEILUNGEN. Stetige Zufallsvariable Dichtefunktion f(x) Verteilungsfunktion F(x)

( x) Thema 5 Verteilungen Statistik - Neff 5.1 ÜBERBLICK TEST-VERTEILUNGEN. Stetige Zufallsvariable Dichtefunktion f(x) Verteilungsfunktion F(x) 5. ÜBERBLICK TEST-VERTEILUNGEN Dskrete Zufallsvarable Wahrschlk.-Fukto f( ) mt a W ( X = ) Vertelugsfukto F( ) mt a W ( X ) F( ) = W( X = ) å Stetge Zufallsvarable Dchtefukto f() Vertelugsfukto F() W(

Mehr

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese

Mehr

Fehleranalyse - Fehlertypen

Fehleranalyse - Fehlertypen Fehleraalyse - Fehlertype Grobe Fehler Systeatsche Fehler Zufällge Fehler 30.0.00 Vorlesug - Fehleraalyse - Fehlertype Grobe Fehler Mest durch Uachtsaket Zahledreher 4,5 statt 5,4 Protokoll Be Ablese a

Mehr

8. Mehrdimensionale Funktionen

8. Mehrdimensionale Funktionen Prof. Dr. Wolfgag Koe Mathematk, SS05.05.05 8. Mehrdmesoale Fuktoe Wer Greze überschretet, versucht, ee eue Dmeso vorzustoße. [Dael Mühlema, (*959), Übersetzer ud Aphorstker] Ege Leute sollte cht dü werde,

Mehr

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten Kraftfahrzeugverkehr Deutschlad 2010 (KD 2010) Abschlussverastaltug am 24. Aprl 2012 bem BMVBS Bo Hwese zum Hochrechugsverfahre für de Arbet mt de Date Prof. Dr. Wlfred Stock IVT Isttut für agewadte Verkehrsud

Mehr

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge Formulerug mttels Dyamscher Programmerug Berechugsbespel Beobachtug: de Azahl der Telprobleme A j mt j st ur Folgerug: der aïve rekursve Algo berechet vele Telprobleme mehrfach! Idee: Bottom-up-Berechug

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

3.5 Einzelwerte (Datenreihen) Häufigkeitsverteilungen Häufigkeitsklassen

3.5 Einzelwerte (Datenreihen) Häufigkeitsverteilungen Häufigkeitsklassen Thema 3 Häufget Statst - Neff INHALT 3.5 Ezelwerte (Daterehe) Häufgetsverteluge Häufgetslasse Etsprechede Formel für x ud s - : Gewchtug mt h Klassemtte x* Hstogramme mt de Dchte f = Rechtechöhe: f = h

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling Aalse ud praktsche Umsetzug uterschedlcher Methode des Radomzed Brach Samplg Dssertato zur Erlagug des Doktorgrades der Fakultät für Forstwsseschafte ud Waldökologe der GeorgAugustUverstät Göttge vorgelegt

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3)

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3) Kaptel 5: Inferenz m multplen Modell 5 Inferenz m multplen Modell 5. Intervallschätzung m multplen Regressonsmodell Analog zum enfachen Regressonsmodell glt: Dem Intervallschätzer der Parameter legt zugrunde,

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Das virtuelle Bildungsnetzwerk für Textilberufe

Das virtuelle Bildungsnetzwerk für Textilberufe Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: 0.0.0033 Sete / 9 Grudlage der Statstk Uter eer Statstk versteht ma ee Aufglederug

Mehr